Skip to main content

Future Glaucoma Instrumentation: Diagnostic and Therapeutic

  • Chapter
  • First Online:
Book cover The Glaucoma Book

Abstract

Glaucoma is a complex set of diseases that are based on a clinical diagnosis. There is no blood test that can provide a definitive diagnosis of glaucoma, and it is rare that a single diagnostic test can reveal the presence of glaucoma. More often a variety of information is necessary for glaucoma diagnosis. Fortunately, a wide array of data that can be obtained about this disease and medical technology and instrumentation continue to play important roles in the assessment of the glaucomatous disease state and its treatment. The current state of ocular imaging, functional assessment, and surgical treatment has been discussed in previous chapters. This chapter aims to go beyond that, to assess what needs still exist and how technologies could realistically help meet them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaufmann C, Bachmann LM, Thiel MA. Intraocular pressure measurements using dynamic contour tonometry after laser in situ keratomileusis. Invest Ophthalmol Vis Sci. 2003;44:3790–3794.

    Article  PubMed  Google Scholar 

  2. Broman AT, Congdon NG, Bandeen-Roche K, Quigley HA. Influence of corneal structure, corneal responsiveness, and other ocular parameters on tonometric measurement of intraocular pressure. J Glaucoma. 2007;16:581–588.

    Article  PubMed  Google Scholar 

  3. Alvarez TL, Gollance SA, Thomas GA, et al. The Proview phosphene tonometer fails to measure ocular pressure accurately in clinical practice. Ophthalmology. 2004;111:1077–1085.

    Article  PubMed  Google Scholar 

  4. Detry-Morel M. Update in tonometry. Phosphene and rebound tonometries, self-tonometry and technologies for the future. Bull Soc Belge Ophtalmol. 2007;303:87–95.

    PubMed  Google Scholar 

  5. Niessen AG, van den Berg TJ. Evaluation of a reference set based grading system for retinal nerve fiber layer photographs in 1941 eyes. Acta Ophthalmol Scand. 1998;76:278–282.

    Article  CAS  PubMed  Google Scholar 

  6. Niessen AG, van den Berg TJ, Langerhorst CT, Bossuyt PM. Grading of retinal nerve fiber layer with a photographic reference set. Am J Ophthalmol. 1995;120:577–586.

    CAS  PubMed  Google Scholar 

  7. Sommer A, Quigley HA, Robin AL, Miller NR, Katz J, Arkell S. Evaluation of nerve fiber layer assessment. Arch Ophthalmol. 1984;102:1766–1771.

    CAS  PubMed  Google Scholar 

  8. Lee SY, Kim KK, Seo JM, et al. Automated quantification of retinal nerve fiber layer atrophy in fundus photograph. Conf Proc IEEE Eng Med Biol Soc. 2004;2:1241–1243.

    CAS  PubMed  Google Scholar 

  9. Abramoff MD, Alward WL, Greenlee EC, et al. Automated segmentation of the optic disc from stereo color photographs using physiologically plausible features. Invest Ophthalmol Vis Sci. 2007;48:1665–1673.

    Article  PubMed  Google Scholar 

  10. Xu J, Chutatape O, Sung E, Zheng C, Chew Tec Kuan P. Optic disk feature extraction via modified deformable model technique for glaucoma analysis. Pattern Recognit. 2007;40:2063–2076.

    Article  Google Scholar 

  11. Izatt JA, Hee MR, Swanson EA, et al. Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography. Arch Ophthalmol. 1994;112:1584–1589.

    CAS  PubMed  Google Scholar 

  12. Ishikawa H. Anterior segment imaging for glaucoma: OCT or UBM? Br J Ophthalmol. 2007;91:1420–1421.

    Article  PubMed  Google Scholar 

  13. Choma MA, Hsu K, Izatt JA. Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source. J Biomed Opt. 2005;10:44009.

    Article  PubMed  Google Scholar 

  14. Hermann B, Fernandez EJ, Unterhuber A, et al. Adaptive-optics ultrahigh-resolution optical coherence tomography. Opt Lett. 2004;29:2142–2144.

    Article  CAS  PubMed  Google Scholar 

  15. Vilupuru AS, Rangaswamy NV, Frishman LJ, Smith EL 3rd, Harwerth RS, Roorda A. Adaptive optics scanning laser ophthalmoscopy for in vivo imaging of lamina cribrosa. J Opt Soc Am A Opt Image Sci Vis. 2007;24:1417–1425.

    Article  PubMed  Google Scholar 

  16. Liang J, Williams DR, Miller DT. Supernormal vision and high-resolution retinal imaging through adaptive optics. J Opt Soc Am A Opt Image Sci Vis. 1997;14:2884–2892.

    Article  CAS  PubMed  Google Scholar 

  17. Roorda A, Williams DR. The arrangement of the three cone classes in the living human eye. Nature. 1999;397:520–522.

    Article  CAS  PubMed  Google Scholar 

  18. Kagemann L, Wollstein G, Wojtkowski M, et al. Spectral oximetry assessed with high-speed ultra-high-resolution optical coherence tomography. J Biomed Opt. 2007;12:041212.

    Article  PubMed  Google Scholar 

  19. Srinivasan VJ, Wojtkowski M, Fujimoto JG, Duker JS. In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography. Opt Lett. 2006;31:2308–2310.

    Article  CAS  PubMed  Google Scholar 

  20. Grieve K, Roorda A. Intrinsic signals from human cone photoreceptors. Invest Ophthalmol Vis Sci. 2008;49:713–719.

    Article  PubMed  Google Scholar 

  21. Bower BA, Zhao M, Zawadzki RJ, Izatt JA. Real-time spectral domain Doppler optical coherence tomography and investigation of human retinal vessel autoregulation. J Biomed Opt. 2007;12:041214.

    Article  PubMed  Google Scholar 

  22. Maris PJ Jr, Ishida K, Netland PA. Comparison of trabeculectomy with Ex-PRESS miniature glaucoma device implanted under scleral flap. J Glaucoma. 2007;16:14–19.

    Article  PubMed  Google Scholar 

  23. Spiegel D, Wetzel W, Haffner DS, Hill RA. Initial clinical experience with the trabecular micro-bypass stent in patients with glaucoma. Adv Ther. 2007;24:161–170.

    Article  PubMed  Google Scholar 

  24. Lewis RA, von Wolff K, Tetz M, et al. Canaloplasty: circumferential viscodilation and tensioning of Schlemm's canal using a flexible microcatheter for the treatment of open-angle glaucoma in adults: interim clinical study analysis. J Cataract Refract Surg. 2007;33:1217–1226.

    Article  PubMed  Google Scholar 

  25. Francis BA, See RF, Rao NA, Minckler DS, Baerveldt G. Ab interno trabeculectomy: development of a novel device (Trabectome) and surgery for open-angle glaucoma. J Glaucoma. 2006;15:68–73.

    Article  PubMed  Google Scholar 

  26. Minckler DS, Baerveldt G, Alfaro MR, Francis BA. Clinical results with the Trabectome for treatment of open-angle glaucoma. Ophthalmology. 2005;112:962–967.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Townsend, K.A., Wollstein, G., Schuman, J.S. (2010). Future Glaucoma Instrumentation: Diagnostic and Therapeutic. In: Schacknow, P., Samples, J. (eds) The Glaucoma Book. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76700-0_90

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-76700-0_90

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-76699-7

  • Online ISBN: 978-0-387-76700-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics