Glaucoma Risk Factors: Family History – The Genetics of Glaucoma

  • John R. Samples


Who goes blind with glaucoma? People with a family history of blindness go blind with glaucoma. The association of open angle glaucoma and family history has been known for years; the lifetime risk for first-degree relatives of affected individuals to develop open angle glaucoma is 22% when compared with a 2% risk in controls, but clinicians routinely overlook this fact when interviewing and evaluating patients. Patients are rarely accurate in reporting family history. Three genetic loci for glaucoma were first found in a single glaucoma practice in Portland, Oregon - GLC1C, GLC1F, and GLC1G - because of repeated and persistent inquiries about affected relatives. Asking a patient only once about his or her family history is rarely effective; patients tend to confuse macular degeneration, cataracts, and glaucoma.


Open Angle Glaucoma Glaucoma Patient Trabecular Meshwork Angle Closure Angle Closure Glaucoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kass MA, Becker B. Genetics of primary open-angle glaucoma. Sight Sav Rev. 1978;48:21–28.PubMedGoogle Scholar
  2. 2.
    Wolfs RC, Klaver CC, Ramrattan RS, Van Duijn CM, Hofman A, De Jong PT. Genetic risk of primary open-angle glaucoma. Population-based familial aggregation study. Arch Ophthalmol. 1998;116:1640–1645.PubMedGoogle Scholar
  3. 3.
    Stone MA, Fingert JH, Alward WL, et al. Identification of a gene that causes primary open angle glaucoma. Science. 1997;275:668–670.CrossRefPubMedGoogle Scholar
  4. 4.
    Sheffield VC, Stone EM, Alward WL, et al. Genetic linkage of familial open angle glaucoma to chromosome 1q21-q31. Nat Genet. 1993;4:668–670.CrossRefGoogle Scholar
  5. 5.
    Stoilova D, Child A, Trifan OC, Crick RP, Coakes RL, Sarfarazi M. Localization of a second locus (GLC1B) for adult-onset primary open angle glaucoma to the 2cen-q13 region. Genomics. 1996;36:142–150.CrossRefPubMedGoogle Scholar
  6. 6.
    Wirtz MK, Samples JR, Kramer PL, et al. Mapping a gene for adult-onset primary open-angle glaucoma to chromosome 3q. Am J Hum Genet. 1997;60:296–304.PubMedGoogle Scholar
  7. 7.
    Trifan OC, Traboulsi EI, Stoilova D, et al. A third locus (GLC1D) for adult-onset primary open-angle glaucoma maps to the 8q23 region. Am J Ophthalmol. 1998;126(1998):17–28.CrossRefPubMedGoogle Scholar
  8. 8.
    Rezaie T, Child A, Hitchings R, et al. Adult-onset primary open-angle glaucoma caused by mutations in optineurin. Science. 2002;295:1077–1079.CrossRefPubMedGoogle Scholar
  9. 9.
    Sarfarazi M, Stoilov I, Schenkman JB. Genetics and biochemistry of primary congenital glaucoma. Ophthalmol Clin North America. 2003;16:543–544.CrossRefGoogle Scholar
  10. 10.
    Wirtz MK, Samples JR, Rust K, et al. GLC1F, a new primary open-angle glaucoma locus, maps to 7q35-q36. Arch Ophthalmol. 1999;117:237–241.PubMedGoogle Scholar
  11. 11.
    Monemi S, Spaeth G, DaSilva A, et al. Identification of a novel adult-onset primary open-angle glaucoma (POAG) gene on 5q22.1 the 1p36 region. Hum Mol Genet. 2005;14:725–733.CrossRefPubMedGoogle Scholar
  12. 12.
    Kramer PL, Samples JR, Monemi S, Sykes R, Sarfarazi M, Wirtz MK. The role of the WDR36 gene on chromosome 5q22.1 in a large family with primary open-angle glaucoma mapped to this region. Arch Ophthalmol. 2006;124:1328–1331.CrossRefPubMedGoogle Scholar
  13. 13.
    Lin Y, Liu T, Li J, et al. A genome-wide scan maps a novel autosomal dominant juvenile-onset open-angle glaucoma locus to 2p15-16. Mol Vis. 2008;14:739–744.PubMedGoogle Scholar
  14. 14.
    Liu Y, Schmidt S, Qin X, et al. No association between OPA1 polymorphisms and primary open-angle glaucoma in three different populations. Mol Vis. 2007;13:2137–2141.PubMedGoogle Scholar
  15. 15.
    Suriyapperuma SP, Child A, Desai T, et al. A new locus (GLC1H) for adult-onset primary open-angle glaucoma maps to the 2p15-p16 region. Arch Ophthalmol. 2007;125:86–925.CrossRefPubMedGoogle Scholar
  16. 16.
    Allingham RR, Wiggs JL, Hauser ER, et al. Early adult-onset POAG linked to 15q11-13 using ordered subset analysis. Invest Ophthalmol Vis Sci. 2005;46:2002–2005.CrossRefPubMedGoogle Scholar
  17. 17.
    Wiggs JL, Lynch S, Ynagi G, et al. A genomewide scan identifies novel early-onset primary open-angle glaucoma loci on 9q22 and 20p12. Am J Hum Genet. 2004;74(6):1314–1320.CrossRefPubMedGoogle Scholar
  18. 18.
    Baird PN, Richardson AJ, Craig JE, Mackey DA, Rochtchina E, Mitchell P. Analysis of optineurin (OPTN) gene mutations in subjects with and without glaucoma: the Blue Mountains Eye Study. Graefes Arch Clin Exp Ophthalmol. 2004;32:518–522.Google Scholar
  19. 19.
    Pang CP, Fan BJ, Canlas O, et al. A genome-wide scan maps a novel juvenile-onset primary open angle glaucoma locus to chromosome 5q. Mol Vis. 2006;12:85–92.PubMedGoogle Scholar
  20. 20.
    Wang DY, Fan BJ, Chua JKH, et al. A genome-wide scan maps a novel juvenile-onset primary open-angle glaucoma locus to 15q. Invest Ophthalmol Vis Sci. 2006;47:5315–5321.CrossRefPubMedGoogle Scholar
  21. 21.
    Sarfarazi M, Akarsu AN, Hossain A, et al. Assignment of a locus (GLC3AGLC3B) for primary congenital glaucoma (Buphthalmos ) to 2p21 and evidence for genetic heterogeneity. Genomics. 1995;30:171–177.CrossRefPubMedGoogle Scholar
  22. 22.
    Akarsu AN, Turacli ME, Aktan SG, et al. A second locus (GLC3B) for primary congenital glaucoma (Buphthalmos) maps to the 1p36 region. Hum Mol Genet. 1996;5:1199–1203.CrossRefPubMedGoogle Scholar
  23. 23.
    Stoilov IR, Safarazi M. The Third Genetic Locus (GLC3C) for primary congential glaucoma (PCG) maps to chromosome 14q24.3. Invest Ophthalmol Vis Sci. 2002. Available at: Accessed May 15, 2009.
  24. 24.
    Kulak SC, Kozlowski K, Semina EV, Pearce WG, Walter MA. Mutation in the RIEG1 gene in patients with iridogoniodysgenesis syndrome. Hum Mol Genet. 1998;7:1113–1117.CrossRefPubMedGoogle Scholar
  25. 25.
    Raymond V, Dubois S, Rodrigue MA, et al. Chromosomal duplication at the IRID1 locus on 6p25 associated with wide variability of the glaucoma phenotypes. Invest Ophthalmol Vis Sci. 2002. Available at: Accessed May 15, 2009.
  26. 26.
    Hanson IM, Fletcher JM, Jordan T, et al. Mutations at the PAX 6 locus are found in heterogenous anterior segment malformations including Peters’ anomal. Nat Genet. 1994;6:163–173.CrossRefGoogle Scholar
  27. 27.
    Thorleifsson G, Magnusson KP, Sulem P, et al. Common sequence variants in the LOXL1 gene confer susceptibility to exfoliation glaucoma. Science. 2007;317:1397–1400.CrossRefPubMedGoogle Scholar
  28. 28.
    Beckman L. ABO bloodtypes reported racial & ethnic distribution sorted by population groups. ABO Blook. July 13, 2008. Available at: Accessed May 20, 2009.
  29. 29.
    Carlson B. SNPs - a shortcut to personalized medicine; medical applications are where the market’s growth is expected. Genetic Engineering & Biotechnology News. June 15, 2008. Available at: Accessed May 10, 2009.
  30. 30.
    Armaly MF. Inheritance of dexamethasone hypertension and glaucoma. Arch Ophthalmol. 1967;77:747–751.PubMedGoogle Scholar
  31. 31.
    Nguyen TD, Chen P, Huang WD, Chen H, Johnson D, Polansky JR. Gene structure and proteins of TIGR, an olfactomedin-related glycoprotein cloned from glycocortiocid-induced trabecular meshwork cells. J Biol Chem. 1998;273:6341–6350.CrossRefPubMedGoogle Scholar
  32. 32.
    Quigley HA. Number of people with glaucoma worldwide. Br J Ophthalmol. 1996;80:389–393.CrossRefPubMedGoogle Scholar
  33. 33.
    Tunny TJ, Xu L, Richardson KA, Stowasser M, Gartside M, Gordon RD. Insertion/deletion polymorphism of the angiotensin-converting enzyme gene and loss of the insertion allele in aldosterone-producing adenoma. J Hum Hypertens. 1996;10(12):827–830.PubMedGoogle Scholar
  34. 34.
    Lin HJ, Tsai FJ, Hung P, et al. Association of E-cadherin gene 3′-UTR C/T polymorphism with primary open angle glaucoma. Ophthalmic Res. 2006;38(1):44–48.CrossRefPubMedGoogle Scholar
  35. 35.
    Bhattacharjee A, Banerjee D, Mookherjee S, et al. Variation Consortium. Leu432Val polymorphism in CYP1B1 as a susceptible factor towards predisposition to primary open-angle glaucoma. Mol Vis. 2008;14:841–850.PubMedGoogle Scholar
  36. 36.
    Melki R, Colomb E, Lefort N, Brézin AP, Garchon HJ. CYP1B1 mutations in French patients with early-onset primary open-angle glaucoma. J Med Genet. 2004;41(9):647–651.CrossRefPubMedGoogle Scholar
  37. 37.
    Tosaka K, Mashima Y, Funayama T, Ohtake Y, Kimura I, Glaucoma Gene Research Group. Association between open-angle glaucoma and gene polymorphism for heat-shock protein 70-1. Jpn J Ophthalmol. 2007;51(6):417–423.CrossRefPubMedGoogle Scholar
  38. 38.
    Wang CY, Shen YC, Lo FY, et al. Polymorphism in the IL-1alpha (-889) locus associated with elevated risk of primary open angle glaucoma. Mol Vis. 2006;12:1380–1385.PubMedGoogle Scholar
  39. 39.
    Lin HJ, Tsai CH, Tsai FJ, Chen WC, Chen HY, Fan SS. Transporter associated with antigen processing gene 1 codon 333 and codon 637 polymorphisms are associated with primary open-angle glaucoma. Mol Diagn. 2004;8(4):245–252.CrossRefPubMedGoogle Scholar
  40. 40.
    Jünemann AG, von Ahsen N, Reulbach U, et al. C677T variant in the methylentetrahydrofolate reductase gene is a genetic risk factor for primary open-angle glaucoma. Am J Ophthalmol. 2005;139(4):721–723.CrossRefPubMedGoogle Scholar
  41. 41.
    Tunny TJ, Richardson KA, Clark CV. Association study of the 5′ flanking regions of endothelial-nitric oxide synthase and endothelin-1 genes in familial primary open-angle glaucoma. Clin Exp Pharmacol Physiol. 1998;25(1):26–29.CrossRefPubMedGoogle Scholar
  42. 42.
    Funayama T, Mashima Y, Ohtake Y, et al, Glaucoma Gene Research Group. SNPs and interaction analyses of noelin 2, myocilin, and optineurin genes in Japanese patients with open-angle glaucoma. Invest Ophthalmol Vis Sci. 2006;47(12):5368–5375.CrossRefPubMedGoogle Scholar
  43. 43.
    Inagaki Y, Mashima Y, Funayama T, et al. Paraoxonase 1 gene polymorphisms influence clinical features of open-angle glaucoma. Graefes Arch Clin Exp Ophthalmol. 2006;244(8):984–990.CrossRefPubMedGoogle Scholar
  44. 44.
    Lin HJ, Tsai FJ, Chen WC, Shi YR, Hsu Y, Tsai SW. Association of tumour necrosis factor alpha-308 gene polymorphism with primary open-angle glaucoma in Chinese. Eye. 2003;17(1):31–34.CrossRefPubMedGoogle Scholar
  45. 45.
    Stone EM, Fingert JH, Alward WL, et al. Identification of a gene that causes primary open angle glaucoma. Science. 1997;275(5300):668–670.CrossRefPubMedGoogle Scholar
  46. 46.
    Ortego J, Escribano J, Coca-Pardos M. Cloning and characterization of subtracted cDNAs from a human ciliary body library encoding TIGR, a protein involved in juvenile open angle glaucoma with homology to myosin and olfactomedin. FEBS Lett. 1997;413(2):349–35.CrossRefPubMedGoogle Scholar
  47. 47.
    Fingert JH, Stone EM, Sheffield VC, Alward WL. Myocilin glaucoma. Surv Ophthalmol. 2002;147:547–561.CrossRefGoogle Scholar
  48. 48.
    Alward WL, Fingert JH, Coote MA, et al. Clinical features associated with mutations in the chromosome 1 open-angle glaucoma gene (GLC1A). N Engl J Med. 1998;338(15):1022–1027.CrossRefPubMedGoogle Scholar
  49. 49.
    Hewitt AW, Bennett SL, Dimasi DP, Craig JE, Mackey DA. A myocilin Gln368STOP homozygote does not exhibit a more severe glaucoma phenotype than heterozygous cases. Am J Ophthalmol. 2006;141:402–403.CrossRefPubMedGoogle Scholar
  50. 50.
    Fautsch MP, Bahler CK, Jewison DJ, Johnson DH. Recombinant TIGR/MYOC increases outflow resistance in the human anterior segment. Invest Ophthalmol Vis Sci. 2000;41:4163–4168.PubMedGoogle Scholar
  51. 51.
    Fautsch MP, Bahler CK, Vrabel AM, et al. Perfusion of his-tagged eukaryotic myocilin increases outflow resistance in human anterior segments in the presence of aqueous humor. Invest Ophthalmol Vis Sci. 2006;47:213–221.CrossRefPubMedGoogle Scholar
  52. 52.
    Caballero LL, Rowlette T, Borras T. Altered secretion of a TIGR/MYOC mutant lacking the olfactomedin domain. Biochim Biophys Acta. 2000;1502:447–460.PubMedGoogle Scholar
  53. 53.
    Hardy KM, Hoffman EA, Gonzalez P, McKay BS, Stamer WD. Extracellular trafficking of myocilin in human trabecular meshwork cells. J Biol Chem. 2005;280:28917–28926.CrossRefPubMedGoogle Scholar
  54. 54.
    Faucher M, Anctil JL, Rodrigue MA, et al. Founder TIGR/myocilin mutations for glaucoma in the Quebec population. Hum Mol Genet. 2002;11: 2077–2090.CrossRefPubMedGoogle Scholar
  55. 55.
    Vincent AL, Billingsley G, Buys Y, et al. Digenic inheritance of early-onset glaucoma: CYP1B1, a potential modifier gene. Am J Hum Genet. 2002;70(2):448–460.CrossRefPubMedGoogle Scholar
  56. 56.
    Polansky JR, Juster RP, Spaeth GL. Association of the myocilin mt.1 promoter variant with the worsening of glaucomatous disease over time. Clin Genet. 2003;64(1):18–27.CrossRefPubMedGoogle Scholar
  57. 57.
    Hauser MA, Sena DF, Flor J, et al. Distribution of optineurin sequence variations in an ethnically diverse population of low-tension glaucoma patients from the United States. J Glaucoma. 2006;15:358–363.CrossRefPubMedGoogle Scholar
  58. 58.
    Ayala-Lugo RM, Pawar H, Reed DM, et al. Variation in optineurin (OPTN) allele frequencies between and within populations. Mol Vis. 2007;13:151–163.PubMedGoogle Scholar
  59. 59.
    Aung T, Rezaie T, Okada K, et al. Clinical features and course of patients with glaucoma with the E50K mutation in the optineurin gene. Invest Ophthalmol Vis Sci. 2005;46:2816–2822.CrossRefPubMedGoogle Scholar
  60. 60.
    Funayama K, Ishikawa K, Ohtake Y, et al. Variants in optineurin gene and their association with tumor necrosis factor-alpha polymorphisms in Japanese patients with glaucoma. Invest Ophtalmol Vis Sci. 2004;45:4359–4367.CrossRefGoogle Scholar
  61. 61.
    Chakrabarti S, Kaur K, Komatireddy S, et al. Gln48H is the prevalent myocilin mutation in primary open angle and primary congenital glaucoma phenotypes in India. Mol Vis. 2005;11:111–113.PubMedGoogle Scholar
  62. 62.
    Chakrabarti S, Kaur K, Kaur I, et al. Globally, CYP1B1 mutations in primary congenital glaucoma are strongly structured by geographic and haplotype backgrounds. Invest Ophthalmol Vis Sci. 2006;47:43–47.CrossRefPubMedGoogle Scholar
  63. 63.
    Semina EV, Reiter R, Leysens NJ, et al. Cloning and characterization of a novol biocoid related homeobox transcription factor gene, RIEG, involved in Rieger syndrome. Nat Genet. 1996;14:392–399.CrossRefPubMedGoogle Scholar
  64. 64.
    Mears AJ, Jordan T, Mirzzayans F, et al. Mutations of the forkhead/winged-helix gene FKHL7 in patients with Axenfeld Rieger anomaly. Am J Hum Genet. 1998;63:1316–1328.CrossRefPubMedGoogle Scholar
  65. 65.
    Wang IJ, Chiang TH, Shih YF, et al. The association of single nucleotide polymorphisms in the MMP-9 gene with susceptibility to acute primary angle closure glaucoma in Taiwanese patients. Mol Vis. 2006;12:1223–1232.PubMedGoogle Scholar
  66. 66.
    Aung T, Yong VH, Lim MC, et al. Lack of association between the rs2664538 polymorphism in the MMP-9 gene and primary angle closure glaucoma in Singaporean subjects. J Glaucoma. 2008;17:257–258.CrossRefPubMedGoogle Scholar
  67. 67.
    Othman MI, Sullivan SA, Skuta GL, et al. Autosomal dominant nanophthalmos (NNO1) with high hyperopia and angle-closure glaucoma maps to chromosome 11. Am J Hum Genet. 1998;63(5):1411–1418.CrossRefPubMedGoogle Scholar
  68. 68.
    Filla MS, Liu X, Nguyen TD, et al. In vitro localization of TIGR/MYOC in trabecular meshwork extracellular matrix and binding to fibronectin. IOVS. 2002;43:151–161.Google Scholar
  69. 69.
    th Congress. H.R. 493 Genetic Information Nondiscrimi­nation Act of 2008. Available at: Accessed May 15, 2009.
  70. 70.
    Knepper PA, Nolan MJ, Wirtz MK, et al. Regulation of ABC transporters and glaucoma: new ideas. ARVO 2006; poster.Google Scholar
  71. 71.
    Wiggs JL, Allingham RR, Hossain A, et al. Genome-wide scan for adult onset primary open angle glaucoma. Hum Mol Genet. 2000;9(7):1109–1117.CrossRefPubMedGoogle Scholar
  72. 72.
    Lin HJ, Tsai SC, Tsai FJ, Chen WC, Tsai JJ, Hsu CD. Association of interleukin 1beta and receptor antagonist gene polymorphisms with primary open-angle glaucoma. Ophthalmologica. 2003;217(5):358–64.CrossRefPubMedGoogle Scholar
  73. 73.
    Azzedine H, Bolino A, Taïeb T, et al. Mutations in MTMR13, a new pseudophosphatase homologue of MTMR2 and Sbf1, in two families with an autosomal recessive demyelinating form of Charcot-Marie-Tooth disease associated with early-onset glaucoma. Am J Hum Genet. 2003;72(5):1141–1153.CrossRefPubMedGoogle Scholar
  74. 74.
    Knepper PA, Nolan MJ, Wirtz MK, Samples JR, Allingham RR, Wiggs JL, and Yue BYJT. Regulation of ABC Transporters and Glaucoma: New Ideas invest. Ophthalmol Vis. Sci. 2006;47: E-Abstract 174.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • John R. Samples
    • 1
    • 2
    • 3
    • 4
  1. 1.Oregon Health and Sciences UniversityPortlandUSA
  2. 2.Rocky Vista UniversityParkerUSA
  3. 3.Western Glaucoma FoundationNew YorkUSA
  4. 4.Pacific Coast Oto-Ophthalmology SocietySpecialty Eye CareParkerUSA

Personalised recommendations