Advertisement

How the Revolution in Cell Biology Will Affect Glaucoma: Biomarkers

  • Paul A. Knepper
  • Michael J. Nolan
  • Beatrice Y. J. T. Yue
Chapter

Abstract

Multiple biomarker panels of common, multifactorial diseases - such as cardiovascular and Alzheimer’s disease - have recently been described, facilitating the diagnosis and risk management of these diseases. In principle, a biomarker is an indicator of a biochemical feature or facet that can be used to diagnose or monitor the progress of a disease. Detection technology has been identified for possible types of biomarkers in primary open-angle glaucoma (POAG). We will summarize known biomarkers with the intent of cataloging the biomarkers in the aqueous humor, trabecular meshwork (TM), optic nerve, and blood in patients with POAG. To facilitate comparisons and to offer mechanistic clues, biochemical changes such as up- or downregulation of proteins that have been reported in POAG are organized into three categories: namely, extra­cellular matrix (ECM) changes, cytokine/signaling molecules, and aging/stress (listed respectively in Tables 82.1, 82.2, and 82.3).

Keywords

Hyaluronic Acid Aqueous Humor Trabecular Meshwork Trabecular Meshwork Cell Outflow Facility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    de Lemos JA, Lloyd-Jones DM. Multiple biomarker panels for cardiovascular risk assessment. N Eng J Med. 2008;358:2172–4.CrossRefGoogle Scholar
  2. 2.
    Parikh SV, de Lemos JA. Biomarkers in cardiovascular disease: integrating pathophysiology into clinical practice. Amer J Med Sci. 2006;332:186–97.CrossRefPubMedGoogle Scholar
  3. 3.
    Wang TJ, Gona P, Larson MG, et al. Multiple biomarkers for the prediction of first major cardiovascular events and death. N Eng J Med. 2006;355:2631–9.CrossRefGoogle Scholar
  4. 4.
    Ray S, Britschgi M, Herbert C, et al. Classification and prediction of clinical Alzheimer's diagnosis based on plasma signaling proteins. Nature Med. 2007;13:1359–62.CrossRefPubMedGoogle Scholar
  5. 5.
    Simonsen AH, McGuire J, Hansson O, et al. Novel panel of cerebrospinal fluid biomarkers for the prediction of progression to Alzheimer dementia in patients with mild cognitive impairment. Arch Neurol. 2007;64:366–70.CrossRefPubMedGoogle Scholar
  6. 6.
    Ross JS, Symmans WF, Pusztai L, Hortobagyi GN. Pharma­cogenomics and clinical biomarkers in drug discovery and development. Amer J Clin Path. 2005;124(Suppl):S29–41.Google Scholar
  7. 7.
    Golubnitschaja O, Flammer J. What are the biomarkers for glaucoma? Surv Ophthalmol. 2007;52(Suppl 2):S155–61.CrossRefPubMedGoogle Scholar
  8. 8.
    Knepper PA, Goossens W, Mayanil CS. CD44H localization in primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 1998;39: 673–680.PubMedGoogle Scholar
  9. 9.
    Picciani R, Desai K, Guduric-Fuchs J, et al. Cochlin in the eye. Prog Retin Eye Res. 2007;26:453–469.CrossRefPubMedGoogle Scholar
  10. 10.
    Knepper PA, Goossens W, Hvizd M, et al. Glycosaminoglycans of the human trabecular meshwork in primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 1996;37:1360–1367.PubMedGoogle Scholar
  11. 11.
    Hann CR, Springett MJ, Wang X, et al. Ultrastructural localization of collagen IV, fibronectin, and laminin in the trabecular meshwork of normal and glaucomatous eyes. Ophthalmic Res. 2001;33:314–324.CrossRefPubMedGoogle Scholar
  12. 12.
    Umihira J, Nagata S, Nohara M, et al. Localization of elastin in the normal and glaucomatous human trabecular meshwork. Invest Ophthalmol Vis Sci. 1994;35:486–494.PubMedGoogle Scholar
  13. 13.
    Pena JD, Netland PA, Vidal I, et al. Elastosis of the lamina cribrosa in glaucomatous optic neuropathy. Exp Eye Res. 1998;67:517–524.CrossRefPubMedGoogle Scholar
  14. 14.
    Vesaluoma M, Mertaniemi P, Mannonen S, et al. Cellular and plasma fibronectin in the aqueous humour of primary open-angle glaucoma, exfoliative glaucoma and cataract patients. Eye. 1998;12:886–890.PubMedGoogle Scholar
  15. 15.
    Navajas EV, Martins JR, Melo LA Jr, et al. Concentration of hyaluronic acid in primary open-angle glaucoma aqueous humor. Exp Eye Res. 2005;80:853–857.CrossRefPubMedGoogle Scholar
  16. 16.
    Gong H, Ye W, Freddo TF, et al. Hyaluronic acid in the normal and glaucomatous optic nerve. Exp Eye Res. 1997;4:587–595.CrossRefGoogle Scholar
  17. 17.
    Pena JD, Varela HJ, Ricard CS, et al. Enhanced tenascin expression associated with reactive astrocytes in human optic nerve heads with primary open angle glaucoma. Exp Eye Res. 1999;68:29–40.CrossRefPubMedGoogle Scholar
  18. 18.
    Flugel-Koch C, Ohlmann A, Fuchshofer R, et al. Thrombospondin-1 in the trabecular meshwork: localization in normal and glaucomatous eyes, and induction by TGF-β1 and dexamethasone in vitro. Exp Eye Res. 2004;79:649–663.CrossRefPubMedGoogle Scholar
  19. 19.
    Ronkko S, Rekonen P, Kaarniranta K, et al. Matrix metalloproteinases and their inhibitors in the chamber angle of normal eyes and patients with primary open-angle glaucoma and exfoliation glaucoma. Graefes Arch Clin Exp Ophthalmol. 2007;245:697–704.CrossRefPubMedGoogle Scholar
  20. 20.
    Yan X, Tezel G, Wax MB, et al. Matrix metalloproteinases and tumor necrosis factor-α in glaucomatous optic nerve head. Arch Ophthalmol. 2000;118:666–673.PubMedGoogle Scholar
  21. 21.
    Schlotzer-Schrehardt U, Lommatzsch J, Kuchle M, et al. Matrix metalloproteinases and their inhibitors in aqueous humor of patients with pseudoexfoliation syndrome/glaucoma and primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2003;44:1117–1125.CrossRefPubMedGoogle Scholar
  22. 22.
    Golubnitschaja O, Yeghiazaryan K, Liu R, et al. Increased expression of matrix metalloproteinases in mononuclear blood cells of normal-tension glaucoma patients. J Glaucoma. 2004;13:66–72.CrossRefPubMedGoogle Scholar
  23. 23.
    Maatta M, Tervahartiala T, Harju M, et al. Matrix metalloproteinases and their tissue inhibitors in aqueous humor of patients with primary open-angle glaucoma, exfoliation syndrome, and exfoliation glaucoma. J Glaucoma. 2005;14:64–69.CrossRefPubMedGoogle Scholar
  24. 24.
    Tezel G, Kass MA, Kolker AE, et al. Plasma and aqueous humor endothelin levels in primary open-angle glaucoma. J Glaucoma. 1997;6:83–89.CrossRefPubMedGoogle Scholar
  25. 25.
    Emre M, Orgul S, Haufschild T, et al. Increased plasma endothelin-1 levels in patients with progressive open angle glaucoma. Br J Ophthalmol. 2005;89:60–63.CrossRefPubMedGoogle Scholar
  26. 26.
    Hu DN, Ritch R. Hepatocyte growth factor is increased in the aqueous humor of glaucomatous eyes. J Glaucoma. 2001;10:152–157.CrossRefPubMedGoogle Scholar
  27. 27.
    Yang J, Patil RV, Yu H, et al. T cell subsets and sIL-2R/IL-2 levels in patients with glaucoma. Am J Ophthalmol. 2001;31:421–426.CrossRefGoogle Scholar
  28. 28.
    Ronkko S, Rekonen P, Kaarniranta K, et al. Phospholipase A2 in chamber angle of normal eyes and patients with primary open angle glaucoma and exfoliation glaucoma. Mol Vis. 2007;13:408–417.PubMedGoogle Scholar
  29. 29.
    Nolan MJ, Giovingo MC, Miller AM, et al. Aqueous humor sCD44 concentration and visual field loss in primary open-angle glaucoma. J Glaucoma. 2007;16:419–429.CrossRefPubMedGoogle Scholar
  30. 30.
    Picht G, Welge-Luessen U, Grehn F, et al. Transforming growth factor β2 levels in the aqueous humor in different types of glaucoma and the relation to filtering bleb development. Graefes Arch Clin Exp Ophthalmol. 2001;239:199–207.CrossRefPubMedGoogle Scholar
  31. 31.
    Noureddin BN, Al-Haddad CE, Bashshur Z, et al. Plasma thymulin and nerve growth factor levels in patients with primary open angle glaucoma and elevated intraocular pressure. Graefes Arch Clin Exp Ophthalmol. 2006;244:750–752.CrossRefPubMedGoogle Scholar
  32. 32.
    Hu DN, Ritch R, Liebmann J, et al. Vascular endothelial growth factor is increased in aqueous humor of glaucomatous eyes. J Glaucoma. 2002;1:406–410.CrossRefGoogle Scholar
  33. 33.
    Lip PL, Felmeden DC, Blann AD, et al. Plasma vascular endothelial growth factor, soluble VEGF receptor FLT-1, and von Willebrand factor in glaucoma. Br J Ophthalmol. 2002;86:1299–1302.CrossRefPubMedGoogle Scholar
  34. 34.
    Zabala L, Saldanha C, Martins e Silva J, et al. Red blood cell membrane integrity in primary open angle glaucoma: ex vivo and in vitro studies. Eye. 1999;13:101–103.PubMedGoogle Scholar
  35. 35.
    Lutjen-Drecoll E, May CA, Polansky JR, et al. Localization of the stress proteins αB-crystallin and trabecular meshwork inducible glucocorticoid response protein in normal and glaucomatous trabecular meshwork. Invest Ophthalmol Vis Sci. 1998;39:517–525.PubMedGoogle Scholar
  36. 36.
    Weinstein BI, Iyer RB, Binstock JM, et al. Decreased 3α-hydroxysteroid dehydrogenase activity in peripheral blood lymphocytes from patients with primary open angle glaucoma. Exp Eye Res. 1996;62: 39–45.CrossRefPubMedGoogle Scholar
  37. 37.
    Lee P, Lam KW, Lai M. Aqueous humor ascorbate concentration and open-angle glaucoma. Arch Ophthalmol. 1977;95:308–310.PubMedGoogle Scholar
  38. 38.
    McCarty GR, Schwartz B. Reduced plasma cortisol binding to albumin in ocular hypertension and primary open-angle glaucoma. Curr Eye Res. 1999;18:467–476.CrossRefPubMedGoogle Scholar
  39. 39.
    Ren H, Magulike N, Ghebremeskel K, et al. Primary open-angle glaucoma patients have reduced levels of blood docosahexaenoic and eicosapentaenoic acids. Prostaglandins Leukot Essent Fatty Acids. 2006;74:157–163.CrossRefPubMedGoogle Scholar
  40. 40.
    Ferreira SM, Lerner SF, Brunzini R, et al. Oxidative stress markers in aqueous humor of glaucoma patients. Am J Ophthalmol. 2004;137:62–69.CrossRefPubMedGoogle Scholar
  41. 41.
    Gherghel D, Griffiths HR, Hilton EJ, et al. Systemic reduction in glutathione levels occurs in patients with primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2005;46:877–883.CrossRefPubMedGoogle Scholar
  42. 42.
    Tezel G, Wax MB. Hypoxia-inducible factor-1α in the glaucomatous retina and optic nerve head. Arch Ophthalmol. 2004;122:1348–1356.CrossRefPubMedGoogle Scholar
  43. 43.
    Tsai DC, Hsu WM, Chou CK, et al. Significant variation of the elevated nitric oxide levels in aqueous humor from patients with different types of glaucoma. Ophthalmologica. 2002;216:346–350.CrossRefPubMedGoogle Scholar
  44. 44.
    Wang N, Chintala SK, Fini ME, et al. Activation of a tissue-specific stress response in the aqueous outflow pathway of the eye defines the glaucoma disease phenotype. Nature Med. 2001;7:304–309.CrossRefPubMedGoogle Scholar
  45. 45.
    Liton PB, Challa P, Stinnett S, et al. Cellular senescence in the glaucomatous outflow pathway. Exp Geront. 2005;40:745–748.CrossRefGoogle Scholar
  46. 46.
    Wang WH, McNatt LG, Pang IH, et al. Increased expression of serum amyloid A in glaucoma and its effect on intraocular pressure. Invest Ophthalmol Vis Sci. 2008;49:1916–23.CrossRefPubMedGoogle Scholar
  47. 47.
    Mukesh BN, McCarty CA, Rait JL, Taylor HR. Five-year incidence of open-angle glaucoma: the visual impairment project. Ophthalmology. 2002;109:1047–1051.CrossRefPubMedGoogle Scholar
  48. 48.
    Quigley HA. Open-angle glaucoma. N Eng J Med. 1993;328:097–1106.CrossRefGoogle Scholar
  49. 49.
    Tamura H, Kawakami H, Kanamoto T, et al. High frequency of open-angle glaucoma in Japanese patients with Alzheimer’s disease. J Neuro Sci. 2006;246:79–83.CrossRefGoogle Scholar
  50. 50.
    Yue BYJT. Cellular mechanisms in the trabecular meshwork affecting the aqueous humor outflow pathway. In: Albert DM, Miller JW, eds. Albert and Jacobiec’s principles and practice of ophthalmology.Chap. 192. 3rd ed. Oxford, UK: Elsevier; 2007:2457–2474.Google Scholar
  51. 51.
    Knepper PA, Yue BYJT: Cellular mechanisms in the trabecular meshwork affecting the aqueous humor outflow pathway. In: Levine LA, Albert DM (eds) Ocular disease: mechanisms and management. Elsevier, Oxford, UK (In Press).Google Scholar
  52. 52.
    Acott TS, Kelley MJ. Extracellular matrix in the trabecular meshwork. Exp Eye Res. 2008;86:543–61.CrossRefPubMedGoogle Scholar
  53. 53.
    Lutjen-Drecoll RJW. Morphology of aqueous outflow pathways in normal and glaucomatous eyes. In: Ritch R, Shields MB, Krupin T, eds. The Glaucomas, vol. 1. 2nd ed. CV Mosby: St. Louis; 1996:89–123.Google Scholar
  54. 54.
    Tan JCH, Peters DM, Kaufman PL. Recent developments in understanding the pathophysiology of elevated intraocular pressure. Curr Opin Ophthalmol. 2006;17:168–174.PubMedGoogle Scholar
  55. 55.
    Barany EH. The effect of different kinds of hyaluronidase on the resistance to flow through the angle of the anterior chamber. Acta Ophthalmol. 1956;33:397–403.Google Scholar
  56. 56.
    Knepper PA, Fadel JR, Miller AM, et al. Reconstitution of trabecular meshwork GAGs: influence of hyaluronic acid and chondroitin sulfate on flow rates. J Glaucoma. 2005;14:230–238.CrossRefPubMedGoogle Scholar
  57. 57.
    Keller KE, Bradley JM, Kelley MJ, Acott TS. Effects of modifiers of glycosaminoglycan biosynthesis on outflow facility in perfusion culture. Invest Ophthalmol Vis Sci. 2008;49:2495–505.CrossRefPubMedGoogle Scholar
  58. 58.
    Choi J, Miller AM, Nolan MJ, et al. Soluble CD44 is cytotoxic to trabecular meshwork and retinal ganglion cells in vitro. Invest Ophthalmol Vis Sci. 2006;46:214–222.CrossRefGoogle Scholar
  59. 59.
    Tane N, Dhar S, Roy S, et al. Effect of excess synthesis of extracellular matrix components by trabecular meshwork cells: Possible consequence on aqueous outflow. Exp Eye Res. 2007;84:832–842.CrossRefPubMedGoogle Scholar
  60. 60.
    Vittal V, Rose A, Gregory KE, et al. Changes in gene expression by trabecular meshwork cells in response to mechanical stretching. Invest Ophthalmol Vis Sci. 2005;46:2857–2868.CrossRefPubMedGoogle Scholar
  61. 61.
    Gottanka J, Chan D, Eichhorn M, Lutjen-Drecoll E, Ethier CR. Effects of TGF-β2 in perfused human eyes. Invest Ophthalmol Vis Sci. 2004;45:153–8.CrossRefPubMedGoogle Scholar
  62. 62.
    Kelley MJ, Rose AY, Songg K, et al. Synergism of TNF and IL-1 in the induction of matrix metalloproteinases-3 in the trabecular meshwork. Invest Ophthalmol Vis Sci. 2007;48:2634–2643.CrossRefPubMedGoogle Scholar
  63. 63.
    Tian B, Geiger B, Epstein DL, Kaufman PL. Cytoskeletal involvement in the regulation of aqueous humor outflow. Invest Ophthalmol Vis Sci. 2000;41:619–623.PubMedGoogle Scholar
  64. 64.
    Rao PV, Epstein DL. Rho GTPase/Rho kinase inhibition as a novel target for the treatment of glaucoma. BioDrugs. 2007;21:167–177.CrossRefPubMedGoogle Scholar
  65. 65.
    Fautsch MP, Howell KG, Vrabel AM, et al. Primary trabecular meshwork cells incubated in human aqueous humor differ from cells incubated in serum supplements. Invest Ophthalmol Vis Sci. 2005;46:2848–2856.CrossRefPubMedGoogle Scholar
  66. 66.
    Knepper PA, Miller AM, Wertz CJ, et al. Hypophosphorylation of aqueous humor sCD44 and primary open angle glaucoma. Invest Ophthalmol Vis Sci. 2005;46:2829–2837.CrossRefPubMedGoogle Scholar
  67. 67.
    Alvarado JA, Murphy CG, Polansky JR, Juster R. Age-related changes in trabecular meshwork cellularity. Invest Ophthalmol Vis Sci. 1981;21:714–727.PubMedGoogle Scholar
  68. 68.
    Alvarado J, Murphy C, Juster R. Trabecular meshwork cellularity in primary open-angle glaucoma and non-glaucomatous normals. Ophthalmology. 1984;91:564–579.PubMedGoogle Scholar
  69. 69.
    Gabelt BT, Kaufman PL. Changes in aqueous humor dynamics with age and glaucoma. Prog Retina Eye Res. 2005;24:612–637.CrossRefGoogle Scholar
  70. 70.
    Sacca SC, Izzotti A, Rossi P, Traverso C. Glaucomatous outflow pathway and oxidative stress. Exp Eye Res. 2007;84:389–399.CrossRefPubMedGoogle Scholar
  71. 71.
    De La Paz MA, Epstein DL. Effect of age on superoxide dismutase activity of human trabecular meshwork. Invest Ophthalmol Vis Sci. 1996;37:1849–1853.Google Scholar
  72. 72.
    Abu-Amero KK, Morales J, Bosley TM. Mitochondrial abnormalities in patients with primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2006;47:2533–2541.CrossRefPubMedGoogle Scholar
  73. 73.
    Wang WH, McNatt LG, Pang IH, et al. Increased expression of the WNT antagonist sFRP-1 in glaucoma elevates intraocular pressure. J Clin Invest. 2008;118:1056–64.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Paul A. Knepper
    • 1
  • Michael J. Nolan
    • 1
  • Beatrice Y. J. T. Yue
    • 1
  1. 1.Department of Ophthalmology and Visual ScienceUniversity of IllinoisChicagoUSA

Personalised recommendations