Synthetic Strategies to Size and Shape Controlled Nanocrystals and Nanocrystal Heterostructures

  • P. Davide Cozzoli
  • Liberato Manna
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 620)


The recognition of the strongly dimensionality-dependent physical-chemical properties of inorganic matter at the nanoscale has stimulated efforts toward the fabrication of nanostructured materials in a systematic and controlled manner. Surfactant-assisted chemical approaches have now advanced to the point of allowing facile access to a variety of finely size- and shape-tailored semiconductor, oxide and metal nanocrystals (NCs) by balancing thermodynamic parameters and kinetically-limited growth processes in liquid media. While refinement of this synthetic ability is far from being exhausted, further efforts are currently made to provide NCs with higher structural complexity as means to increase their functionality. By controlling crystal miscibility, interfacial strain, and facet-selective reactivity at the nanoscale, hybrid NCs are currently engineered, which consist of two or more chemically different domains assembled together in a single particle through a permanent inorganic junctions. In this chapter, we will review the strategies that have been so far developed for the synthesis of colloidal nanostructures, ranging from mono-material NCs with tailored dimensions and morphology to multi-material NC heterostructures with a topologically controlled composition.


Synthetic Strategy Coincidence Site Lattice Colloidal Nanocrystals CdSe Nanorod Nanocrystal Heterostructures 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hyeon T. Chem Commun 2003; (8):927.Google Scholar
  2. 2.
    Schmidt G. Nanoparticles: From theory to applications. Weinheim: Wiley, 2004.Google Scholar
  3. 3.
    Wang X, Zhuang J, Peng Q et al. Nature 2005; 437(7055):121.PubMedCrossRefGoogle Scholar
  4. 4.
    Ozin GA, Arsenault AC. Nanochemistry: A Chemical Approach to Nanomaterials. London: Royal Society of Chemistry, 2005.Google Scholar
  5. 5.
    Albe V, Jouanin C, Bertho D, Cryst J. Growth 1998; 185:388.Google Scholar
  6. 6.
    Peng XG, Manna L, Yang WD et al. Nature 2000; 404(6773):59.PubMedCrossRefGoogle Scholar
  7. 7.
    Li LS, Hu JT, Yang WD et al. Nano Lett 2001; 1(7):349.CrossRefGoogle Scholar
  8. 8.
    Hens Z, Vanmaekelbergh D, Stoffels E et al. Phys Rev Lett 2002; 88(23), (art. no. 236803).Google Scholar
  9. 9.
    Fonoberov VA, Pokatilov EP, Balandin AA. Phys Rev B 2002; 66(8); (art. no. 085310).Google Scholar
  10. 10.
    Buhro WE, Colvin VL. Nat Mater 2003; 2(3):138.PubMedCrossRefGoogle Scholar
  11. 11.
    Burda C, Chen XB, Narayanan R et al. Chem Rev 2005; 105(4):1025.PubMedCrossRefGoogle Scholar
  12. 12.
    Murphy CJ, Sau TK, Gole AM et al. J Phys Chem B 2005; 109(29):13857.PubMedCrossRefGoogle Scholar
  13. 13.
    Goldstein AN, Echer CM, Alivisatos AP. Science 1992; 256(5062):1425.PubMedCrossRefGoogle Scholar
  14. 14.
    Alivisatos AP. J Phys Chem 1996; 100(31):13226.CrossRefGoogle Scholar
  15. 15.
    Peters KF, Cohen JB, Chung YW. 1998; 57(21):13430.Google Scholar
  16. 16.
    Tolbert SH, Alivisatos AP. Annu Rev Phys Chem 1995; 46:595.CrossRefGoogle Scholar
  17. 17.
    Heath JR, Shiang JJ. Chem Soc Rev 1998; 27(1):65.CrossRefGoogle Scholar
  18. 18.
    Klimov V. Semiconductor and Metal Nanocrystals. New York: Marcel Dekker, 2004.Google Scholar
  19. 19.
    Rao CNR, Kulkarni GU, Thomas PJ et al. Chem Eur J 2002; 8(1):29.CrossRefGoogle Scholar
  20. 20.
    Chen MS, Goodman DW. 2004; 306:252.Google Scholar
  21. 21.
    Naravanan R, El-Sayed M. J Phys Chem B 2005; 109(26):12663.CrossRefGoogle Scholar
  22. 22.
    Chen MS, Goodman DW. Catal Today 2006; 111:22.CrossRefGoogle Scholar
  23. 23.
    Battle X, Lebarta A. J Phys D Appl Phys 2002; 35:R15.CrossRefGoogle Scholar
  24. 24.
    Fiorani D. Surface Effects in Magnetic Nanoparticles. New York: Springer, 2005.CrossRefGoogle Scholar
  25. 25.
    Nozik AJ, Physica E. Low-dimens Syst Nanostruct 2002; 14(1–2):115.CrossRefGoogle Scholar
  26. 26.
    Sundar VC, Eisler HJ, Bawendi MG. Adv Mater 2002; 14(10):739.CrossRefGoogle Scholar
  27. 27.
    Milliron DJ, Gur I, Alivisatos AP. MRS Bull 2005; 30(1):41.Google Scholar
  28. 28.
    Michalet X, Pinaud FF, Bentolila LA et al. Science 2005; 307(5709):538.PubMedCrossRefGoogle Scholar
  29. 29.
    Grodzinski P, Silver M, Molnar LK. Exp Rev Mol Diag 2006; 6(3):307.CrossRefGoogle Scholar
  30. 30.
    Collier CP, Vossmeyer T, Heath JR. Annu Rev Phys Chem 1998; 49:371.PubMedCrossRefGoogle Scholar
  31. 31.
    Talapin DV, Shevchenko EV, Gaponik N et al. 2005; 17(11):1325.Google Scholar
  32. 32.
    Shevchenko EV, Talapin DV, O’Brien S et al. 2005; 127(24):8741.Google Scholar
  33. 33.
    Desvaux C, Amiens C, Fejes P et al. Nat Mater 2005; 4(10):750.PubMedCrossRefGoogle Scholar
  34. 34.
    Yin Y, Alivisatos AP. Nature 2005; 437(7059):664.PubMedCrossRefGoogle Scholar
  35. 35.
    Peng ZA, Peng XG, J Am Chem Soc 2001; 123(7):1389.CrossRefGoogle Scholar
  36. 36.
    Pileni MP. Nat Mater 2003; 2(3):145.PubMedCrossRefGoogle Scholar
  37. 37.
    Lee SM, Cho SN, Cheon J. Adv Mater 2003; 15(5):441.CrossRefGoogle Scholar
  38. 38.
    Lisiecki I, J Phys Chem B 2005; 109(25):12231.Google Scholar
  39. 39.
    Donega CD, Liljeroth P, Vanmaekelbergh D. Small 2005; 1(12):1152.CrossRefGoogle Scholar
  40. 40.
    Kumar S, Nann T. Small 2006; 2(3):316.PubMedCrossRefGoogle Scholar
  41. 41.
    Sun YG, Xia YN. Science 2002; 298(5601):2176.PubMedCrossRefGoogle Scholar
  42. 42.
    Gou LF, Murphy CJ. Nano Lett 2003; 3(2):231.CrossRefGoogle Scholar
  43. 43.
    Lifshitz E, Bashouti M, Kloper V et al. Nano Lett 2003; 3(6):857.CrossRefGoogle Scholar
  44. 44.
    Yu YY, Chang S, Lee CJ et al. J Phys Chem B 1997; 101(34):6661.CrossRefGoogle Scholar
  45. 45.
    Manna L, Scher EC, Alivisatos AP. J Am Chem Soc 2000; 122(51):12700.CrossRefGoogle Scholar
  46. 46.
    Cordente N, Respaud M, Senocq F et al. Nano Lett 2001; 1(10):565.CrossRefGoogle Scholar
  47. 47.
    Ahrenkiel SP, Micic OI, Miedaner A et al. Nano Lett 2003; 3(6):833.CrossRefGoogle Scholar
  48. 48.
    Dumestre F, Chaudret B, Amiens C et al. Angew Chem-Int Edit 2003; 42(42):5213.CrossRefGoogle Scholar
  49. 49.
    Busbee BD, Obare SO, Murphy CJ. Adv Mater 2003; 15(5):414.CrossRefGoogle Scholar
  50. 50.
    Tang KB, Qian YT, Zeng JH et al. Adv Mater 2003; 15(5):448.CrossRefGoogle Scholar
  51. 51.
    Yu H, Buhro WE. Adv Mater 2003; 15(5):416.CrossRefGoogle Scholar
  52. 52.
    Yu H, Li JB, Loomis RA et al. J Am Chem Soc 2003; 125(52):16168.PubMedCrossRefGoogle Scholar
  53. 53.
    Grebinski JW, Hull KL, Zhang J et al. Chem Mat 2004; 16(25):5260.CrossRefGoogle Scholar
  54. 54.
    Lee SM, Jun YW, Cho SN et al. J Am Chem Soc 2002; 124(38):11244.PubMedCrossRefGoogle Scholar
  55. 55.
    Zhao N, Qi LM. Adv Mater 2006; 18(3):359.CrossRefGoogle Scholar
  56. 56.
    Puntes VF, Zanchet D, Erdonmez CK et al. J Am Chem Soc 2002; 124(43):12874.PubMedCrossRefGoogle Scholar
  57. 57.
    Chen SH, Fan ZY, Carroll DL. J Phys Chem B 2002; 106(42):10777.CrossRefGoogle Scholar
  58. 58.
    Zhang P, Gao L. J Mater Chem 2003; 13(8):2007.CrossRefGoogle Scholar
  59. 59.
    Chen M, Xie Y, Lu J et al. J Mater Chem 2002; 12(3):748.CrossRefGoogle Scholar
  60. 60.
    Chen SH, Wang ZL, Ballato J et al. J Am Chem Soc 2003; 125(52):16186.PubMedCrossRefGoogle Scholar
  61. 61.
    Manna L, Milliron DJ, Meisel A et al. Nat Mater 2003; 2(6):382.PubMedCrossRefGoogle Scholar
  62. 62.
    Kuo CH, Huang MH. Langmuir 2005; 21(5):2012.PubMedCrossRefGoogle Scholar
  63. 63.
    Zitoun D, Pinna N, Frolet N et al. J Am Chem Soc 2005; 127(43):15034.PubMedCrossRefGoogle Scholar
  64. 64.
    Teng X, Yang H. Nano Lett 2005; 5(5):885.PubMedCrossRefGoogle Scholar
  65. 65.
    Mokari T, Rothenberg E, Popov I et al. Science 2004; 304(5678):1787.PubMedCrossRefGoogle Scholar
  66. 66.
    Kudera S, Carbone L, Casula MF et al. Nano Lett 2005; 5(3):445.PubMedCrossRefGoogle Scholar
  67. 67.
    Mokari T, Sztrum CG, Salant A et al. Nat Mater 2005; 4:855.CrossRefGoogle Scholar
  68. 68.
    Milliron DJ, Hughes SM, Cui Y et al. Nature 2004; 430(6996):190.PubMedCrossRefGoogle Scholar
  69. 69.
    Shevchenko EV, Talapin DV, Rogach AL et al. J Am Chem Soc 2002; 124(38):11480.PubMedCrossRefGoogle Scholar
  70. 70.
    Chen CC, Chao CY, Lang ZH. Chem Mater 2000; 12:1516.CrossRefGoogle Scholar
  71. 71.
    Jana NR, Gearheart L, Murphy CJ. J Phys Chem B 2001; 105(19):4065.CrossRefGoogle Scholar
  72. 72.
    Trentler TJ, Hickman KM, Goel SC et la. Science 1995; 270(5243):1791.CrossRefGoogle Scholar
  73. 73.
    Hanrath T, Korgel BA. J Am Chem Soc 2002; 124(7):1424.PubMedCrossRefGoogle Scholar
  74. 74.
    Kan SH, Aharoni A, Mokari T et al. Faraday Discuss 2004; 125:23.PubMedCrossRefGoogle Scholar
  75. 75.
    Murphy CJ, Jana NR. Adv Mater 2002; 14(1):80.CrossRefGoogle Scholar
  76. 76.
    Gou LF, Murphy CJ. Chem Mater 2005; 17(14):3668.CrossRefGoogle Scholar
  77. 77.
    Hyeon T, Lee SS Park J et al. J Am Chem Soc 2001; 123(51):12798.PubMedCrossRefGoogle Scholar
  78. 78.
    Yong KT, Sahoo Y, Choudhury KR et al. Nano Lett 2006; 6(4):709.PubMedCrossRefGoogle Scholar
  79. 79.
    Tang ZY, Kotov NA, Giersig M. Science 2002; 297 (5579):237.PubMedCrossRefGoogle Scholar
  80. 80.
    Cho KS, Talapin DV Gaschler W et al. J Am Chem Soc 2005; 127(19):7140.PubMedCrossRefGoogle Scholar
  81. 81.
    Yu JH, Joo J, Park HM et al. J Am Chem Soc 2005; 127(15):5662.PubMedCrossRefGoogle Scholar
  82. 82.
    Lee EJH, Ribeiro C, Longo E et al. J Phys Chem B 2005; 109(44):20842.PubMedCrossRefGoogle Scholar
  83. 83.
    Gautam UK, Ghosh M, Rajamathi M et al. Pure Appl Chem 2002; 74(9):1643.CrossRefGoogle Scholar
  84. 84.
    Tanase M, Silevitch DM, Hultgren A et al. J Appl Phys 2002; 91(10):8549.CrossRefGoogle Scholar
  85. 85.
    Lee GH, Huh SH, Jeong JW et al. Scripta Mater 2003; 49(12):1151.CrossRefGoogle Scholar
  86. 86.
    Cheng CD, Haynie DT. Appl Phys Lett 2005; 87(26).Google Scholar
  87. 87.
    Morales AM, Lieber CM. Science 1998; 279(5348):208.PubMedCrossRefGoogle Scholar
  88. 88.
    Huang MH, Wu YY, Feick H et al. Adv Mater 2001; 13(2):113.CrossRefGoogle Scholar
  89. 89.
    Yang PD, Yan HQ, Mao S et al. Adv Funct Mater 2002; 12(5):323.CrossRefGoogle Scholar
  90. 90.
    Gudiksen MS, Lauhon LJ, Wang J et al. Nature 2002; 415(6872):617.PubMedCrossRefGoogle Scholar
  91. 91.
    Bjork MT Ohlsson BJ, Sass T et al. Nano Lett 2002; 2(2):87.CrossRefGoogle Scholar
  92. 92.
    Holmes JD, Johnston KP, Doty RC et al. Science 2000; 287(5457):1471.PubMedCrossRefGoogle Scholar
  93. 93.
    Peng ZA, Peng XG J Am Chem Soc 2002; 124(13):3343.PubMedCrossRefGoogle Scholar
  94. 94.
    Wang ZL. Adv Mater 1998; 10(1):13.CrossRefGoogle Scholar
  95. 95.
    Cozzoli PD, Manna L, Curri ML et al. Chem Mater 2005; 17(6):1296.CrossRefGoogle Scholar
  96. 96.
    Sugimoto T, Itoh H, Mochida T. J Colloid Interface Sci 1998; 205(1):42.PubMedCrossRefGoogle Scholar
  97. 97.
    Cozzoli PD, Kornowski A, Weller H. J Am Chem Soc 2003; 125(47):14539.PubMedCrossRefGoogle Scholar
  98. 98.
    Jun YW Casula MF, Sim JH et al. J Am Chem Soc 2003; 125(51):15981.PubMedCrossRefGoogle Scholar
  99. 99.
    Carbone L, Kudera S, Carlino E et al. J. Am Chem Soc 2006; 128(3):748.PubMedCrossRefGoogle Scholar
  100. 100.
    Cozzoli PD, Snoeck E, Garcia MA et al. Nano Lett 2006; 6(9):1966.PubMedCrossRefGoogle Scholar
  101. 101.
    Wang J, Zeng C. J Cryst Growth 2004; 270(3–4):729.CrossRefGoogle Scholar
  102. 102.
    Wang J, Chen QW Zeng C et al. Adv Mater 2004; 16(2):137.CrossRefGoogle Scholar
  103. 103.
    Yang J, Lee JY, Too HP. J Phys Chem B 2005; 109(41):19208.PubMedCrossRefGoogle Scholar
  104. 104.
    Srnova-Sloufova I, Vlckova B, Bastl Z et al. Langmuir 2004; 20(8):3407.PubMedCrossRefGoogle Scholar
  105. 105.
    Rodriguez-Gonzalez B, Burrows A, Watanabe M et al. J Mater Chem 2005; 15(17):1755.CrossRefGoogle Scholar
  106. 106.
    Sobal NS, Hilgendorff M, Mohwald H et al. Nano Lett 2002; 2(6):621.CrossRefGoogle Scholar
  107. 107.
    Talapin DV, Mekis I, Gotzinger S et al. J Phys Chem B 2004; 108(49):18826.CrossRefGoogle Scholar
  108. 108.
    Manna L, Scher EC, Li LS et al. J Am Chem Soc 2002; 124(24):7136.PubMedCrossRefGoogle Scholar
  109. 109.
    Kim S, Fisher B, Eisler HJ et al. J Am Chem Soc 2003; 125(38):11466.PubMedCrossRefGoogle Scholar
  110. 110.
    Yu K, Zaman B, Romanova S et al. Small 2005; 1(3):332.PubMedCrossRefGoogle Scholar
  111. 111.
    Eychmuller A, Mews A, Weller H. Chem Phys Lett 1993; 208(1–2):59.CrossRefGoogle Scholar
  112. 112.
    Talapin DV, Koeppe R, Gotzinger S et al. Nano Lett 2003; 3(12):1677.CrossRefGoogle Scholar
  113. 113.
    Park JI, Kim MG, Jun YW et al. J Am Chem Soc 2004; 126(29):9072.PubMedCrossRefGoogle Scholar
  114. 114.
    Ban ZH, Barnakov YA, Golub VO et al. J Mater Chem 2005; 15(43):4660.CrossRefGoogle Scholar
  115. 115.
    Mandal M, Kundu S, Ghosh SK et al. J Colloid Interface Sci 2005; 286(1):187.PubMedCrossRefGoogle Scholar
  116. 116.
    Lyon JL, Fleming DA, Stone MB et al. Nano Lett 2004; 4(4):719.CrossRefGoogle Scholar
  117. 117.
    Wang LY, Luo J, Fan Q et al. J Phys Chem B 2005; 109(46):21593.PubMedCrossRefGoogle Scholar
  118. 118.
    Wang H, BDW, LF, et al. Nano Lett 2006; 6(4):827.PubMedCrossRefGoogle Scholar
  119. 119.
    Kim H, Achermann M, Balet LP et al. J Am Chem Soc 2005; 127(2):544.PubMedCrossRefGoogle Scholar
  120. 120.
    Kamat PV, Flumiani M, Dawson A. Colloid Surf: A-Physicochem. Eng Asp 2002; 202(2–3):269.CrossRefGoogle Scholar
  121. 121.
    Subramanian V, Wolf EE, Kamat PV. J Phys Chem B 2003; 107(30):7479.CrossRefGoogle Scholar
  122. 122.
    Dawson A, Kamat PV. J Phys Chem B 2001; 105(5):960.CrossRefGoogle Scholar
  123. 123.
    Wood A, Giersig M, Mulvaney P. J Phys Chem B 2001; 105(37):8810.CrossRefGoogle Scholar
  124. 124.
    Liz-Marzan LM, Mulvaney P. J Phys Chem B 2003; 107(30):7312.CrossRefGoogle Scholar
  125. 125.
    Tom RT, Nair AS, Singh N et al. Langmuir 2003; 19(8):3439.CrossRefGoogle Scholar
  126. 126.
    Mayya KS, Gittins DI, Caruso F. Chem Mater 2001; 13(11):3833.CrossRefGoogle Scholar
  127. 127.
    Li J, Zeng HC. Angew Chem Int Ed 2005; 44(28):4342.CrossRefGoogle Scholar
  128. 128.
    Hirakawa T, Kamat PV. J Am Chem Soc 2005; 127(11):3928.PubMedCrossRefGoogle Scholar
  129. 129.
    Pastoriza-Santos I, Perez-Juste J, Liz-Marzan LM. Chem Mater 2006; 18(10):2465.CrossRefGoogle Scholar
  130. 130.
    Mulvaney P, Liz-Marzan LM, Giersig M et al. J Mater Chem 2000; 10(6):1259.CrossRefGoogle Scholar
  131. 131.
    Choi JS, Jun YW, Yeon SI et al. J Am Chem Soc 2006, ( Scholar
  132. 132.
    Salant A, Amitay-Sadovsky A, Banin U. J Am Chem Soc 2006; 128(31):10006.PubMedCrossRefGoogle Scholar
  133. 133.
    Talapin DV, Rogach AL, Kornowski A, et al. Nano Lett 2001; 1(4):207.CrossRefGoogle Scholar
  134. 134.
    Mokari T, Banin U. Chem Mat 2003; 15(20):3955.CrossRefGoogle Scholar
  135. 135.
    Li JJ, Wang YA, Guo WZ et al. J Am Chem Soc 2003; 125(41):12567.PubMedCrossRefGoogle Scholar
  136. 136.
    Park JI, Cheon J. J Am Chem Soc 2001; 123(24):5743.PubMedCrossRefGoogle Scholar
  137. 137.
    Lee WR, Kim MG, Choi JR et al. J Am Chem Soc 2005; 127(46):16090.PubMedCrossRefGoogle Scholar
  138. 138.
    Teranishi T, Inoue Y, Nakaya M et al. J Am Chem Soc 2004; 126(32):9914.PubMedCrossRefGoogle Scholar
  139. 139.
    Choi SH, Kim EG, Hyeon T. J Am Chem Soc 2006; 128(8):2520.PubMedCrossRefGoogle Scholar
  140. 140.
    Gu HW, Zheng RK, Zhang XX et al. J Am Chem Soc 2004; 126(18):5664.PubMedCrossRefGoogle Scholar
  141. 141.
    Yu H, Chen M, Rice PM et al. Nano Lett 2005; 5(2):379.PubMedCrossRefGoogle Scholar
  142. 142.
    Pellegrino T, Fiore A, Carlino E et al. J Am Chem Soc 2006; 128(20):6690.PubMedCrossRefGoogle Scholar
  143. 143.
    Gu HW, Yang ZM, Gao JH et al. J Am Chem Soc 2005; 127(1):34.PubMedCrossRefGoogle Scholar
  144. 144.
    Gao XY, Yu LT, MacCuspie RI et al. Adv Mater 2005; 17(4):426.CrossRefGoogle Scholar
  145. 145.
    Shi W, Zeng H, Sahoo Y et al. Nano Lett 2006; 6(4):875.PubMedCrossRefGoogle Scholar
  146. 146.
    Randle V. The role of the coincidence site lattice in grain boundary engineering. Cambridge, England: Woodhead Publishing Limited, 1997.Google Scholar
  147. 147.
    Sugimoto T. Adv Colloid Interface Sci 1987; 28(1):65.CrossRefGoogle Scholar
  148. 148.
    Carbone L, Kudera S, Giannini C et al. J Mater Chem 2006; 16(40):3952.CrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2007

Authors and Affiliations

  • P. Davide Cozzoli
    • 1
  • Liberato Manna
    • 1
  1. 1.National Nanotechnology Laboratory of CNR-INFM, Unità di Ricerca IITDistretto Tecnologico ISUFILecceItaly

Personalised recommendations