Aqueous Veins and Open Angle Glaucoma

  • Murray Johnstone
  • Annisa Jamil
  • Elizabeth Martin


The aqueous veins are visible on the surface of the eye and contain aqueous being returned to the general circulation. Aqueous veins are of great importance because aqueous outflow system models can be judged by their ability to predict and explain properties of directly visible aqueous flow. Aqueous humor circulation through the anterior segment of the eye involves one of the vascular circulatory loops that is driven down a continuous pressure gradient initially set up by the heart. Aqueous exits the eye by passing through the trabecular meshwork to Schlemm’s canal. After entering Schlemm’s canal, aqueous enters collector channels that have a lumen in communication with the aqueous veins. The aqueous vein lumen in turn communicates with episcleral veins that return blood to the general circulation.


Stroke Volume Pulsatile Flow Trabecular Meshwork Increase Stroke Volume Collapsible Tube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ascher KW. Aqueous veins. Am J Ophthalmol. 1942;25:31.Google Scholar
  2. 2.
    Goldmann H. Abfluss des Kammerwassers beim Menschen. Ophthalmologica. 1946;111:146–152.CrossRefPubMedGoogle Scholar
  3. 3.
    Bill A. Basic physiology of the drainage of aqueous humor. Exp Eye Res. 1977;25(suppl):291–304.CrossRefPubMedGoogle Scholar
  4. 4.
    Kinsey VE, Reddy DV. Chemistry and dynamics of aqueous humor. In: Prince JH, ed. The Rabbit in Eye Research. Springfield: Thomas; 1964:218–219.Google Scholar
  5. 5.
    Ascher KW. Physiologic importance of the visible elimination of intraocular fluid. Am J Ophthalmol. 1942;25:1174–1209.Google Scholar
  6. 6.
    De Vries S. De Zichtbare Afvoer Van Het Kamerwater. 1st ed. Amsterdam: Drukkerij Kinsbergen; 1947.Google Scholar
  7. 7.
    Ascher KW. The Aqueous Veins: Biomicroscopic Study of Aqueous Humor Elimination. Springfield, IL: Charles C. Thomas; 1961.Google Scholar
  8. 8.
    Ascher KW. The Aqueous Veins. Vol 1. Springfield, IL: Charles C. Thomas; 1961.Google Scholar
  9. 9.
    Goldmann H. Weitere Mitteilung über den Abfluss des Kammer­wassers beim Menschen. Ophthalmologica. 1946;112:344–346.CrossRefPubMedGoogle Scholar
  10. 10.
    Stepanik J. Measuring velocity of flow in aqueous veins. Am J Ophthalmol. 1954;37:918.PubMedGoogle Scholar
  11. 11.
    Thomassen TL, Bakken K. Anatomical investigations into the exit canals of aqueous humor. Acta Ophthalmol. 1951;29:257.Google Scholar
  12. 12.
    Ashton N. Anatomical study of Schlemm’s canal and aqueous veins by means of neoprene casts, Part I. Br J Ophthalmol. 1951;35:291.CrossRefPubMedGoogle Scholar
  13. 13.
    Ashton N. Anatomical study of Schlemm’s canal and aqueous veins by means of neoprene casts, Part II, Aqueous veins. Br J Ophthalmol. 1952;36:265.CrossRefPubMedGoogle Scholar
  14. 14.
    Johnstone MA. The aqueous outflow system as a mechanical pump: evidence from examination of tissue and aqueous movement in human and non-human primates. J Glaucoma. 2004;13:421–438.CrossRefPubMedGoogle Scholar
  15. 15.
    Ascher KW. Local pharmacologic effects on aqueous veins. Am J Ophthalmol. 1942;25:1301.Google Scholar
  16. 16.
    Ascher KW. Backflow phenomena in aqueous veins. Am J Ophthalmol. 1944;27:1074.Google Scholar
  17. 17.
    Thomassen TL. On aqueous veins. Acta Ophthalmol. 1947;25:369–378.Google Scholar
  18. 18.
    Thomassen TL, Perkins ES, Dobree JH. Aqueous veins in glaucomatous eyes. Br J Ophthalmol. 1950;34:221.CrossRefPubMedGoogle Scholar
  19. 19.
    Kleinert H. The compensation maximum: a new glaucoma sign in aqueous veins. Arch Ophthalmol. 1951;46:618.Google Scholar
  20. 20.
    Bill A. Blood circulation and fluid dynamics in the eye. Physiol Rev. 1975;55:383–417.PubMedGoogle Scholar
  21. 21.
    Phillips CI, Tsukahara S, Hosaka O, Adams W. Ocular pulsation correlates with ocular tension: the choroid as piston for an aqueous pump? Ophthalmic Res. 1992;24(6):338–343.CrossRefPubMedGoogle Scholar
  22. 22.
    Coleman DJ, Trokel S. Direct-recorded intraocular pressure variations in a human subject. Arch Ophthalmol. 1969;82:637–640.PubMedGoogle Scholar
  23. 23.
    Johnstone MA. A new model describes an aqueous outflow pump and explores causes of pump failure in glaucoma. In: Grehn H, Stamper R, eds. Essentials in Ophthalmology: Glaucoma II. Vol 2. Heidelberg: Springer; 2006.Google Scholar
  24. 24.
    Ascher KW, Spurgeon WM. Compression tests on aqueous veins of glaucomatous eyes; application of hydrodynamic principles to the problem of intraocular-fluid elimination. Am J Ophthalmol. 1949;32(Part II):239.PubMedGoogle Scholar
  25. 25.
    Vries S. De zichtbare Afvoer von het Kamerwater. Amsterdam: Drukkerij Kinsbergen; 1947.Google Scholar
  26. 26.
    Weinstein P. New concepts regarding anterior drainage of the eye. Br J Ophthalmol. 1950;34:161.CrossRefPubMedGoogle Scholar
  27. 27.
    Humphrey JD. Cardiovascular Solid Mechanics: Cells, Tissues, and Organs. 1st ed. New York: Springer; 2002.Google Scholar
  28. 28.
    Kaufman PL. Pressure-dependent outflow. In: Ritch R, Shields MB, Krupin T, eds. The Glaucomas, vol. 1. St. Louis: Mosby; 1996:307–333.Google Scholar
  29. 29.
    Flocks M. The anatomy of the trabecular meshwork as seen in tangential section. Arch Ophthalmol. 1957;56:708–718.Google Scholar
  30. 30.
    Fine BS. Structure of the trabecular meshwork and the canal of Schlemm. Trans Am Acad Ophthalmol Otolaryngol. 1966;70(5):777–790.PubMedGoogle Scholar
  31. 31.
    Hogan MJ, Alvarado J, Weddell JE. Histology of the Human Eye, and Atlas and Textbook. Philadelphia: Saunders; 1971.Google Scholar
  32. 32.
    Ellingsen BA, Grant WM. The relationship of pressure and aqueous outflow in enucleated human eyes. Invest Ophthalmol. 1971;10(6):430–437.PubMedGoogle Scholar
  33. 33.
    Ellingsen BA, Grant WM. Trabeculotomy and sinusotomy in enucleated human eyes. Invest Ophthalmol. 1972;11(1):21–28.PubMedGoogle Scholar
  34. 34.
    Johnstone MA, Grant WM. Pressure-dependent changes in structure of the aqueous outflow system in human and monkey eyes. Am J Ophthalmol. 1973;75:365–383.PubMedGoogle Scholar
  35. 35.
    Van Buskirk EM, Grant WM. Lens depression and aqueous outflow in enucleated primate eyes. Am J Ophthalmol. 1973;76(5):632–640.PubMedGoogle Scholar
  36. 36.
    Van Buskirk EM. Changes in facility of aqueous outflow induced by lens depression and intraocular pressure in excised human eyes. Am J Ophthalmol. 1976;82(5):736–740.PubMedGoogle Scholar
  37. 37.
    Van Buskirk EM. Anatomic correlates of changing aqueous outflow facility in excised human eyes. Invest Ophthalmol Vis Sci. 1982;22(5):625–632.PubMedGoogle Scholar
  38. 38.
    Johnstone MA. Aqueous outflow: the case for a new model. Rev Ophthalmol. 2007;14:79–84.Google Scholar
  39. 39.
    Fung YC. Biomechanics: Circulation. New York: Springer; 1996.Google Scholar
  40. 40.
    Grierson I, Lee WR. The fine structure of the trabecular meshwork at graded levels of intraocular pressure. (1) Pressure effects within the near-physiological range (8-30 mmHg). Exp Eye Res. 1975;20(6):505–521.CrossRefPubMedGoogle Scholar
  41. 41.
    Grierson I, Lee WR. The fine structure of the trabecular meshwork at graded levels of intraocular pressure. (2) Pressures outside the physiological range (0 and 50 mmHg). Exp Eye Res. 1975;20(6):523–530.CrossRefPubMedGoogle Scholar
  42. 42.
    Grierson I, Lee WR. Changes in the monkey outflow apparatus at graded levels of intraocular pressure: a qualitative analysis by light microscopy and scanning electron microscopy. Exp Eye Res. 1974;19(1):21–33.CrossRefPubMedGoogle Scholar
  43. 43.
    Lee WR, Grierson I. Relationships between intraocular pressure and the morphology of the outflow apparatus. Trans Ophthalmol Soc U K. 1974;94(2):430–449.PubMedGoogle Scholar
  44. 44.
    Gong H, Ruberti J, Overby D, Johnson M, Freddo TF. A new view of the human trabecular meshwork using quick-freeze, deep-etch electron microscopy. Exp Eye Res. 2002;75(3):347–358.PubMedGoogle Scholar
  45. 45.
    Freddo TF, Gong H. Anatomy of the ciliary body and outflow pathways. In: Duane’s Clinical Ophthalmology, William Tasman, ed., Lipincott Williams and Wilkins. 2007;3:1–18.Google Scholar
  46. 46.
    Gong H, Underhill CB, Freddo TF. Hyaluronan in the bovine ocular anterior segment, with emphasis on the outflow pathways. Invest Ophthalmol Vis Sci. 1994;35(13):4328–4332.PubMedGoogle Scholar
  47. 47.
    LaBarbera M, Vogel S. The design of fluid transport systems in organisms. Am Sci. 1982;70:54–60.Google Scholar
  48. 48.
    LaBarbera M. Principles of design of fluid transport systems in zoology. Science. 1990;249(4972):992–1000.CrossRefPubMedGoogle Scholar
  49. 49.
    Zamir M, Ritman E. The Physics of Pulsatile Flow. New York: Springer; 2000.Google Scholar
  50. 50.
    Ethier CR, Johnson M, Ruberti J. Ocular biomechanics and biotransport. Annu Rev Biomed Eng. 2004;6:249–273.CrossRefPubMedGoogle Scholar
  51. 51.
    Ethier CR, Coloma FM, Sit AJ, Johnson M. Two pore types in the inner-wall endothelium of Schlemm’s canal. Invest Ophthalmol Vis Sci. 1998;39(11):2041–2048.PubMedGoogle Scholar
  52. 52.
    Bill A, Svedbergh B. Scanning electron microscopic studies of the trabecular meshwork and the canal of Schlemm - an attempt to localize the main resistance to outflow of aqueous humor in man. Acta Ophthalmol. 1972;50(3):295–320.Google Scholar
  53. 53.
    Johnson M, Chan D, Read AT, Christensen C, Sit A, Ethier CR. The pore density in the inner wall endothelium of Schlemm’s canal of glaucomatous eyes. Invest Ophthalmol Vis Sci. 2002;43(9):2950–2955.PubMedGoogle Scholar
  54. 54.
    Stepanik J. Diurnal tonographic variations and their relation to visible aqueous outflow. Am J Ophthalmol. 1954;38:629.PubMedGoogle Scholar
  55. 55.
    Thomassen TL. The venous tension of eyes suffering from simple glaucoma. Acta Ophthalmol. 1947;25:221.Google Scholar
  56. 56.
    Levick JR. Cardiovascular Physiology. 3rd ed. London: Arnold; 2003.Google Scholar
  57. 57.
    Gartner, S. Blood vessels of the conjunctiva. Arch. Ophthamol. 1944;32:464–476.Google Scholar
  58. 58.
    Goldmann H. Weitere Mitteilung uber den Abfluss des Kammer­wassers beim Menschen. Ophthalmologica. 1946;112:344.CrossRefPubMedGoogle Scholar
  59. 59.
    Cambiaggi A. Effeto della jaluronidasi sulla pressone intraocular e sull’asetto della vene dell’accqueo. Boll Soc Biol Sper. 1958;34:1–7.Google Scholar
  60. 60.
    Kleinert H. Uber das Zustandekommen der augendrucksenkenden Wirkung des Adrenalins und anderer gefassverengender Pharmaka. Von Graefes Arch Ophthalmol. 1955;157:24–30.CrossRefGoogle Scholar
  61. 61.
    Kleinert H. Das durch Druck auf das Auge erzielte Ruckflussphanomen in den Kammerwasservenen. Klin Monatsbl Augenheilkd. 1951;122:726.Google Scholar
  62. 62.
    Ascher KW. Glaucoma and the aqueous veins. Am J Ophthalmol. 1942;25(11):1309–1315.Google Scholar
  63. 63.
    Goldmann H. Uber Abflussdruck und Glasstab-phanomen. Patho­genese des einfachen Glaukoms. Ophthalmologica. 1948;116:193.CrossRefGoogle Scholar
  64. 64.
    Miyata N. Study of aqueous vein. II. Study of aqueous vein in glaucoma. Acta Soc Ophthalmol Jpn. 1957;61:253.Google Scholar
  65. 65.
    Friberg TR, Sanborn G, Weinreb RN. Intraocular and episcleral venous pressure increase during inverted posture. Am J Ophthalmol. 1987;103(4):523–526.PubMedGoogle Scholar
  66. 66.
    Kronfeld PC, McGarry HT, Smith HE. Gonioscopic study on the canal of Schlemm. Am J Ophthalmol. 1942;25:1163.Google Scholar
  67. 67.
    Schirmer KE. Reflux of blood in the canal of Schlemm quantitated. Can J Ophthalmol. 1969;4:40–44.PubMedGoogle Scholar
  68. 68.
    Schirmer KE. Gonioscopic assessment of blood in Schlemm’s canal. Correlation with glaucoma tests. Arch Ophthalmol. 1971;85(3):263–267.PubMedGoogle Scholar
  69. 69.
    Smith R. Blood in the canal of Schlemm. Br J Ophthalmol. 1956;40:358.CrossRefPubMedGoogle Scholar
  70. 70.
    Suson EB, Schultz RO. Blood in Schlemm’s canal in glaucoma suspects. A study of the relationship between blood-filling pattern and outflow facility in ocular hypertension. Arch Ophthalmol. 1969;81(6):808–812.PubMedGoogle Scholar
  71. 71.
    Kronfeld PC. Further gonioscopic studies on the canal of Schlemm. AMA Arch Ophthalmol. 1949;41:393.Google Scholar
  72. 72.
    Dvorak-Theobald G, Quentin K. Aqueous pathways in some cases of glaucoma. Trans Am Ophthalmol Soc. 1955;53:301–315.PubMedGoogle Scholar
  73. 73.
    Nichols WM, O’Rourke MF. McDonald’s Blood Flow in Arteries. 5th ed. London: Hodder Arnold; 2005.Google Scholar
  74. 74.
    Hodgson TH, MacDonald RK. Slitlamp studies on the flow of aqueous humor. Br J Ophthalmol. 1954;38:266.CrossRefPubMedGoogle Scholar
  75. 75.
    Johnstone MA, Martin E, Mills R. Brimonidine-dependent pulsatile aqueous discharge to the episcleral veins. Invest Ophthalmol Vis Sci. 2006;47S:253.Google Scholar
  76. 76.
    Johnstone MA, Martin E, Jamil A. Latanoprost instillation results in a rapid directly measurable increase in conventional aqueous outflow. Invest Ophthalmol. 2007;48:76.Google Scholar
  77. 77.
    Reitsamer HA, Posey M, Kiel JW. Effects of a topical alpha2 adrenergic agonist on ciliary blood flow and aqueous production in rabbits. Exp Eye Res. 2006;82(3):405–415.CrossRefPubMedGoogle Scholar
  78. 78.
    Katzung BG. Basic and Clinical Pharmacology. 10th ed. New York: McGraw-Hill; 2007.Google Scholar
  79. 79.
    Georgopoulos GT, Diestelhorst M, Fisher R, Ruokonen P, Krieglstein GK. The short-term effect of latanoprost on intraocular pressure and pulsatile ocular blood flow. Acta Ophthalmol Scand. 2002;80(1):54–58.CrossRefPubMedGoogle Scholar
  80. 80.
    Geyer O, Man O, Weintraub M, Silver DM. Acute effect of latanoprost on pulsatile ocular blood flow in normal eyes. Am J Ophthalmol. 2001;131(2):198–202.CrossRefPubMedGoogle Scholar
  81. 81.
    Liu CJ, Ko YC, Cheng CY, Chou JC, Hsu WM, Liu JH. Effect of latanoprost 0.005% and brimonidine tartrate 0.2% on pulsatile ocular blood flow in normal tension glaucoma. Br J Ophthalmol. 2002;86(11):1236–1239.CrossRefPubMedGoogle Scholar
  82. 82.
    McKibbin M, Menage MJ. The effect of once-daily latanoprost on intraocular pressure and pulsatile ocular blood flow in normal tension glaucoma. Eye. 1999;13(Pt 1):31–34.PubMedGoogle Scholar
  83. 83.
    Shapiro AH. Steady flow in collapsible tubes. J Biomech Eng. 1977;99:126–147.CrossRefGoogle Scholar
  84. 84.
    Shapiro AH. Physiological and medical aspects of flow in collapsible tubes. In: Proceedings of Sixth Canadian Congress of Applied Mechanics. Vancouver, BC; 1977.Google Scholar
  85. 85.
    Kamm RD. Flow in collapsible tubes. In: Skalak R, Chien S, eds. Hanbook of Bioengineering. New York: McGraw-Hill; 1987.Google Scholar
  86. 86.
    Holt JP. Flow through collapsible tubes and through in situ veins. IEEE Trans Biomed Eng. 1969;16:274–283.CrossRefPubMedGoogle Scholar
  87. 87.
    Hedges TR, Baron EM, Hedges TR, Sinclair SH. The retinal venous pulse: its relation to optic disc characteristics and choroidal pulse. Ophthalmology. 1994;101:542–547.PubMedGoogle Scholar
  88. 88.
    Johnstone MA. Pressure-dependent changes in configuration of the endothelial tubules of Schlemm’s canal. Am J Ophthalmol. 1974;78(4):630–638.PubMedGoogle Scholar
  89. 89.
    Johnstone MA, Tanner D, Chau B. Endothelial tubular channels in Schlemm’s canal. Invest Ophthalmol Vis Sci. 1980;19:123.Google Scholar
  90. 90.
    Smit BA, Johnstone MA. Effects of viscoelastic injection into Schlemm’s canal in primate and human eyes: potential relevance to viscocanalostomy. Ophthalmology. 2002;109(4):786–792.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Murray Johnstone
    • 1
  • Annisa Jamil
    • 2
  • Elizabeth Martin
    • 3
  1. 1.Department of OphthalmologySwedish Medical CenterSeattleUSA
  2. 2.Swedish Medical CenterSeattleUSA
  3. 3.University of Washington, School of MedicineSeattleUSA

Personalised recommendations