Current Approaches for Engineering Proteins with Diverse Biological Properties

  • Isaac T. S. Li
  • Elizabeth Pham
  • Kevin Truong
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 620)


In the past two decades, protein engineering has advanced significantly with the emergence of new chemical and, genetic approaches. Modification and recombination of existing proteins not only produced novel enzymes used commercially and in research laboratories, but furthermore, they revealed the mechanisms of protein function. In this chapter, we will describe, the applications and significance of current protein engineering approaches.


Fluorescence Resonance Energy Transfer Direct Evolution Yellow Fluorescent Protein Random Mutagenesis Maltose Binding Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Li B, Nowak NM, Kim SK et al. Random mutagenesis of the M3 muscarinic acetylcholine receptor expressed in yeast: I dentification of second-site mutations that restore function to a coupling-deficient mutant M3 receptor. J Biol Chem 2005; 280(7):5664–5675.PubMedCrossRefGoogle Scholar
  2. 2.
    Chao G, Cochran JR, Wittrup KD. Fine epitope mapping of anti-epidermal growth factor receptor antibodies through random mutagenesis and yeast surface display. J Mol Biol 2004; 342(2):539–550.PubMedCrossRefGoogle Scholar
  3. 3.
    Farrow KA, Lyras D, Polekhina G et al. Identification of essential residues in the Erm(B), rRNA methyltransferase of Clostridium perfringens. Antimicrob Agents Chemother 2002;46(5):1253–1261.PubMedCrossRefGoogle Scholar
  4. 4.
    Munoz I, Ruiz A, Marquina M et al. Functional characterization of the yeast Ppzl phosphatase inhibitory subunit Hal3: A mutagenesis study. J Biol Chem 2004; 279(41):42619–42627.PubMedCrossRefGoogle Scholar
  5. 5.
    Takahashi M, Hasuura Y, Nakamori S et al. Improved autoprocessing efficiency of mutant subtilisins E with altered specificity by engineering of the pro-region. J Biochem (Tokyo) 2001; 130(1):99–106.Google Scholar
  6. 6.
    Fujii K, Minagawa H, Terada Y et al. Use of random and saturation mutageneses to improve the properties of Thermus aquaticus amylomaltase for efficient production, of cycloamyloses. Appl Environ Microbiol 2005; 71(10):5823–5827.PubMedCrossRefGoogle Scholar
  7. 7.
    Shim JH, Kim YW, Kim TJ et al. Improvement of cyclodextrin glucanotransferase as an antistaling enzyme by error-prone PCR. Protein Eng Des Sel 2004; 17(3):205–211.PubMedCrossRefGoogle Scholar
  8. 8.
    Kohno M, Enatsu M, Funatsu J et al. Improvement of the optimum temperature of lipase activity for Rhizopus niveus by random mutagenesis and its structural interpretation. J Biotechnol 2001; 87(3):203–210.PubMedCrossRefGoogle Scholar
  9. 9.
    Amara AA, Steinbuchel A, Rehm BH. In vivo evolution of the Aeromonas punctata polyhydroxyalkanoate (PHA) synthase: Isolation and characterization of modified PHA synthases with enhanced activity. Appl Microbiol Biotechnol 2002; 59(4–5):477–482.PubMedGoogle Scholar
  10. 10.
    Delagrave S, Hawtin RE, Silva CM et al. Red-shifted excitation mutants of the green fluorescent protein. Biotechnology (NY) 1995; 13(2):151–154.CrossRefGoogle Scholar
  11. 11.
    Lanio T, Jeltsch A, Pingoud A. Towards the design of rare cutting restriction endonucleases: Using directed evolution to generate variants of EcoRV differing in their substrate specificity by two orders of magnitude. J Mol Biol 1998; 283(1):59–69.PubMedCrossRefGoogle Scholar
  12. 12.
    Wu TK, Griffin JH. Conversion of a plant oxidosqualene-cycloartenol synthase to an oxidosqualene-lanosterol cyclase by random mutagenesis. Biochemistry 2002; 41(26):8238–8244.PubMedCrossRefGoogle Scholar
  13. 13.
    Greener A, Callahan M, Jerpseth B. An efficient random mutagenesis technique using an E. coli mutator strain. Mol Biotechnol 1997; 7(2):189–195.PubMedCrossRefGoogle Scholar
  14. 14.
    Greener A, Callahan M, Jerpseth B. An efficient random mutagenesis technique using an E. coli mutator strain. Methods Mol Biol 1996; 57:375–385.PubMedGoogle Scholar
  15. 15.
    Kunkel TA, Erie DA. DNA mismatch repair. Annu Rev Biochem 2005; 74:681–710.PubMedCrossRefGoogle Scholar
  16. 16.
    Brakmann S, Lindemann BF. Generation of mutant libraries using random mutagenesis. In: Brakmann S, Schwienhorst A, eds. Evolutionary methods in biotechnology: Cleaver, tricks for directed evolution. Weinheim: Wiley-VCH, 2004:5–12.Google Scholar
  17. 17.
    Bornscheuer UT, Altenbuchner J, Meyer HH. Directed evolution of an esterase: Screening of enzyme libraries based on pH-indicators and a growth assay. Bioorg Med Chem 1999; 7(10):2169–2173.PubMedCrossRefGoogle Scholar
  18. 18.
    Bornscheuer UT, Altenbuchner J, Meyer HH. Directed evolution of an esterase for the stereoselective resolution of a key intermediate in the synthesis of epothilones. Biotechnol Bioeng 1998; 58(5):554–559.PubMedCrossRefGoogle Scholar
  19. 19.
    Henke E, Bornscheuer UT. Directed evolution of an esterase from Pseudomonas fluorescens. Random mutagenesis by error-prone PCR or a mutator strain and identification of mutants showing enhanced enantioselectivity by a resorufin-based fluorescence assay. Biol Chem 1999; 380(7–8):1029–1033.PubMedCrossRefGoogle Scholar
  20. 20.
    Shortle D, Nathans D. Local mutagenesis: A method for generating viral mutants with base substitutions in preselected regions of the viral genome. Proc Natl Acad Sci USA 1978; 75(5):2170–2174.PubMedCrossRefGoogle Scholar
  21. 21.
    Shimada A. PCR-based site-directed mutagenesis. Methods Mol Biol 1996; 57:157–165.PubMedGoogle Scholar
  22. 22.
    Storici F, Lewis LK, Resnick MA. In vivo site-directed mutagenesis using oligonucleotides. Nat Biotechnol 2001; 19(8):773–776.PubMedCrossRefGoogle Scholar
  23. 23.
    Hutchison IIIrd CA, Phillips S, Edgell MH et al. Mutagenesis at a specific position in a DNA sequence. J Biol Chem 1978; 253(18):6551–6560.PubMedGoogle Scholar
  24. 24.
    Saint-Joanis B, Souchon H, Wilming M et al. Use of site-directed mutagenesis to probe the structure, function and isoniazid activation of the catalase/peroxidase, KatG, from Mycobacterium tuberculosis. Biochem J 1999; 338 (Pt 3):753–760.PubMedCrossRefGoogle Scholar
  25. 25.
    Ohtsubo K, Imajo S, Ishiguro M et al. Studies on the structure-function relationship of the HNK-1 associated glucuronyltransferase, GlcAT-P, by computer modeling and site-directed mutagenesis. J Biochem (Tokyo) 2000; 128(2):283–291.Google Scholar
  26. 26.
    Farh L, Hwang SY, Steinrauf L et al. Structure-function studies of Escherichia coli biotin synthase via a chemical modification and site-directed mutagenesis approach. J Biochem (Tokyo) 2001; 130(5):627–635.Google Scholar
  27. 27.
    Alam M, Vance DE, Lehner R. Structure-function analysis of human triacylglycerod hydrolase by site-directed mutagenesis: Identification of the catalytic triad and a glycosylation site. Biochemistry 2002; 41(21):6679–6687.PubMedCrossRefGoogle Scholar
  28. 28.
    Sviridov D, Hoang A, Huang W et al. Structure-function studies of apoA-I variants: Site-directed mutagenesis and natural mutations. J Lipid Res 2002; 43(8):1283–1292.PubMedGoogle Scholar
  29. 29.
    Gupta RP, He YA, Patrick KS et al. CYP3A4 is a vitamin D-24-and 25-hydroxylase: Analysis of structure function by site-directed mutagenesis. J Clin Endocrinol Metab 2005; 90(2):1210–1219.PubMedCrossRefGoogle Scholar
  30. 30.
    Mullaney EJ, Daly CB, Kim T et al. Site-directed mutagenesis of Aspergillus niger NRRL 3135 phytase at, residue 300 to enhance catalysis at pH 4.0. Biochem Biophys Res Commun 2002; 297(4):1016–1020.PubMedCrossRefGoogle Scholar
  31. 31.
    Tobe S, Shimogaki H, Ohdera M et al. Expression of Bacillus protease (Protease BYA) from Bacillus sp. Y in Bacillus subtilis and enhancement of its specific activity by site-directed mutagenesis-improvement in productivity of detergent enzyme. Biol Pharm, Bull 2006; 29(1):26–33.CrossRefGoogle Scholar
  32. 32.
    Konkol L, Hirai TJ, Adams JA. Substrate specificity of the oncoprotein v-Fps: Site-specific mutagenesis of the putative P+1 pocket. Biochemistry 2000; 39(1):255–262.PubMedCrossRefGoogle Scholar
  33. 33.
    Ormo M, Cubitt AB, Kallio K et al. Crystal structure of the Aequorea victoria green fluorescent protein. Science 1996; 273(5280):1392–1395.PubMedCrossRefGoogle Scholar
  34. 34.
    Budisa N, Rubini M, Bae JH et al. Global replacement of tryptophan with aminotryptophans generates noninvasive protein-based optical pH sensors. Angew Chem Int Ed Engl 2002; 41(21):4066–4069.PubMedCrossRefGoogle Scholar
  35. 35.
    Cohen GN, Cowie DB. Total replacement of methionine by selenomethionine in the proteins of Escherichia coli. C R Hebd Seances Acad Sci 1957; 244(5):680–683.PubMedGoogle Scholar
  36. 36.
    Hyun Bae J, Rubini M, Jung G et al. Expansion of the genetic code enables design of a novel “gold” class of green fluorescent proteins. J Mol Biol 2003; 328(5):1071–1081.CrossRefGoogle Scholar
  37. 37.
    Kobayashi T, Sakamoto K, Takimura T et al. Structural basis of nonnatural amino acid recognition by an engineered aminoacyl-tRNA synthetase for genetic code expansion. Proc Natl Acad Sci USA 2005; 102(5):1366–1371.PubMedCrossRefGoogle Scholar
  38. 38.
    Kwon I, Kirshenbaum K, Tirrell DA. Breaking the degeneracy of the genetic code. J Am Chem Soc 2003; 125(25):7512–7513.PubMedCrossRefGoogle Scholar
  39. 39.
    Plettner E, Khumtaveeporn K, Shang X et al. A combinatorial approach to, chemical modification of subtilisin Bacillus lentus. Bioorg Med Chem Lett 1998; 8(17):2291–2296.PubMedCrossRefGoogle Scholar
  40. 40.
    Taki M, Hohsaka T, Murakami H et al. A novel fluorescent nonnatural amino acid that can be incorporated into a specific position of streptavidin. Nucleic Acids Res Suppl 2002; (2):203–204.PubMedGoogle Scholar
  41. 41.
    Murakami H, Hohsaka T, Ashizuka Y et al. Site-directed incorporation of fluorescent nonnatural amino acids into streptavidin for highly sensitive detection of biotin. Biomacromolecules. Spring 2000; 1(1):118–125.Google Scholar
  42. 42.
    Sisido M, Hohsaka T. Introduction of specialty functions by the position-specific incorporation of nonnatural amino acids into proteins through four-base codon/anticodon pairs. Appl Microbiol Biotechnol 2001;57(3):274–281.PubMedCrossRefGoogle Scholar
  43. 43.
    Kajihara D, Hohsaka T, Sisido M. Synthesis and sequence optimization of GFP mutants containing aromatic nonnatural amino acids at the Tyr66 position. Protein Eng Des Sel 2005; 18(6):273–278.PubMedCrossRefGoogle Scholar
  44. 44.
    Hohsaka T, Sisido M. Incorporation of nonnatural amino acids into proteins by using five-base codon-anticodon pairs. Nucleic Acids Symp Ser 2000; (44):99–100.PubMedGoogle Scholar
  45. 45.
    Pedelacq JD, Cabantous S, Tran T et al. Engineering and characterization of a superfolder green fluorescent protein. Nat Biotechnol 2006; 24(1):79–88.PubMedCrossRefGoogle Scholar
  46. 46.
    Castle LA, Siehl DL, Gorton R et al. Discovery and directed evolution of a glyphosate tolerance gene. Science 2004; 304(5674):1151–1154.PubMedCrossRefGoogle Scholar
  47. 47.
    Stemmer WP. Rapid evolution of a protein in vitro by DNA shuffling. Nature 1994; 370(6488):389–391.PubMedCrossRefGoogle Scholar
  48. 48.
    Stemmer WP. DNA shuffling by random fragmentation and reassembly: In vitro recombination for molecular evolution. Proc Natl Acad Sci USA 1994; 91(22): 10747–10751.PubMedCrossRefGoogle Scholar
  49. 49.
    Crameri A, Whitehorn EA, Tate E et al. Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat Biotechnol 1996; 14(3):315–319.PubMedCrossRefGoogle Scholar
  50. 50.
    Aharoni A, Gaidukov L, Yagur S et al. Directed evolution of mammalian paraoxonases PON1 and PON3 for bacterial expression and catalytic specialization. Proc Natl Acad Sci USA 2004; 101(2):482–487.PubMedCrossRefGoogle Scholar
  51. 51.
    Hsu JS, Yang YB, Deng CH et al. Family shuffling of expandase genes to enhance substrate specificity for penicillin G. Appl Environ Microbiol 2004; 70(10):6257–6263.PubMedCrossRefGoogle Scholar
  52. 52.
    Suen WC, Zhang N, Xiao L et al. Improved activity and thermostability, of Candida antarctica lipase B by DNA family shuffling. Protein Eng Des Sel 2004; 17(2):133–140.PubMedCrossRefGoogle Scholar
  53. 53.
    Zhao H, Giver L, Shao Z et al. Molecular evolution by staggered extension process (StEP) in vitro recombination. Nat Biotechnol 1998; 16(3):258–261.PubMedCrossRefGoogle Scholar
  54. 54.
    He M, Yang ZY, Nie YF et al. A new type of class I bacterial 5-enopyruvylshikimate-3-phosphate synthase mutants with enhanced tolerance to glyphosate. Biochim Biophys Acta 2001; 1568(1):1–6.PubMedGoogle Scholar
  55. 55.
    Dion M, Nisole A, Spangenberg P et al. Modulation of the regioselectivity of a Bacillus alpha-galactosidase by directed evolution. Glycoconj J 2001; 18(3):215–223.PubMedCrossRefGoogle Scholar
  56. 56.
    Vamvaca K, Butz M, Walter KU et al. Simultaneous optimization of enzyme activity and quaternary structure by directed evolution. Protein Sci 2005; 14(8):2103–2114.PubMedCrossRefGoogle Scholar
  57. 57.
    Gould SM, Tawfik DS. Directed evolution of the promiscuous esterase activity of carbonic anhydrase II. Biochemistry 2005; 44(14):5444–5452.PubMedCrossRefGoogle Scholar
  58. 58.
    Wong DW, Batt SB, Lee CC et al. High-activity barley alpha-amylase by directed evolution. Protein J 2004; 23(7):453–460.PubMedCrossRefGoogle Scholar
  59. 59.
    Kim YW, Lee SS, Warren RA et al. Directed evolution of a glycosynthase from Agrobacterium sp. increases its catalytic activity dramatically and expands its substrate, repertoire. J Biol, Chem 2004; 279(41):42787–42793.CrossRefGoogle Scholar
  60. 60.
    Johannes TW, Woodyer RD, Zhao H. Directed evolution of a thermostable phosphite dehydrogenase for NAD(P)H regeneration. Appl Environ Microbiol 2005;71(10):5728–5734.PubMedCrossRefGoogle Scholar
  61. 61.
    Hoseki J, Yano T, Koyama Y et al. Directed evolution of thermostable kanamycin-resistance gene: A convenient selection marker for Thermus thermophilus. J Biochem (Tokyo) 1999; 126(5):951–956.Google Scholar
  62. 62.
    Hao J, Berry A. A, thermostable variant of fructose bisphosphate aldolase constructed by directed evolution also shows increased stability in organic solvents. Protein Eng Des Sel 2004;17(9):689–697.PubMedCrossRefGoogle Scholar
  63. 63.
    Zhang N, Suen WC, Windsor W et al. Improving tolerance of Candida antarctica lipase B towards irreversible thermal inactivation through directed evolution. Protein Eng 2003;16(98):599–605.PubMedCrossRefGoogle Scholar
  64. 64.
    Masip L, Pan JL, Haldar S et al. An engineered pathway for the formation of protein disulfide bonds. Science 2004; 303(5661):1185–1189.PubMedCrossRefGoogle Scholar
  65. 65.
    Umeno D, Tobias AV Arnold FH. Diversifying carotenoid biosynthetic pathways by directed evolution. Microbiol Mol Biol Rev 2005; 69(1):51–78.PubMedCrossRefGoogle Scholar
  66. 66.
    Guntas G, Mitchell SF, Ostermeier M. A molecular switch created by in vitro recombination of nonhomologous genes. Chem Biol 2004; 11(11):1483–1487.PubMedCrossRefGoogle Scholar
  67. 67.
    Guntas G, Ostermeier M. Creation of an allosteric enzyme by domain insertion. J Mol Biol 2004; 336(1):263–273.PubMedCrossRefGoogle Scholar
  68. 68.
    Guntas G, Mansell TJ, Kim JR et al. Directed evolution of protein switches and their application to the creation of ligand-binding proteins. Proc Natl Acad Sci USA 2005;102(32):11224–11229.PubMedCrossRefGoogle Scholar
  69. 69.
    Truong K, Khorchid A, Ikura M. A fluorescent cassette-based strategy for engineering multiple domain fusion proteins. BMC Biotechnol 2003; 3:8.PubMedCrossRefGoogle Scholar
  70. 70.
    Jeong J, Kim SK, Ahn J et al. Monitoring of conformational change in maltose binding protein using split green fluorescent protein. Biochem Biophys Res Commun 2006; 339(2):647–651.PubMedCrossRefGoogle Scholar
  71. 71.
    Fehr M, Frommer WB, Lalonde S. Visualization of maltose uptake in living yeast cells by fluorescent nanosensors. Proc Natl Acad Sci USA 2002; 99(15):9846–9851.PubMedCrossRefGoogle Scholar
  72. 72.
    Nikolaev VO, Gambaryan S, Lohse MJ. Fluorescent sensors for rapid monitoring of intracellular cGMP. Nat Methods 2006 3(1):23–25.PubMedCrossRefGoogle Scholar
  73. 73.
    Remus TP, Zima AV, Bossuyt J et al. Biosensors to measure inositol 1,4,5-trisphosphate concentration in living cells with spatiotemporal resolution. J Biol, Chem 2006; 281(1):608–616.CrossRefGoogle Scholar
  74. 74.
    Deuschle K, Okumoto S, Fehr M et al. Construction and optimization of a family of genetically encoded metabolite sensors by semirational protein engineering. Protein Sci 2005; 14(9):2304–2314.PubMedCrossRefGoogle Scholar
  75. 75.
    Miyawaki A, Llopis J Heim R et al. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 1997; 388(6645):882–887.PubMedCrossRefGoogle Scholar
  76. 76.
    Truong K, Sawano A, Mizuno H et al. FRET-based in vivo Ca2+ imaging by a new calmodulin-GFP fusion molecule. Nat Struct Biol 2001; 8(12):1069–1073.PubMedCrossRefGoogle Scholar
  77. 77.
    Miyawaki A, Griesbeck O, Heim R et al. Dynamic and quantitative, Ca2+ measurements using improved cameleons. Proc Natl Acad Sci USA 1999; 96(5):2135–2140.PubMedCrossRefGoogle Scholar
  78. 78.
    Braun DC, Garfield SH, Blumberg PM. Analysis by fluorescence resonance energy transfer of the interaction between ligands and protein kinase C delta in the intact cell. J Biol Chem 2005; 280(9):8164–8171.PubMedCrossRefGoogle Scholar
  79. 79.
    Schleifenbaum A, Stier G, Gasch A et al. Genetically encoded FRET probe for PKC activity based on pleckstrin. J Am Chem Soc 2004; 126(38):11786–11787.PubMedCrossRefGoogle Scholar
  80. 80.
    Sato M, Umezawa Y. Imaging protein phosphorylation by fluorescence in single living cells. Methods 2004; 32(4):451–455.PubMedCrossRefGoogle Scholar
  81. 81.
    Wang Y, Botvinick EL, Zhao Y et al. Visualizing the mechanical, activation of Src. Nature 2005; 434(7036):1040–1045.PubMedCrossRefGoogle Scholar
  82. 82.
    Chiang JJ, Li I, Truong K. Creation of circularly permutated yellow fluorescent proteins using fluorescence screening and a tandem fusion template. Biotechnol Lett 2006; 28(7):471–475.PubMedCrossRefGoogle Scholar
  83. 83.
    Nakamura T, Iwakura M. Circular permutation analysis as a method for distinction of functional elements in the M20 loop of Escherichia coli dihydrofolate reductase. J Biol Chem 1999; 274(27):19041–19047.PubMedCrossRefGoogle Scholar
  84. 84.
    Iwakura M, Nakamura T, Yamane C et al. Systematic circular permutation of an entire protein reveals essential folding elements. Nat Struct Biol 2000; 7(7):580–585.PubMedCrossRefGoogle Scholar
  85. 85.
    Qian Z, Lutz S. Improving the catalytic activity of Candida antarctica lipase B by circular permutation. J Am Chem Soc 2005; 127(39):13466–13467.PubMedCrossRefGoogle Scholar
  86. 86.
    Nagai T, Yamada S, Tominaga T et al. Expanded dynamic range of fluorescent indicators for Ca2+ by circularly permuted yellow fluorescent proteins. Proc. Natl Acad Sci USA 2004; 101(29):10554–10559.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2007

Authors and Affiliations

  • Isaac T. S. Li
    • 1
    • 2
  • Elizabeth Pham
    • 1
    • 2
  • Kevin Truong
    • 1
    • 2
  1. 1.Institute of Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoCanada
  2. 2.Edward S. Rogers Sr. Department of Electrical and Computer EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations