Future Glaucoma Instrumentation: Diagnostic and Therapeutic

  • Kelly A. Townsend
  • Gadi Wollstein
  • Joel S. Schuman


Glaucoma is a complex set of diseases that are based on a clinical diagnosis. There is no blood test that can provide a definitive diagnosis of glaucoma, and it is rare that a single diagnostic test can reveal the presence of glaucoma. More often a variety of information is necessary for glaucoma diagnosis. Fortunately, a wide array of data that can be obtained about this disease and medical technology and instrumentation continue to play important roles in the assessment of the glaucomatous disease state and its treatment. The current state of ocular imaging, functional assessment, and surgical treatment has been discussed in previous chapters. This chapter aims to go beyond that, to assess what needs still exist and how technologies could realistically help meet them.


Optical Coherence Tomography Retinal Nerve Fiber Layer Visual Evoke Potential Trabecular Meshwork Adaptive Optic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kaufmann C, Bachmann LM, Thiel MA. Intraocular pressure measurements using dynamic contour tonometry after laser in situ keratomileusis. Invest Ophthalmol Vis Sci. 2003;44:3790–3794.CrossRefPubMedGoogle Scholar
  2. 2.
    Broman AT, Congdon NG, Bandeen-Roche K, Quigley HA. Influence of corneal structure, corneal responsiveness, and other ocular parameters on tonometric measurement of intraocular pressure. J Glaucoma. 2007;16:581–588.CrossRefPubMedGoogle Scholar
  3. 3.
    Alvarez TL, Gollance SA, Thomas GA, et al. The Proview phosphene tonometer fails to measure ocular pressure accurately in clinical practice. Ophthalmology. 2004;111:1077–1085.CrossRefPubMedGoogle Scholar
  4. 4.
    Detry-Morel M. Update in tonometry. Phosphene and rebound tonometries, self-tonometry and technologies for the future. Bull Soc Belge Ophtalmol. 2007;303:87–95.PubMedGoogle Scholar
  5. 5.
    Niessen AG, van den Berg TJ. Evaluation of a reference set based grading system for retinal nerve fiber layer photographs in 1941 eyes. Acta Ophthalmol Scand. 1998;76:278–282.CrossRefPubMedGoogle Scholar
  6. 6.
    Niessen AG, van den Berg TJ, Langerhorst CT, Bossuyt PM. Grading of retinal nerve fiber layer with a photographic reference set. Am J Ophthalmol. 1995;120:577–586.PubMedGoogle Scholar
  7. 7.
    Sommer A, Quigley HA, Robin AL, Miller NR, Katz J, Arkell S. Evaluation of nerve fiber layer assessment. Arch Ophthalmol. 1984;102:1766–1771.PubMedGoogle Scholar
  8. 8.
    Lee SY, Kim KK, Seo JM, et al. Automated quantification of retinal nerve fiber layer atrophy in fundus photograph. Conf Proc IEEE Eng Med Biol Soc. 2004;2:1241–1243.PubMedGoogle Scholar
  9. 9.
    Abramoff MD, Alward WL, Greenlee EC, et al. Automated segmentation of the optic disc from stereo color photographs using physiologically plausible features. Invest Ophthalmol Vis Sci. 2007;48:1665–1673.CrossRefPubMedGoogle Scholar
  10. 10.
    Xu J, Chutatape O, Sung E, Zheng C, Chew Tec Kuan P. Optic disk feature extraction via modified deformable model technique for glaucoma analysis. Pattern Recognit. 2007;40:2063–2076.CrossRefGoogle Scholar
  11. 11.
    Izatt JA, Hee MR, Swanson EA, et al. Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography. Arch Ophthalmol. 1994;112:1584–1589.PubMedGoogle Scholar
  12. 12.
    Ishikawa H. Anterior segment imaging for glaucoma: OCT or UBM? Br J Ophthalmol. 2007;91:1420–1421.CrossRefPubMedGoogle Scholar
  13. 13.
    Choma MA, Hsu K, Izatt JA. Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source. J Biomed Opt. 2005;10:44009.CrossRefPubMedGoogle Scholar
  14. 14.
    Hermann B, Fernandez EJ, Unterhuber A, et al. Adaptive-optics ultrahigh-resolution optical coherence tomography. Opt Lett. 2004;29:2142–2144.CrossRefPubMedGoogle Scholar
  15. 15.
    Vilupuru AS, Rangaswamy NV, Frishman LJ, Smith EL 3rd, Harwerth RS, Roorda A. Adaptive optics scanning laser ophthalmoscopy for in vivo imaging of lamina cribrosa. J Opt Soc Am A Opt Image Sci Vis. 2007;24:1417–1425.CrossRefPubMedGoogle Scholar
  16. 16.
    Liang J, Williams DR, Miller DT. Supernormal vision and high-resolution retinal imaging through adaptive optics. J Opt Soc Am A Opt Image Sci Vis. 1997;14:2884–2892.CrossRefPubMedGoogle Scholar
  17. 17.
    Roorda A, Williams DR. The arrangement of the three cone classes in the living human eye. Nature. 1999;397:520–522.CrossRefPubMedGoogle Scholar
  18. 18.
    Kagemann L, Wollstein G, Wojtkowski M, et al. Spectral oximetry assessed with high-speed ultra-high-resolution optical coherence tomography. J Biomed Opt. 2007;12:041212.CrossRefPubMedGoogle Scholar
  19. 19.
    Srinivasan VJ, Wojtkowski M, Fujimoto JG, Duker JS. In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography. Opt Lett. 2006;31:2308–2310.CrossRefPubMedGoogle Scholar
  20. 20.
    Grieve K, Roorda A. Intrinsic signals from human cone photoreceptors. Invest Ophthalmol Vis Sci. 2008;49:713–719.CrossRefPubMedGoogle Scholar
  21. 21.
    Bower BA, Zhao M, Zawadzki RJ, Izatt JA. Real-time spectral domain Doppler optical coherence tomography and investigation of human retinal vessel autoregulation. J Biomed Opt. 2007;12:041214.CrossRefPubMedGoogle Scholar
  22. 22.
    Maris PJ Jr, Ishida K, Netland PA. Comparison of trabeculectomy with Ex-PRESS miniature glaucoma device implanted under scleral flap. J Glaucoma. 2007;16:14–19.CrossRefPubMedGoogle Scholar
  23. 23.
    Spiegel D, Wetzel W, Haffner DS, Hill RA. Initial clinical experience with the trabecular micro-bypass stent in patients with glaucoma. Adv Ther. 2007;24:161–170.CrossRefPubMedGoogle Scholar
  24. 24.
    Lewis RA, von Wolff K, Tetz M, et al. Canaloplasty: circumferential viscodilation and tensioning of Schlemm's canal using a flexible microcatheter for the treatment of open-angle glaucoma in adults: interim clinical study analysis. J Cataract Refract Surg. 2007;33:1217–1226.CrossRefPubMedGoogle Scholar
  25. 25.
    Francis BA, See RF, Rao NA, Minckler DS, Baerveldt G. Ab interno trabeculectomy: development of a novel device (Trabectome) and surgery for open-angle glaucoma. J Glaucoma. 2006;15:68–73.CrossRefPubMedGoogle Scholar
  26. 26.
    Minckler DS, Baerveldt G, Alfaro MR, Francis BA. Clinical results with the Trabectome for treatment of open-angle glaucoma. Ophthalmology. 2005;112:962–967.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Kelly A. Townsend
    • 1
    • 2
  • Gadi Wollstein
    • 1
    • 2
  • Joel S. Schuman
    • 3
    • 4
    • 5
    • 6
  1. 1.UPMC Eye Center, Eye and Ear InstituteUniversity of Pittsburgh School of MedicinePittsburghUSA
  2. 2.Department of Ophthalmology, Ophthalmology and Visual Science Research CenterUniversity of Pittsburgh School of MedicinePittsburghUSA
  3. 3.University of Pittsburgh School of MedicinePittsburghUSA
  4. 4.UPMC Eye CenterPittsburghUSA
  5. 5.Swanson School of EngineeringUniversity of PittsburghPittsburghUSA
  6. 6.Center for the Neural Basis of CognitionCarnegie Mellon University and University of PittsburghPittsburghUSA

Personalised recommendations