Quantum Dots for Cancer Molecular Imaging

  • Xiaohu Gao
  • Shivang R. Dave
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 620)


Quantum dots (QDs), tiny light-emitting particles on the nanometer scale, are emerging as a new class of fluorescent probes for biomolecular and cellular imaging. In comparison with organic dyes and fluorescent proteins, quantum dots have unique optical and electronic properties such as size-tunable light emission, improved signal brightness, resistance against photobleaching, and simultaneous excitation of multiple fluorescence colors.1 These properties are most promising for improving the sensitivity of molecular imaging and quantitative cellular analysis by 1–2 orders of magnitude. Recent advances have led to multifunctional nanoparticle probes that are highly bright and stable under complex in-vivo conditions. A new structural design involves encapsulating luminescent QDs with amphiphilic block copolymers, and linking the polymer coating to tumor-targeting ligands and drug-delivery functionalities. Polymer-encapsulated QDs are essentially nontoxic to cells and small animals, but their long-term in-vivo toxicity and degradation need more careful studies. Nonetheless, bioconjugated QDs have raised new possibilities for ultrasensitive and multiplexed imaging of molecular targets in living cells and animal models.


Sentinel Lymph Node Fluorescence Resonance Energy Transfer Sentinel Lymph Node Mapping Macmillian Publisher Fluorescent Nanocrystals 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gao XH, Yang L, Petros JA et al. In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol 2005; 16:63–72.PubMedCrossRefGoogle Scholar
  2. 2.
    Jemal A, Murray T, Ward E et al. Cancer statistics, 2005. CA Cancer J Clin 2005; 55(1):0–30.CrossRefGoogle Scholar
  3. 3.
    Jain RK, Stroh M. Zooming in and out with quantum dots. Nat Biotechnol 2004; 22(8):959–960.PubMedCrossRefGoogle Scholar
  4. 4.
    Alivisatos AP. Perspectives on the physical chemistry of semiconductor nanocrystals. J Phys Chem 1996; 100(31):13226–13239.CrossRefGoogle Scholar
  5. 5.
    Yin Y, Alivisatos AP. Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 2005; 437(7059):664–670.PubMedCrossRefGoogle Scholar
  6. 6.
    Alivisatos AP. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996; 271(5251):933–937.CrossRefGoogle Scholar
  7. 7.
    Murphy CJ, Coffer JL. Quantum dots: A primer. Appl Spectrosc 2002; 56(1):16A–27A.CrossRefGoogle Scholar
  8. 8.
    Sapra S, Sarma DD. Evolution of the electronic structure with size in II–VI semiconductor nanocrystals. Phys Rev B 2004; 69(12):125304.CrossRefGoogle Scholar
  9. 9.
    Pietryga J, Schaller R, Werder D et al. Pushing the band gap envelope: Mid-infrared emitting colloidal PbSe quantum dots. J Am Chem Soc 2004; 126(38):11752–11753.PubMedCrossRefGoogle Scholar
  10. 10.
    Zhong XH, Feng YY, Knoll W et al. Alloyed ZnxCd1−xS nanocrystals with highly narrow luminescence spectral width. J Am Chem Soc 2003; 125(44):13559–13563.PubMedCrossRefGoogle Scholar
  11. 11.
    Zhong XH, Han MY, Dong Z et al. Composition-tunable ZnxCd1−xSe nanocrystals with high luminescence and stability. J Am Chem Soc 2003; 125(28):8589–8594.PubMedCrossRefGoogle Scholar
  12. 12.
    Qu LH, Peng XG. Control of photoluminescence properties of CdSe nanocrystals in growth. J Am Chem Soc 2002; 124(9):2049–2055.PubMedCrossRefGoogle Scholar
  13. 13.
    Kim S, Fisher B, Eisler HJ et al. Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures. J Am Chem Soc 2003; 125(38):11466–11467.PubMedCrossRefGoogle Scholar
  14. 14.
    Smith A, Gao XH, Nie S. Quantum-dot nanocrystals for in-vivo molecular and cellular imaging. Photochem Photobiol 2004; 80(3):377–385.PubMedGoogle Scholar
  15. 15.
    Leatherdale C, Woo W, Mikulec F et al. On the absorption cross section of CdSe nanocrystal quantum dots. J Phys Chem B 2002; 106(31):7619–7622.CrossRefGoogle Scholar
  16. 16.
    Chan WCW, Nie SM. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998; 281(5385):2016–2018.PubMedCrossRefGoogle Scholar
  17. 17.
    Bruchez M, Moronne M, Gin P et al. Semiconductor nanocrystals as fluorescent biological labels. Science 1998; 281(5385):2013–2016.PubMedCrossRefGoogle Scholar
  18. 18.
    Dahan M, Laurence T, Pinaud F et al. Time-gated biological imaging by use of colloidal quantum dots. Opt Lett 2001; 26(11):825–827.PubMedCrossRefGoogle Scholar
  19. 19.
    Bailey RE, Nie SM. Alloyed semiconductor quantum dots: Tuning the optical properties without changing the particle size. J Am Chem Soc 2003; 125(23):7100–7106.PubMedCrossRefGoogle Scholar
  20. 20.
    Yu WW, Wang YA, Peng XG. Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: Ligand effects on monomers and nanocrystals. Chem Mater 2003; 15(22):4300–4308.CrossRefGoogle Scholar
  21. 21.
    Wu XY, Liu HJ, Liu JQ et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 2003; 21(1):41–46.PubMedCrossRefGoogle Scholar
  22. 22.
    Dubertret B, Skourides P, Norris DJ et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 2002; 298(5599):1759–1762.PubMedCrossRefGoogle Scholar
  23. 23.
    Gao XH, Cui YY, Levenson RM et al. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 2004; 22(8):969–976.PubMedCrossRefGoogle Scholar
  24. 24.
    Kirchner C, Liedl T, Kudera S et al. Cytotoxicity of Colloidal CdSe and CdSe/ZnS Nanoparticles. Nano Lett 2005; 5(2):331–338.PubMedCrossRefGoogle Scholar
  25. 25.
    Pellegrino T, Manna L, Kudera S et al. Hydrophobic nanocrystals coated with an amphiphilic polymer shell: A general route to water soluble nanocrystals. Nano Lett 2004; 4(4):703–707.CrossRefGoogle Scholar
  26. 26.
    Mattoussi H, Mauro JM, Goldman ER et al. Self-assembly of CdSe−ZnS quantum dot bioconjugates using an engineered recombinant protein. J Am Chem Soc 2000; 122(49):12142–12150.CrossRefGoogle Scholar
  27. 27.
    Goldman ER, Balighian ED, Mattoussi H et al. Avidin: A natural bridge for quantum dot-antibody conjugates. J Am Chem Soc 2002; 124(22):6378–6382.PubMedCrossRefGoogle Scholar
  28. 28.
    Goldman ER, Anderson GP, Tran PT et al. Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays. Anal Chem 2002; 74(4):841–847.PubMedCrossRefGoogle Scholar
  29. 29.
    Hernandez J, Thompson I. Prostate-specific antigen: A review of the validation of the most commonly used cancer biomarker. Cancer 2004; 101(5):894–904.PubMedCrossRefGoogle Scholar
  30. 30.
    Goessl C. Noninvasive molecular detection of cancer — The bench and the bedside. Curr Med Chem 2003; 10(8):691–706.PubMedCrossRefGoogle Scholar
  31. 31.
    Bakalova R, Zhelev Z, Ohba H et al. Quantum dot-based western blot technology for ultrasensitive detection of tracer proteins. J Am Chem Soc 2005; 127(26):9328–9329.PubMedCrossRefGoogle Scholar
  32. 32.
    Goldman ER, Clapp AR, Anderson GP et al. Multiplexed toxin analysis using four colors of quantum dot fluororeagents. Anal Chem 2004; 76(3):684–688.PubMedCrossRefGoogle Scholar
  33. 33.
    Makrides S, Gasbarro C, Bello J. Bioconjugation of quantum dot luminescent probes for Western blot analysis. BioTechniques 2005; 39(4):501–506.PubMedCrossRefGoogle Scholar
  34. 34.
    Medintz IL, Clapp AR, Mattoussi H et al. Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat Mater 2003; 2(9):630–638.PubMedCrossRefGoogle Scholar
  35. 35.
    Medintz IL, Trammell SA, Mattoussi H et al. Reversible modulation of quantum dot photoluminescence using a protein-bound photochromic fluorescence resonance energy transfer acceptor. J Am Chem Soc 2004; 126(1):30–31.PubMedCrossRefGoogle Scholar
  36. 36.
    Penn SG, He L, Natan MJ. Nanoparticles for bioanalysis. Curr Opin Chem Biol 2003; 7(5):609–615.PubMedCrossRefGoogle Scholar
  37. 37.
    Gerion D, Chen FQ, Kannan B et al. Room-temperature single-nucleotide polymorphism and multiallele DNA detection using fluorescent nanocrystals and microarrays. Anal Chem 2003; 75(18):4766–4772.PubMedCrossRefGoogle Scholar
  38. 38.
    Zhang CY, Yeh HC, Kuroki MT et al. Single-quantum-dot-based DNA nanosensor. Nat Mater 2005; 4(11):826–831.PubMedCrossRefGoogle Scholar
  39. 39.
    Han MY, Gao XH, Su JZ et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 2001; 19(7):631–635.PubMedCrossRefGoogle Scholar
  40. 40.
    Gao XH, Nie S. Doping mesoporous materials with multicolor quantum dots. J Phys Chem B 2003; 107:11575–11578.CrossRefGoogle Scholar
  41. 41.
    Gao XH, Nie SM. Quantum dot-encoded mesoporous beads with high brightness and uniformity: Rapid readout using flow cytometry. Anal Chem 2004; 76:2406–2410.PubMedCrossRefGoogle Scholar
  42. 42.
    Xu HX, Sha MY, Wong EY et al. Multiplexed SNP genotyping using the Qbead (TM) system: A quantum dot-encoded microsphere-based assay. Nucleic Acids Res 2003; 31(8):e43.PubMedCrossRefGoogle Scholar
  43. 43.
    Rosenthal SJ. Bar-coding biomolecules with fluorescent nanocrystals. Nat Biotechnol 2001; 19(7):621–622.PubMedCrossRefGoogle Scholar
  44. 44.
    Pathak S, Choi SK, Arnheim N et al. Hydroxylated quantum dots as luminescent probes for in situ hybridization. J Am Chem Soc 2001; 123(17):4103–4104.PubMedCrossRefGoogle Scholar
  45. 45.
    Xiao Y, Barker PE. Semiconductor nanocrystal probes for human metaphase chromosomes. Nucleic Acids Res 2004; 32(3):e28.PubMedCrossRefGoogle Scholar
  46. 46.
    Matsuno A, Itoh J, Takekoshi S et al. Three-dimensional imaging of the intracellular localization of growth hormone and prolactin and their mRNA using nanocrystal (Quantum dot) and confocal laser scanning microscopy techniques. J Histochem Cytochem 2005; 53(7):833–838.PubMedCrossRefGoogle Scholar
  47. 47.
    Sukhanova A, Devy M, Venteo L et al. Biocompatible fluorescent nanocrystals for immunolabeling of membrane proteins and cells. Anal Biochem 2004; 324(1):60–67.PubMedCrossRefGoogle Scholar
  48. 48.
    Howarth M, Takao K, Hayashi Y et al. Targeting quantum dots to surface proteins in living cells with biotin ligase. Proc Nat Acad Sci USA 2005; 102(21):7583–7588.PubMedCrossRefGoogle Scholar
  49. 49.
    Giepmans BNG, Deerinck TJ, Smarr BL et al. Correlated light and electron microscopic imaging of multiple endogenous proteins using quantum dots. Nature Methods 2005; 2(10):743–749.PubMedCrossRefGoogle Scholar
  50. 50.
    Nisman R, Dellaire G, Ren Y et al. Application of quantum dots as probes for correlative fluorescence, conventional, and energy-filtered transmission electron microscopy. J Histochem Cytochem 2004; 52(1):13–18.PubMedGoogle Scholar
  51. 51.
    Ness JM, Akhtar RS, Latham CB et al. Combined tyramide signal amplification and quantum dots for sensitive and photostable immunofluorescence detection. J Histochem Cytochem 2003; 51(8):981–987.PubMedGoogle Scholar
  52. 52.
    Sukhanova A, Venteo L, Devy J et al. Highly stable fluorescent nanocrystals as a novel class of labels for immunohistochemical analysis of paraffin-embedded tissue sections. Lab Investig 2002; 82(9):1259–1261.PubMedGoogle Scholar
  53. 53.
    Lidke DS, Nagy P, Heintzmann R et al. Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nat Biotechnol 2004; 22(2):198–203.PubMedCrossRefGoogle Scholar
  54. 54.
    Dahan M, Levi S, Luccardini C et al. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 2003; 302(5644):442–445.PubMedCrossRefGoogle Scholar
  55. 55.
    Derfus AM, Chan WCW, Bhatia SN. Intracellular delivery of quantum dots for live cell labeling and organelle tracking. Adv Mater 2004; 16(12):961–966.CrossRefGoogle Scholar
  56. 56.
    Lidke DS, Lidke KA, Rieger B et al. Reaching out for signals: Filopodia sense EGF and respond by directed retrograde transport of activated receptors. J Cell Biol 2005; 170(4):619–626.PubMedCrossRefGoogle Scholar
  57. 57.
    Parak WJ, Boudreau R, Le Gros M et al. Cell motility and metastatic potential studies based on quantum dot imaging of phagokinetic tracks. Adv Mater 2002; 14(12):882–885.CrossRefGoogle Scholar
  58. 58.
    Pellegrino T, Parak W, Boudreau R et al. Quantum dot-based cell motility assay. Diferentiation 2003; 71(9–10):542–548.CrossRefGoogle Scholar
  59. 59.
    Weissleder R. A clearer vision for in vivo imaging. Nat Biotechnol 2001; 19(4):316–317.PubMedCrossRefGoogle Scholar
  60. 60.
    Frangioni JV. In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol 2003; 7(5):626–634.PubMedCrossRefGoogle Scholar
  61. 61.
    Kim S, Lim YT, Soltesz EG et al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 2004; 22(1):93–97.PubMedCrossRefGoogle Scholar
  62. 62.
    Larson DR, Zipfel WR, Williams RM et al. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 2003; 300(5624):1434–1436.PubMedCrossRefGoogle Scholar
  63. 63.
    Lim YT, Kim S, Nakayama A et al. Selection of quantum dot wavelengths for biomedical assays and imaging. Molecular Imaging 2003; 2(1):50–64.PubMedCrossRefGoogle Scholar
  64. 64.
    Ballou B, Lagerholm BC, Ernst LA et al. Noninvasive imaging of quantum dots in mice. Bioconjug Chem 2004; 15(1):79–86.PubMedCrossRefGoogle Scholar
  65. 65.
    Roberts M, Bentley M, Harris J. Chemistry for peptide and protein PEGylation. Adv Drug Deliv Rev 2002; 54(4):459–476.PubMedCrossRefGoogle Scholar
  66. 66.
    Stroh M, Zimmer JP, Duda DG et al. Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nat Med 2005; 11(6):678–682.PubMedCrossRefGoogle Scholar
  67. 67.
    Parungo C, Ohnishi S, Kim S et al. Intraoperative identification of esophageal sentinel lymph nodes with near-infrared fluorescence imaging. J Thorac Cardiovasc Surg 2005; 129(4):844–850.PubMedCrossRefGoogle Scholar
  68. 68.
    Soltesz E, Kim S, Laurence R et al. Intraoperative sentinel lymph node mapping of the lung using near-infrared fluorescent quantum dots. Ann Thorac Surg 2005; 79(1):269–277.PubMedCrossRefGoogle Scholar
  69. 69.
    Parungo C, Colson Y, Kim S et al. Sentinel lymph node mapping of the pleural space. Chest 2005; 127(5):1799–1804.PubMedCrossRefGoogle Scholar
  70. 70.
    Akerman ME, Chan WCW, Laakkonen P et al. Nanocrystal targeting in vivo. Proc Natl Acad Sci USA 2002; 99(20):12617–12621.PubMedCrossRefGoogle Scholar
  71. 71.
    Derfus AM, Chan WCW, Bhatia SN. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 2004; 4(1):11–18.CrossRefGoogle Scholar
  72. 72.
    Jaiswal JK, Mattoussi H, Mauro JM et al. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 2003; 21(1):47–51.PubMedCrossRefGoogle Scholar
  73. 73.
    Voura E, Jaiswal J, Mattoussi H et al. Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat Med 2004; 10(9):993–998.PubMedCrossRefGoogle Scholar
  74. 74.
    Wang DS, He JB, Rosenzweig N et al. Superparamagnetic Fe2O3 beads-CdSe/ZnS quantum dots core-shell nanocomposite particles for cell separation. Nano Lett 2004; 4(3):409–413.CrossRefGoogle Scholar
  75. 75.
    Gu HW, Zheng RK, Zhang XX et al. Facile one-pot synthesis of bifunctional heterodimers of nanoparticles: A conjugate of quantum dot and magnetic nanoparticles. J Am Chem Soc 2004; 126(18):5664–5665.PubMedCrossRefGoogle Scholar
  76. 76.
    Samia ACS, Chen X, Burda C. Semiconductor quantum dots for photodynamic therapy. J Am Chem Soc 2003; 125(51):15736–15737.PubMedCrossRefGoogle Scholar
  77. 77.
    Bakalova R, Ohba H, Zhelev Z et al. Quantum dot anti-CD conjugates: Are they potential photosensitizers or potentiators of classical photosensitizing agents in photodynamic therapy of cancer? Nano Lett 2004; 4(9):1567–1573.CrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2007

Authors and Affiliations

  • Xiaohu Gao
    • 1
  • Shivang R. Dave
    • 1
  1. 1.Department of BioengineeringUniversity of WashingtonSeattleUSA

Personalised recommendations