Advertisement

Future Glaucoma Medical Therapies: What’s in the Pipeline?

  • Abbot F. Clark
Chapter

Abstract

There are a number of limitations with our current glaucoma therapies. All available current therapies are directed at lowering intraocular pressure (IOP), an important risk factor for the development and progression of glaucoma. However, IOP lowering only treats a symptom of glaucoma and does not address the underlying pathogenic pathways. Current agents lower IOP by suppressing aqueous humor formation or by enhancing aqueous humor outflow, without modifying the disease process(es) responsible for glaucomatous damage to the outflow facility. Clinical efforts to lower IOP only indirectly protect the retina, optic nerve head, and optic nerve. There are currently no approved therapies that directly neuroprotect these tissues. Some glaucoma patients continue to progress despite receiving IOP-lowering therapy, suggesting that factors other than IOP may be involved. In addition, in many patients, there is a progressive loss of therapeutic efficacy, which often leads to patients being on multiple medications. Another challenge is adherence to therapy, as the majority of patients do not take all their prescribed medications at all times.

Keywords

Optic Nerve Aqueous Humor Optic Nerve Head Ocular Hypertension Trabecular Meshwork 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Pang I-H, Clark AF. IOP as a target - inflow and outflow pathways. In: Yorio T, Clark AF, Wax MB, eds. Ocular Therapeutics: Eye on Discovery. Amsterdam: Elsevier/Academic Press; 2008:45–67.CrossRefGoogle Scholar
  2. 2.
    Robinson JC, Kaufman PL. Cytochalasin B potentiates epinephrine’s outflow facility-increasing effect. Invest Ophthalmol Vis Sci. 1991;32(5):1614–1618.PubMedGoogle Scholar
  3. 3.
    Fan H, Rao SK, Zhou YS, Lam DS. Effect of latrunculin B on intraocular pressure in the monkey eye. Arch Ophthalmol. 2005;123(10):1456-1457. author reply 1457.CrossRefPubMedGoogle Scholar
  4. 4.
    Ethier CR, Read AT, Chan DW. Effects of latrunculin-B on outflow facility and trabecular meshwork structure in human eyes. Invest Ophthalmol Vis Sci. 2006;47(5):1991–1998.CrossRefPubMedGoogle Scholar
  5. 5.
    Melamed S, Kotas-Neumann R, Barak A, Epstein DL. The effect of intracamerally injected ethacrynic acid on intraocular pressure in patients with glaucoma. Am J Ophthalmol. 1992;113(5):508–512.PubMedGoogle Scholar
  6. 6.
    Shimazaki A, Ichikawa M, Rao PV, et al. Effects of the new ethacrynic acid derivative SA9000 on intraocular pressure in cats and monkeys. Biol Pharm Bull. 2004;27(7):1019–1024.CrossRefPubMedGoogle Scholar
  7. 7.
    Tian B, Wang RF, Podos SM, Kaufman PL. Effects of topical H-7 on outflow facility, intraocular pressure, and corneal thickness in monkeys. Arch Ophthalmol. 2004;122(8):1171–1177.CrossRefPubMedGoogle Scholar
  8. 8.
    Honjo M, Inatani M, Kido N, et al. A myosin light chain kinase inhibitor, ML-9, lowers the intraocular pressure in rabbit eyes. Exp Eye Res. 2002;75(2):135–142.CrossRefPubMedGoogle Scholar
  9. 9.
    Tian B, Kaufman PL. Effects of the Rho kinase inhibitor Y-27632 and the phosphatase inhibitor calyculin A on outflow facility in monkeys. Exp Eye Res. 2005;80(2):215–225.CrossRefPubMedGoogle Scholar
  10. 10.
    Tokushige H, Inatani M, Nemoto S, et al. Effects of topical administration of y-39983, a selective rho-associated protein kinase inhibitor, on ocular tissues in rabbits and monkeys. Invest Ophthalmol Vis Sci. 2007;48(7):3216–3222.CrossRefPubMedGoogle Scholar
  11. 11.
    Zhang M, Rao PV. Blebbistatin, a novel inhibitor of myosin II ATPase activity, increases aqueous humor outflow facility in perfused enucleated porcine eyes. Invest Ophthalmol Vis Sci. 2005;46(11):4130–4138.CrossRefPubMedGoogle Scholar
  12. 12.
    Read AT, Chan DW, Ethier CR. Actin structure in the outflow tract of normal and glaucomatous eyes. Exp Eye Res. 2007;84(1):214–226.CrossRefPubMedGoogle Scholar
  13. 13.
    Hoare MJ, Grierson I, Brotchie D, Pollock N, Cracknell K, Clark AF. Cross-linked actin networks (CLANs) in the trabecular meshwork of the normal and glaucomatous human eye in situ. Invest Ophthalmol Vis Sci. 2009;50(3):1255–1263.CrossRefPubMedGoogle Scholar
  14. 14.
    Clark AF, Miggans ST, Wilson K, Browder S, McCartney MD. Cytoskeletal changes in cultured human glaucoma trabecular meshwork cells. J Glaucoma. 1995;4:183–188.PubMedGoogle Scholar
  15. 15.
    Bradley JM, Vranka J, Colvis CM, et al. Effect of matrix metalloproteinases activity on outflow in perfused human organ culture. Invest Ophthalmol Vis Sci. 1998;39(13):2649–2658.PubMedGoogle Scholar
  16. 16.
    Fleenor DL, Pang IH, Clark AF. Involvement of AP-1 in interleukin-1alpha-stimulated MMP-3 expression in human trabecular meshwork cells. Invest Ophthalmol Vis Sci. 2003;44(8):3494–3501.CrossRefPubMedGoogle Scholar
  17. 17.
    Pang IH, Fleenor DL, Hellberg PE, Stropki K, McCartney MD, Clark AF. Aqueous outflow-enhancing effect of tert-butylhydroquinone: involvement of AP-1 activation and MMP-3 expression. Invest Ophthalmol Vis Sci. 2003;44(8):3502–3510.CrossRefPubMedGoogle Scholar
  18. 18.
    Fuchshofer R, Yu AH, Welge-Lussen U, Tamm ER. Bone morphogenetic protein-7 is an antagonist of transforming growth factor-beta2 in human trabecular meshwork cells. Invest Ophthalmol Vis Sci. 2007;48(2):715–726.CrossRefPubMedGoogle Scholar
  19. 19.
    Wordinger RJ, Fleenor DL, Hellberg PE, et al. Effects of TGF-beta2, BMP-4, and gremlin in the trabecular meshwork: implications for glaucoma. Invest Ophthalmol Vis Sci. 2007;48(3):1191–1200.CrossRefPubMedGoogle Scholar
  20. 20.
    Nolan MJ, Giovingo MC, Miller AM, et al. Aqueous humor sCD44 concentration and visual field loss in primary open-angle glaucoma. J Glaucoma. 2007;16(5):419–429.CrossRefPubMedGoogle Scholar
  21. 21.
    Choi J, Miller AM, Nolan MJ, et al. Soluble CD44 is cytotoxic to trabecular meshwork and retinal ganglion cells in vitro. Invest Ophthalmol Vis Sci. 2005;46(1):214–222.CrossRefPubMedGoogle Scholar
  22. 22.
    Shepard AR, Nolan MJ, Millar JC, et al. CD44 overexpression causes ocular hypertension in the mouse. Ft. Lauderdale, FL: ARVO; 2008. Abstract #2880.Google Scholar
  23. 23.
    Wang WH, McNatt LG, Pang IH, et al. Increased expression of the WNT antagonist sFRP-1 in glaucoma elevates intraocular pressure. J Clin Invest. 2008;118(3):1056–1064.PubMedGoogle Scholar
  24. 24.
    Wang WH, McNatt LG, Pang IH, et al. Increased expression of serum amyloid A in glaucoma and its effect on intraocular pressure. Invest Ophthalmol Vis Sci. 2008;49(5):1916–1923.CrossRefPubMedGoogle Scholar
  25. 25.
    Hare W, WoldeMussie E, Lai R, et al. Efficacy and safety of memantine, an NMDA-type open-channel blocker, for reduction of retinal injury associated with experimental glaucoma in rat and monkey. Surv Ophthalmol. 2001;45(suppl 3):S284-S289. discussion S295–6.CrossRefPubMedGoogle Scholar
  26. 26.
    Osborne NN. Recent clinical findings with memantine should not mean that the idea of neuroprotection in glaucoma is abandoned. Acta Ophthalmol. 2009;87:450–454.CrossRefPubMedGoogle Scholar
  27. 27.
    Martin KR, Quigley HA, Zack DJ, et al. Gene therapy with brain-derived neurotrophic factor as a protection: retinal ganglion cells in a rat glaucoma model. Invest Ophthalmol Vis Sci. 2003;44(10):4357–4365.CrossRefPubMedGoogle Scholar
  28. 28.
    Pease ME, Zack DJ, Berlinicke C, et al. Effect of CNTF on retinal ganglion cell survival in experimentalglaucoma. Invest Ophthalmol Vis Sci. 2009;50:2194–2200.CrossRefPubMedGoogle Scholar
  29. 29.
    Cheng L, Sapieha P, Kittlerova P, Hauswirth WW, Di Polo A. TrkB gene transfer protects retinal ganglion cells from axotomy-induced death in vivo. J Neurosci. 2002;22(10):3977–3986.PubMedGoogle Scholar
  30. 30.
    Nakazawa T, Nakazawa C, Matsubara A, et al. Tumor necrosis factor-alpha mediates oligodendrocyte death and delayed retinal ganglion cell loss in a mouse model of glaucoma. J Neurosci. 2006;26(49):12633–12641.CrossRefPubMedGoogle Scholar
  31. 31.
    Pena JD, Taylor AW, Ricard CS, Vidal I, Hernandez MR. Transforming growth factor beta isoforms in human optic nerve heads. Br J Ophthalmol. 1999;83(2):209–218.CrossRefPubMedGoogle Scholar
  32. 32.
    Zode GS, Sethi A, Brun-Zinkernagel AM, Chang IF, Clark AF, Wordinger RJ. Transforming growth factor-b2 increases extracellular matrix proteins in optic nerve head cells via activation of the Smad signaling pathway. Submitted for Publication. April 13, 2010.Google Scholar
  33. 33.
    Zode GS, Clark AF, Wordinger RJ. Bone morphogenetic protein 4 inhibits TGF-beta2 stimulation of extracellular matrix proteins in optic nerve head cells: role of gremlin in ECM modulation. Glia. 2008;57(7):755–766.CrossRefGoogle Scholar
  34. 34.
    Fuchshofer R, Birke M, Welge-Lussen U, Kook D, Lutjen-Drecoll E. Transforming growth factor-beta 2 modulated extracellular matrix component expression in cultured human optic nerve head astrocytes. Invest Ophthalmol Vis Sci. 2005;46(2):568–578.CrossRefPubMedGoogle Scholar
  35. 35.
    Huang W, Fileta JB, Dobberfuhl A, et al. Calcineurin cleavage is triggered by elevated intraocular pressure, and calcineurin inhibition blocks retinal ganglion cell death in experimental glaucoma. Proc Natl Acad Sci U S A. 2005;102(34):12242–12247.CrossRefPubMedGoogle Scholar
  36. 36.
    Libby RT, Li Y, Savinova OV, et al. Susceptibility to neurodegeneration in a glaucoma is modified by Bax gene dosage. PLoS Genet. 2005;1(1):17–26.CrossRefPubMedGoogle Scholar
  37. 37.
    Stone EM, Fingert JH, Alward WL, et al. Identification of a gene that causes primary open angle glaucoma. Science. 1997;275(5300):668–670.CrossRefPubMedGoogle Scholar
  38. 38.
    Thorleifsson G, Magnusson KP, Sulem P, et al. Common sequence variants in the LOXL1 gene confer susceptibility to exfoliation glaucoma. Science. 2007;317(5843):1397–1400.CrossRefPubMedGoogle Scholar
  39. 39.
    McCarty CA, Burmester JK, Mukesh BN, Patchett RB, Wilke RA. Intraocular pressure response to topical beta-blockers associated with an ADRB2 single-nucleotide polymorphism. Arch Ophthalmol. 2008;126(7):959–963.CrossRefPubMedGoogle Scholar
  40. 40.
    Katz DA, Bhathena A. Overview of pharmacogenetics. Curr Protoc Hum Genet. 2009; Chap. 9:Unit 9.19.
  41. 41.
    Cideciyan AV, Aleman TS, Boye SL, et al. Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics. Proc Natl Acad Sci U S A. 2008;105(39):15112–15117.CrossRefPubMedGoogle Scholar
  42. 42.
    Tam LC, Kiang AS, Kennan A, et al. Therapeutic benefit derived from RNAi-mediated ablation of IMPDH1 transcripts in a murine model of autosomal dominant retinitis pigmentosa (RP10). Hum Mol Genet. 2008;17(14):2084–2100.CrossRefPubMedGoogle Scholar
  43. 43.
    Ethier CR, Wada S, Chan D, Stamer WD. Experimental and numerical studies of adenovirus delivery to outflow tissues of perfused human anterior segments. Invest Ophthalmol Vis Sci. 2004;45(6):1863–1870.CrossRefPubMedGoogle Scholar
  44. 44.
    Borras T, Gabelt BT, Klintworth GK, Peterson JC, Kaufman PL. Non-invasive observation of repeated adenoviral GFP gene delivery to the anterior segment of the monkey eye in vivo. J Gene Med. 2001;3(5):437–449.CrossRefPubMedGoogle Scholar
  45. 45.
    Millar JC, Pang IH, Wang WH, Wang Y, Clark AF. Effect of immunomodulation with anti-CD40L antibody on adenoviral-mediated transgene expression in mouse anterior segment. Mol Vis. 2008;14:10–19.PubMedGoogle Scholar
  46. 46.
    Khare PD, Loewen N, Teo W, et al. Durable, safe, multi-gene lentiviral vector expression in feline trabecular meshwork. Mol Ther. 2008;16(1):97–106.CrossRefPubMedGoogle Scholar
  47. 47.
    Barraza RA, Rasmussen C, Loewen N, et al. Prolonged transgene expression with lentiviral vectors in the aqueoushumor outflow pathway of non-human primates. Hum Gene Ther. 2009;30:191–100.CrossRefGoogle Scholar
  48. 48.
    Liu X, Hu Y, Filla MS, et al. The effect of C3 transgene expression on actin and cellular adhesions in cultured human trabecular meshwork cells and on outflow facility in organ cultured monkey eyes. Mol Vis. 2005;11:1112–1121.PubMedGoogle Scholar
  49. 49.
    Rao PV, Deng P, Maddala R, Epstein DL, Li CY, Shimokawa H. Expression of dominant negative Rho-binding domain of Rho-kinase in organ cultured human eye anterior segments increases aqueous humor outflow. Mol Vis. 2005;11:288–297.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Abbot F. Clark
    • 1
  1. 1.Department of Cell Biology & GeneticsThe North Texas Eye Research Institute, University of North Texas Health Sciences CenterFort WorthUSA

Personalised recommendations