Multi-Functional Gold Nanoparticles for Drug Delivery

  • Gang Han
  • Partha Ghosh
  • Vincent M. Rotello
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 620)


Multi-functional gold nanoparticles have been demonstrated to be highly stable and versatile scaffolds for drug delivery due to their unique size, coupled with their chemical and physical properties. The ability to tune the surface of the particle provides access to cell-specific targeting and controlled drug release. This chapter describes current developments in the area of drug delivery using gold nanoparticles as delivery vehicles for multiple therapeutic purposes.


Drug Delivery Gold Nanoparticles Cellular Uptake Mixed Monolayer Silver Sulfide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Liu JW, Lu Y. Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angew Chem Int Edit 2006; 45:90–94.CrossRefGoogle Scholar
  2. 2.
    You CC, Arvizo RR, Rotello VM. Regulation of alpha-chymotrypsin activity on the surface of substrate-functionalized gold nanoparticles. Chem Commun 2006; 2905–2907.Google Scholar
  3. 3.
    Groneberg DA, Giersig M, Welte T et al. Nanoparticle-based diagnosis and therapy. Current Drug Targets 2006; 7:643–648.PubMedCrossRefGoogle Scholar
  4. 4.
    Huang XH, El-Sayed IH, Qian W et al. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 2006; 128:2115–2120.PubMedCrossRefGoogle Scholar
  5. 5.
    Wu W, Wieckowski S, Pastorin G et al. Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes. Angew Chem Int Edit 2005; 44:6358–6362.CrossRefGoogle Scholar
  6. 6.
    Salem AK, Searson PC, Leong KW. Multifunctional nanorods for gene delivery. Nat Mater 2003; 2:668–671.PubMedCrossRefGoogle Scholar
  7. 7.
    Luo D, Saltzman WM. Enhancement of transfection by physical concentration of DNA at the cell surface. Nat Biotechnol 2000; 18:893–895.PubMedCrossRefGoogle Scholar
  8. 8.
    Connor EE, Mwamuka J, Gole A et al. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 2005; 1:325–327.PubMedCrossRefGoogle Scholar
  9. 9.
    Pissuwan D, Valenzuela SM, Cortie MB. Therapeutic possibilities of plasmonically heated gold nanoparticles. Trends In Biotechnology 2006; 24:62–67.PubMedCrossRefGoogle Scholar
  10. 10.
    Verma A, Rotello VM. Surface recognition of biomacromolecules using nanoparticle receptors. Chem Commun 2005; 303–312.Google Scholar
  11. 11.
    Chang MMC, Cuda G, Bunimovich YL et al. Nanotechnologies for biomolecular detection and medical diagnostics. Curr Opin Chem Biol 2006; 10:11–19.CrossRefGoogle Scholar
  12. 12.
    Rosi NL, Mirkin CA. Nanostructures in biodiagnostics. Chem Rev 2005; 105:1547–1562.PubMedCrossRefGoogle Scholar
  13. 13.
    You CC, Verma A, Rotello VM. Engineering the nanoparticle-biomacromolecule interface. Soft Matter 2006; 2:190–204.CrossRefGoogle Scholar
  14. 14.
    Miller AD. Human gene-therapy comes of age. Nature 1992; 357:455–460.PubMedCrossRefGoogle Scholar
  15. 15.
    Yeh P, Perricaudet M. Advances in adenoviral vectors: From genetic engineering to their biology. Faseb J 1997; 11:615–623.PubMedGoogle Scholar
  16. 16.
    Check E. Gene therapy: A tragic setback. Nature 2002; 420:116–118.PubMedCrossRefGoogle Scholar
  17. 17.
    Thomas M, Klibanov AM. Nonviral gene therapy: Polycation-mediated DNA delivery. Appl Microbiol Biotechnol 2003; 62:27–34.PubMedCrossRefGoogle Scholar
  18. 18.
    McIntosh CM, Esposito EA, Boal AK et al. Inhibition of DNA transcription using cationic mixed monolayer protected gold clusters. J Am Chem Soc 2001; 123:7626–7629.PubMedCrossRefGoogle Scholar
  19. 19.
    Han G, Martin CT, Rotello VM. Stability of gold nanoparticle-bound DNA toward biological, physical, and chemical agents. Chem Biol Drug Des 2006; 67:78–82.PubMedCrossRefGoogle Scholar
  20. 20.
    Sandhu KK, McIntosh CM, Simard JM et al. Gold nanoparticle-mediated transfection of mammalian cells. Bioconjugate Chem 2002; 13:3–6.CrossRefGoogle Scholar
  21. 21.
    Kneuer C, Sameti M, Bakowsky U et al. A nonviral DNA delivery system based on surface modified silica-nanoparticles can efficiently transfect cells in vitro. Bioconjugate Chem 2000; 11:926–932.CrossRefGoogle Scholar
  22. 22.
    Thomas M, Klibanov AM. Conjugation to gold nanoparticles enhances polyethylenimine’s transfer of plasmid DNA into mammalian cells. Proc Natl Acad Sci USA 2003; 100:9138–9143.PubMedCrossRefGoogle Scholar
  23. 23.
    Oishi M, Nakaogami J, Ishii T et al. Smart PEGylated gold nanoparticles for the cytoplasmic delivery of siRNA to induce enhanced gene silencing. Chemistry Letters 2006; 35:1046–1047.CrossRefGoogle Scholar
  24. 24.
    Rosi NL, Giljohann DA, Thaxton CS et al. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 2006; 312:1027–1030.PubMedCrossRefGoogle Scholar
  25. 25.
    Joshi HM, Bhumkar DR, Joshi K et al. Gold nanopartncles as carriers for efficient transmucosal insulin delivery. Langmuir 2006; 22:300–305.PubMedCrossRefGoogle Scholar
  26. 26.
    Hassan SSM, Rechnitz GA. Determination of glutathione and glutathione-reductase with a silver sulfide membrane-electrode. Anal Chem 1982; 54:1972–1976.CrossRefGoogle Scholar
  27. 27.
    Anderson ME. Glutathione: An overview of biosynthesis and modulation. Chem-Biol Interact 1998; 112:1–14.CrossRefGoogle Scholar
  28. 28.
    Jones DP, Carlson JL, Samiec PS et al. Glutathione measurement in human plasma Evaluation of sample collection, storage and derivatization conditions for analysis of dansyl derivatives by HPLC. Clin Chim Acta 1998; 275:175–184.PubMedCrossRefGoogle Scholar
  29. 29.
    Mahajan SS, Pananji R, Mehta R et al. A glutathione-based hydrogel and its site-selective interactions with water. Bioconjugate Chem 2005; 16:1019–1026.CrossRefGoogle Scholar
  30. 30.
    Saito G, Swanson JA, Lee KD. Drug delivery strategy utilizing conjugation via reversible disulfide linkages: Role and site of cellular reducing activities. Adv Drug Deliv Rev 2003; 55:199–215.PubMedCrossRefGoogle Scholar
  31. 31.
    Han G, Chari NS, Verma A et al. Controlled recovery of the transcription of nanoparticle-bound DNA by intracellular concentrations of glutathione. Bioconjugate Chem 2005; 16:1356–1359.CrossRefGoogle Scholar
  32. 32.
    Hong R, Han G, Fernandez JM et al. Glutathione-mediated delivery and release using monolayer protected nanoparticle carriers. J Am Chem Soc 2006; 128:1078–1079.PubMedCrossRefGoogle Scholar
  33. 33.
    Rothrock AR, Donkers RL, Schoenfisch MH. Synthesis of nitric oxide-releasing gold nanoparticles. J Am Chem Soc 2005; 127:9362–9363.PubMedCrossRefGoogle Scholar
  34. 34.
    Berg K, Selbo PK, Prasmickaite L et al. A Photochemical drug and gene delivery. Curr Opin Mol Ther 2004; 6:279–287.PubMedGoogle Scholar
  35. 35.
    Han G, You CC, Kim BJ et al. Light-regulated release of DNA and its delivery to nuclei by means of photolabile gold nanoparticles. Angew Chem Int Edit 2006; 45:3165–3169.CrossRefGoogle Scholar
  36. 36.
    Skirtach AG, Javier AM, Kreft O et al. Laser-induced release of encapsulated materials inside living cells. Angew Chem Int Edit 2006; 45:4612–4617.CrossRefGoogle Scholar
  37. 37.
    Yang PH, Sun XS, Chiu JF et al. Transferrin-mediated gold nanoparticle cellular uptake. Bioconjugate Chem 2005; 16:494–496.CrossRefGoogle Scholar
  38. 38.
    Lee RJ, Low PS. Folate-mediated tumor-cell targeting of liposome-entrapped doxorubicin in vitro. Biochim Biophys Acta-Biomembr 1995; 1233:134–144.CrossRefGoogle Scholar
  39. 39.
    Dixit V, Van den Bossche J, Sherman DM et al. Synthesis and grafting of thioctic acid-PEG-folate conjugates onto Au nanoparticles for selective targeting of folate receptor-positive tumor cells. Bioconjugate Chem 2006; 17:603–609.CrossRefGoogle Scholar
  40. 40.
    Paciotti GF, Myer L, Weinreich D et al. Colloidal gold: A novel nanoparticle vector for tumor directed drug delivery. Drug Deliv 2004; 11:169–183.PubMedCrossRefGoogle Scholar
  41. 41.
    Paciotti GF, Kingston DGI, Tamarkin L. Colloidal gold nanoparticles: A novel nanoparticle platform for developing multifunctional tumor-targeted drug delivery vectors. Drug Dev Res 2006; 67:47–54.CrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2007

Authors and Affiliations

  • Gang Han
    • 1
  • Partha Ghosh
    • 1
  • Vincent M. Rotello
    • 1
  1. 1.Department of ChemistryUniversity of MassachusettsAmherstUSA

Personalised recommendations