Laser Therapies: Iridotomy, Iridoplasty, and Trabeculoplasty

  • Douglas Gaasterland


The name “laser” is an acronym for Light Amplification by Stimulated Emission of Radiation. In 1960, Theodore Maiman built the first working laser; the medium was a ruby crystal. Due to unique properties of the laser beam, the intensity of the focused output from lasers was an early, recognized attraction for treating the eye. Photons from the laser source had the same direction of travel, with minimal divergence, and were all of the same wavelength (monochromatic), coherence, and polarization. This reduced aberrations when directed to a focus. These properties minimized the focus spot diameter. Useful summaries of laser light properties for eye applications are available. Within a short interval after laser introduction, systems to treat the eye were under study. The initial applications were reported by Zaret et al for iris and retina in rabbits in 1961; and for human retina by Campbell et al and Kapany et al in 1963.


Laser Treatment Trabecular Meshwork Laser Application Angle Closure Continuous Wave Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Maiman TH (1960) Stimulated optical radiation in ruby. Nature 187:493–497CrossRefGoogle Scholar
  2. 2.
    Steinert RF, Puliafito CA. The Nd-YAG Laser in Ophthalmology. Principles and Clinical Applications of Photodisruption. 1985. W.B. Saunders Company, Philadelphia,  chapters 1, 2.
  3. 3.
    Zaret MM, Breinin GM, Schmidt H et al (1961) Ocular lesions produced by an optical maser (laser). Science 134:1525–1528PubMedCrossRefGoogle Scholar
  4. 4.
    Campbell CJ, Rittler MC, Koestler CJ (1963) The optical maser as retinal photocoagulator: an evaluation. Trans Am Acad Ophthalmol Otolaryngol 67:58–67Google Scholar
  5. 5.
    Kapany NS, Peppers NA, Zweng HC et al (1963) Retinal photocoagulation by lasers. Nature 199:146–149PubMedCrossRefGoogle Scholar
  6. 6.
    Mainster MA, Sliney DH, Belcher CD et al (1983) Laser photodisruptors. Damage mechanisms, instrument design and safety. Ophthalmology 90:973–991PubMedGoogle Scholar
  7. 7.
    Trokel SL, Srinivasan R, Braren B (1983) Eximer laser surgery of the cornea. Am J Ophthalmology 96:710–715Google Scholar
  8. 8.
    Kass MA, Heuer DK, Higginbotham EJ, et al, Ocular Hypertension Treatment Study Group. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120:701–713PubMedGoogle Scholar
  9. 9.
    Collaborative Normal-Tension Glaucoma Study Group (1998) Comparison of glaucomatous progression between untreated patients with normal-tension glaucoma and patients with therapeutically reduced intraocular pressures. Am J Ophthalmol 126:487–497CrossRefGoogle Scholar
  10. 10.
    Leske MC, Heijl A, Husssein M, et al, Early Manifest Glaucoma Trial Group. Factors for glaucoma progression and the effect of treatment. The Early Manifest Glaucoma Trial. Arch Ophthalmol. 2003;121:48–56.PubMedGoogle Scholar
  11. 11.
    Lichter PR, Musch DC, Gillespie BW, et al, CIGTS Study Group. Interim clinical outcomes in the Collaborative Initial Glaucoma Treatment Study comparing initial treatment randomized to medications or surgery. Ophthalmology. 2001;108:1943–1953PubMedCrossRefGoogle Scholar
  12. 12.
    The AGIS Investigators (2000) The Advanced Glaucoma Intervention Study (AGIS): The relationship between control of intraocular pressure and visual field deterioration. Am J Ophthalmol 130:429–440CrossRefGoogle Scholar
  13. 13.
    Robin AL, Pollack IR (1983) Argon laser trabeculoplasty in secondary forms of open-angle glaucoma. Arch Ophthalmol 101:382–384PubMedGoogle Scholar
  14. 14.
    Wise JB, Witter SL (1979) Argon laser therapy for open-angle glaucoma. A pilot study. Arch Ophthalmol 97:319–322PubMedGoogle Scholar
  15. 15.
    Hager H. [Special microsurgical interventions. 2. First experiences with the argon laser apparatus 800] Klin Monatsbl Augenheilkd. 1973;162:437-450 [in German].PubMedGoogle Scholar
  16. 16.
    Krasnov MM (1973) Laseropuncture of anterior chamber angle in glaucoma. Am J Ophthalmol 75:674–678PubMedGoogle Scholar
  17. 17.
    Wickham MG, Worthen DM (1979) Argon laser trabeculotomy: long-term follow-up. Ophthalmology 86:495–503PubMedGoogle Scholar
  18. 18.
    Schwartz AL, Del Priore LV (1991) The evolving role of argon laser trabeculoplasty in glaucoma. Ophthalmol Clin North Am 4:827–838Google Scholar
  19. 19.
    Weinreb RN, Ruderman J, Juster R et al (1983) Influence of the num ber of laser burns administered on the early results of argon laser trabeculoplasty. Am J Ophthalmol 95:287–292PubMedGoogle Scholar
  20. 20.
    Weinreb RN, Ruderman J, Juster R et al (1983) Immediate intraocular pressure response to argon laser trabeculoplasty. Am J Ophthalmol 95:279–286PubMedGoogle Scholar
  21. 21.
    Gaasterland DE, Kupfer C (1974) Experimental glaucoma in the rhesus monkey. Invest Ophthalmol 13:455–457PubMedGoogle Scholar
  22. 22.
    Wise JB (1981) Long-term control of adult open angle glaucoma by Argon laser treatment. Ophthalmology 88:197–202PubMedGoogle Scholar
  23. 23.
    Rodriques MM, Spaeth GL, Donohoo P (1982) Electron microscopy of argon laser therapy in phakic open-angle glaucoma. Ophthalmology 89:198–210Google Scholar
  24. 24.
    Acott TS, Kingley PD, Samples JR et al (1988) Human trabecular meshwork organ culture: morphology and glycoaminoglycan synthesis. Invest Ophthalmol Vis Sci 29:90–100PubMedGoogle Scholar
  25. 25.
    Bylsma SS, Samples JR, Acott TS et al (1988) Trabecular cell division after argon laser trabeculoplasty. Arch Ophthalmol 106:545–547Google Scholar
  26. 26.
    Anderson RR, Parish JA (1983) Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science 29(220):524–527CrossRefGoogle Scholar
  27. 27.
    Latina MA, Park C (1995) Selective targeting of trabecular meshwork cells: in vitro studies of pulsed and CW laser interactions. Exp Eye Res 60:359–371PubMedCrossRefGoogle Scholar
  28. 28.
    Latina MA, Sibayan SA, Shin DH et al (1998) Q-switched 532-nm Nd:YAG laser trabeculoplasty (Selective Laser Trabeculoplasty): a multicenter, pilot, clinical study. Ophthalmology 105:2082–2090PubMedCrossRefGoogle Scholar
  29. 29.
    Latina MA, de Leon JM (2005) Selective laser trabeculoplasty. Ophthalmol Clin North Am 18:409–419PubMedCrossRefGoogle Scholar
  30. 30.
    Barkana Y, Belkin M (2007) Selective laser trabeculoplasty. Diagnostic and surgical techniques. Surv Ophthalmol 52:634–654PubMedCrossRefGoogle Scholar
  31. 31.
    Glaucoma Laser Trial Research Group (1995) The Glaucoma Laser Trial (GLT) and Glaucoma Laser Trial Follow-up Study: 7. Results. Am J Ophthalmol 120:718–731Google Scholar
  32. 32.
    The AGIS Investigators (2004) The Advanced Glaucoma Intervention Study (AGIS) 13. Comparison of treatment outcomes within race: 10-year results. Ophthalmology 111:651–664CrossRefGoogle Scholar
  33. 33.
    Van Herrick W, Shaffer RN, Schwartz A. Estimation of width of angle of anterior chamber. Incidence and significance of the narrow angle. Am J Ophthalmol. 1969 Oct;68(4):626–9Google Scholar
  34. 34.
    Von Graefe A (1857) Ueber die Iridectomie die Glaucom; und uber den glaucomatosen process. Graefes Arch Clin Exp Ophthalmol 3(pt 2):456–555Google Scholar
  35. 35.
    Curran EJ (1920) A new operation for glaucoma involving a new principle in the etiology and treatment of chronic primary glaucoma. Arch Ophthalmol 49:695–716Google Scholar
  36. 36.
    Meyer-Schwickerath G (1956) Erfahrungen mit der Lichtkoagulation der Netzhuat und der Iris. Doc Ophthalmol 10:91–131CrossRefGoogle Scholar
  37. 37.
    American Academy of Ophthalmology (1994) Laser peripheral iridotomy for pupillary-block glaucoma. Arch Ophthalmol 101:1749–1758Google Scholar
  38. 38.
    Abraham RK (1981) Protocol for single-session argon laser iridectomy for angle closure glaucoma. Int Ophthalmol Clin 21:145–166PubMedCrossRefGoogle Scholar
  39. 39.
    Schirmer KE (1983) Argon laser surgery of the iris, optimized by contact lenses. Arch Ophthalmol 101:1130–1132PubMedGoogle Scholar
  40. 40.
    Wise JB, Munnerlyn CR, Erickson PJ (1986) A high effeciency laser iridotomy-sphincterotomy lens. Am J Ophthalmol 101:546–553PubMedGoogle Scholar
  41. 41.
    Goins K, Schmeisser E, Smith T (1990) Argon laser pretreatment in Nd:YAG iridotomy. Ophthalmic Surg 21:497–500PubMedGoogle Scholar
  42. 42.
    American Academy of Ophthalmology (2005) Preferred Practice Pattern. Primary Angle Closure. American Academy of Ophthalmology, San Francisco, CAGoogle Scholar
  43. 43.
    Krupin T, Stone RA, Cohen BH et al (1985) Acute intraocular pressure response to argon laser iridotomy. Ophthalmology 92:922–926PubMedGoogle Scholar
  44. 44.
    Ritch R (1982) Argon laser treatment fo medically unresponsive attacks of angle-closure glaucoma. Am J Ophthalmol 94:197–204PubMedGoogle Scholar
  45. 45.
    Zweng HC, Little HL, Hammond AH (1974) Complications of argon laser photocoagulation. Trans Am Acad Ophthalmol Otolaryngol 78:195–204Google Scholar
  46. 46.
    Thomas NE, Morse PH (1976) Anterior segment complications of argon laser therapy. Ann Ophthalmol 8:299–301PubMedGoogle Scholar
  47. 47.
    James WA Jr, deRoetth A Jr, Forbes M, et al. Argon laser photomydriasis. Am J Ophthalmol. 1976;81:62–70PubMedGoogle Scholar
  48. 48.
    Wise JB (1985) Iris sphincterotomy, iridotomy, and synechiotomy by linear incision with the argon laser. Ophthalmology 92:641–645PubMedGoogle Scholar
  49. 49.
    Shah P, Lee GA, Kirwan JK et al (2001) Cyclodiode photocoagulation for refractory glaucoma after penetrating keratoplasty. Ophthalmology 108:1986–1991PubMedCrossRefGoogle Scholar
  50. 50.
    Schlote T, Derse M, Zierhut M (2000) Transscleral diode laser cyclophotocoagulation for the treatment of refractory glaucoma secondary to inflammatory eye diseases. Br J Ophthalmol 84:999–1003PubMedCrossRefGoogle Scholar
  51. 51.
    Kan SK, Park KH, Kim DM et al (1999) Effect of diode laser trans-scleral cyclophotocoagulation in the management of glaucoma after intravitreal silicone oil injection for complicated retinal detachments. Br J Ophthalmol 83:713–717CrossRefGoogle Scholar
  52. 52.
    Izgi B, Demirci H, Ysim F et al (2001) Diode laser cyclophotocoagulation in refractory glaucoma. Comparison between pediatric and adult glaucomas. Ophthalmic Surg Lasers 32:100–107PubMedGoogle Scholar
  53. 53.
    Kirwan JF, Shah P, Khaw PT (2002) Diode laser cyclophothocoagulation. Role in the management of refractory pediatric glaucomas. Ophthalmology 109:316–323PubMedCrossRefGoogle Scholar
  54. 54.
    Semchyshyn TM, Tsai JC, Joos KM (2002) Supplemental transscleral diode laser cyclophtotcoagulation after aqueous shunt placement in refractory glaucoma. Ophthalmology 109:1078–1084PubMedCrossRefGoogle Scholar
  55. 55.
    Egbert PR, Fiadoyor S, Budenz DL et al (2001) Diode laser transscleral cyclophotocoagulation as a primary surgical treatment for primary open-angle glaucoma. Arch Ophthalmol 119:345–350PubMedGoogle Scholar
  56. 56.
    Wilensky JT, Kammer J (2004) Long-term visual outcome of transscleral laser cyclotherapy in eyes with ambulatory vision. Ophthalmology 111:1389–1392PubMedCrossRefGoogle Scholar
  57. 57.
    Pokroy R, Greenwald Y, Pollack A et al (2008) Visual loss after transscleral diode laser cyclophotocoagulation for primary open-angle and neovascular glaucoma. Ophthalmic Surg Lasers Imaging 39:22–29PubMedCrossRefGoogle Scholar
  58. 58.
    Gaasterland D, Pollack I (1992) Initial experience with a new method of laser transscleral cyclophotocoagulation for ciliary ablation in severe glaucoma. Trans Am Ophthalmol Soc 90:225–246PubMedGoogle Scholar
  59. 59.
    Caprioli J, Strang SL, Spaeth GL (1985) Cyclocryotherapy in the treatment of advanced glaucoma. Ophthalmology 92:947–954PubMedGoogle Scholar
  60. 60.
    Beckman H, Kinsshita A, Rota AN et al (1972) Transscleral ruby laser irradiation of the ciliary body in the treatment of intractable glaucoma. Trans Am Acad Ophthalmol Otolaryngol 76:423–435PubMedGoogle Scholar
  61. 61.
    Wilensky JT, Welch D, Mirolovich M (1985) Transscleral cyclocoagulation using a neodymium:YAG laser. Ophthalmic Surg 16:95–98PubMedGoogle Scholar
  62. 62.
    Fankhauser F, van der Zypen E, Kwasniewska S et al (1986) Transscleral cyclophtocoagulation using a neodymium:YAG laser. Ophthalmic Surg 17:94–100PubMedGoogle Scholar
  63. 63.
    Federman JL, Ando F, Schubert HD et al (1987) Contact laser for transscleral photocoagulation. Ophthalmic Surg 18:182–184Google Scholar
  64. 64.
    Smith RS, Stein MN (1968) Ocular hazards of transscleral laser radiation: I. Spectral reflection and transmission of the sclera, choroid and retina. Am J Ophthalmol 66:21–31PubMedGoogle Scholar
  65. 65.
    Rol P, Niederer P, Dürr U et al (1990) Experimental investigations on the light scattering properties of the; human sclera. Lasers Light Ophthalmol 3:201–202Google Scholar
  66. 66.
    Charles S (1981) Endophotocoagulation. Retina 1:117–120PubMedCrossRefGoogle Scholar
  67. 67.
    Patel A, Thompson JT, Michels RG et al (1986) Endolaser treatment of the ciliary body for uncontrolled glaucoma. Ophthalmology 93:825–830PubMedGoogle Scholar
  68. 68.
    Zarbin MA, Michels RG, de Bustros S et al (1988) Endolaser treatment of the ciliary body for severe glaucoma. Ophthalmology 95:1639–1647PubMedGoogle Scholar
  69. 69.
    Uram M (1995) Endoscopic cyclophotocoagulation in glaucoma management. Curr Opin Ophthalmol 6:19–29PubMedGoogle Scholar
  70. 70.
    Myers JS, Trevisani MG, Imami N et al (1998) Laser energy reaching the posterior pole during transscleral cyclophotocoagulation. Arch Ophthalmol 116:488–491PubMedGoogle Scholar
  71. 71.
    Bodian M (1953) Sympathetic ophthalmia following cyclodiathermy. Am J Ophthalmol 36:217–225PubMedGoogle Scholar
  72. 72.
    Harrison TJ (1993) Sympathetic ophthalmia after cyclocryotherapy of neovascular glaucoma without ocular penetration. Ophthalmic Surg 24:44–46PubMedGoogle Scholar
  73. 73.
    Edward DP, Brown SVL, Higginbotham E et al (1969) Sympathetic ophthalmic following Neodymium:YAG cyclotherapy. Ophthalmic Surg 20:644–646Google Scholar
  74. 74.
    Lam S, Tessler HH, Lam BL et al (1992) High incidence of sympathetic ophthalmia after contact and noncontact Neodymium:YAG cyclotherapy. Ophthalmology 99:1818–1822PubMedGoogle Scholar
  75. 75.
    Bechrakis NE, Müller-Stolzenburg NW, Helbig H et al (1994) Sympathetic ophthalmia following laser cyclocoagulation. Arch Ophthalmol 112:80–84PubMedGoogle Scholar
  76. 76.
    Azuara-Blanco A, Dua HS (1999) Malignant glaucoma after diode laser cyclophotocoagulation. Am J Ophthalmol 127:467–469PubMedCrossRefGoogle Scholar
  77. 77.
    Herschler J (1980) Laser shrinkage of the ciliary processes: a treatment for malignant (ciliary block) glaucoma. Ophthalmology 87:1155–1159PubMedGoogle Scholar
  78. 78.
    Carassa RG, Bettin P, Fiori M et al (1999) Treatment of malignant glaucoma with contact transscleral cyclophotocoagulation. Arch Ophthalmol 117:688–690PubMedGoogle Scholar
  79. 79.
    Pastor SA, Singh K, Lee DA et al (2001) Cyclophotocoagulation. A report by the American Academy of Ophthalmology. Ophthalmology 108:2130–2138PubMedCrossRefGoogle Scholar
  80. 80.
    Kaushik S, Pandav SS, Jain R et al (2008) Lower energy levels adequate for effecdtive transscleral diode laser cyclophotocoagulation in Asian eyes with refractory glaucoma. Eye 22:398–405PubMedCrossRefGoogle Scholar
  81. 81.
    Aykan U, Bilge AH, Akin T et al (2007) Laser suture lysis or releasable sutures after trabeculectomy. J Glaucoma 16:240–245PubMedCrossRefGoogle Scholar
  82. 82.
    Hoskins HD Jr, Migliazzo C (1984) Management of failing filtering blebs with the argon laser. Ophthalmic Surg 15:731–733PubMedGoogle Scholar
  83. 83.
    Ormerod LD, Baerveldt G, Sunalp MA et al (1991) Management of the hypotonous cyclodialysis cleft. Ophthalmology 98:1384–1393PubMedGoogle Scholar
  84. 84.
    Ticho U, Ivry M (1977) Reopening of occluded filtering blebs by argon laser photocoagulation. Am J Ophthalmol 84:413–418PubMedGoogle Scholar
  85. 85.
    Van Buskirk EM (1982) Reopening filtration fistulas with the argon laser. Am J Ophthalmol 94:1–3PubMedGoogle Scholar
  86. 86.
    Sharpe ED, Simmons RJ (1986) Argon laser therapy of occult recurrent hyphema from anterior segment wound neovascularization. Ophthalmic Surg 17:283–285PubMedGoogle Scholar
  87. 87.
    Simmons RJ, Dueker DK, Kimbrough RL et al (1977) Goniophotocoagulation for neovascular glaucoma. Trans Am Acad Ophthalmol Otolaryngol 83:80–89Google Scholar
  88. 88.
    American Academy of Ophthalmology. Committee on Ophthalmic Procedures Assessment. Laser trabeculoplasty for primary open-angle glaucoma. Ophthalmology. 1996;103(10):1706–1712.Google Scholar
  89. 89.
    Park CH, Latina MA, Schuman JS (2000) Developments in laser trabeculoplasty. Ophthalmic Surgery and Lasers 30(4):315–322Google Scholar
  90. 90.
    Olivier MMG (2004) Glaucoma laser treatment: where are we now? Techniques in Ophthalmology 2(3):118–123CrossRefGoogle Scholar
  91. 91.
    Fea AM, Bosone A, Rolle T, Brogliatti B, Grignolo FM (2008) Micropulse diode laser trabeculoplasty (MDLT): a phase II clinical study with 12 months follow-up. Clin Ophthalmol 2(2):247–252PubMedCrossRefGoogle Scholar
  92. 92.
    Ingvoldstad DD, Krishna R, Willoughby L. Micropulse diode laser trabeculoplasty versus argon laser trabeculoplasty in the treatment of open angle glaucoma [abstract]. Invest Ophthal Vis Sci. 2005;46:ARVO E-Abstract 123.Google Scholar
  93. 93.
    Fea AM, Dorin G (2008) Laser treatment of glaucoma: evolution of laser trabeculoplasty techniques. Tech Ophthalmol 6(2):45–52CrossRefGoogle Scholar
  94. 94.
    Garcia-Sanchez j, Garcia-Fiejoo J, Saenz-Frances F et al. Titanium sapphire laser trabeculoplasty: hypotensive efficacy and anterior chamber inflammation. Invest Ophthal Vis Sci. 2007;48:E-Abstract 3975.Google Scholar


  1. Chung PY, Schuman JS, Netland PA, et al. Five-year results of a randomized, prospective, clinical trial of diode vs Argon laser trabeculoplasty for open-angle glaucoma. Am J Ophthalmol. 1998;126(2):185-190.PubMedCrossRefGoogle Scholar
  2. Damji KF, Bovell AM, Hodge WG, et al. Selective laser trabeculoplasty versus argon laser trabeculoplasty: results from a 1-year randomized clinical trial. Br J Ophthalmol. 2006;90:1490-1494.PubMedCrossRefGoogle Scholar
  3. Damji KF, Shah KC, Rock WJ, et al. Selective laser trabeculoplasty vs argon laser trabeculoplasty: a prospective randomized clinical trial. Br J Ophthalmol. 1999;83:718-722.PubMedCrossRefGoogle Scholar
  4. Fea AM, Bosone A, Rolle T, Brogliatti B, Grignolo FM. Micropulse diode laser trabeculoplasty (MDLT): A phase II clinical study with 12 months follow-up. Clin Ophthalmol 2008;2(2):247-252.PubMedCrossRefGoogle Scholar
  5. Francis BA, Ianchulev T, Schofield JK, et al. Selective Laser trabeculoplasty as a replacement for medical therapy in open-angle glaucoma. Am J Ophthalmol. 2004;140(3):524-525.CrossRefGoogle Scholar
  6. Fudemberg SJ, Myers JS, Katz LJ. Trabecular meshwork tissue examination with scanning electron microscopy: a comparison of Micropulse diode Laser (MLT), Selective Laser (SLT), and Argon Laser (ALT) Trabeculoplasty in human cadaver tissue. Invest Ophthal Vis Sci. 2008;49:ARVO E-Abstract 1236.Google Scholar
  7. Glaucoma Laser Trial Research Group. The Glaucoma Laser Trial (GLT). 2. Results of argon laser trabeculoplasty versus topical medicines. Ophthalmology. 1990;97(11):1403-1413.Google Scholar
  8. Glaucoma Laser Trial Research Group. The Glaucoma Laser Trial (GLT) and Glaucoma Laser Trial Follow-up Study: 7. Results. Am J Ophthalmol. 1995;120(6):718-731.Google Scholar
  9. Hodge WG, Damji KF, Rock W, et al. Baseline IOP predicts selective laser trabeculoplasty success at 1 year post-treatment: results of a randomized clinical trial. Br J Ophthalmol. 2005;89:1157-1160.PubMedCrossRefGoogle Scholar
  10. Ingvoldstad DD, Krishna R, Willoughby L. Micropulse diode laser trabeculoplasty. Invest Ophthal Vis Sci. 2005;46:ARVO E-Abstract 123.Google Scholar
  11. Juzych MS, Chopra V, Banitt MR, et al. Comparison of long-term outcomes of selective laser trabeculoplasty versus argon laser trabeculoplasty in open-angle glaucoma. Ophthalmology. 2004;111(10):1853-1859.PubMedCrossRefGoogle Scholar
  12. Latina MA, Sibayan SA, Shin DH, et al. Q-switched 532-nm Nd:YAG laser trabeculoplasty (selective laser trabeculoplasty): a multicenter, pilot, clinical study. Ophthalmology. 1998;105(11):2082-2088.PubMedCrossRefGoogle Scholar
  13. Lunde M. Argon laser trabeculoplasty in pigmentary dispersion syndrome with glaucoma. Am J Ophthalmol. 1983;96:721-725.PubMedGoogle Scholar
  14. McHugh D, Marshall J, Jffytche T, et al. Diode laser trabeculoplasty (DLT) for primary open-angle glaucoma and ocular hypertension. Br J Ophthalmol. 1990;74:743-747.PubMedCrossRefGoogle Scholar
  15. McIlraith I, Strasfeld M, Colev G, et al. Selective laser trabeculoplasty as initial and adjunctive treatment for open-angle glaucoma. J Glaucoma. 2006;15(2):124-130.PubMedCrossRefGoogle Scholar
  16. Melamed S, Simon GJB, Levkovitch-Verbin H. Selective laser trabeculoplasty as primary treatment for open-angle glaucoma. Arch Ophthal. 2003;121:957-960.PubMedCrossRefGoogle Scholar
  17. Ritch R, Liebermann J, Robin A, et al. Argon laser trabeculoplasty in pigmentary glaucoma. Ophthalmology. 1993;100:909.PubMedGoogle Scholar
  18. Robin AL, Pollack IP. Argon laser trabeculoplasty in secondary forms of open angle glaucoma. Arch Ophthalmol. 1983;101:382-384.PubMedGoogle Scholar
  19. Rubin B, Taglienti A, Rothman RF, et al. The effect of selective laser trabeculoplasty on intraocular pressure in patients with intravitreal steroid-induced elevated intraocular pressure. J Glaucoma. 2008;17(4):287-292.PubMedCrossRefGoogle Scholar
  20. Vishnu S, Catoira-Boyle Y, WuDunn D, et al. Efficacy of selective laser trabeculoplasty after argon laser trabeculoplasty in open angle glaucoma. Indianapolis, IN: Indiana University; 2007:ARVO poster 3971/B951.Google Scholar
  21. Weinand FS, Althen F. Long-term clinical results of selective laser trabeculoplasty in the treatment of primary open angle glaucoma. Eur J Ophthalmol. 2006;16(1):100-104.PubMedGoogle Scholar
  22. Aquino MCD, Tan A, Chew PTK. The initial experience with micropulse diode laser transscleral cyclophotocoagulation for severe glaucoma. World Glaucoma Congress 2007: Abstract P428.Google Scholar
  23. Ho Ching Lin, Wong EYM, Chew PTK. Effect of diode laser contact transscleral pars plana photocoagulation on intraocular pressure in glaucoma. Clin Experiment Ophthalmol. 2002;30:343-347.PubMedCrossRefGoogle Scholar
  24. Liu GJ, Mizukawa A, Okisaka S. Mechanism of intraocular pressure decrease after contact transscleral continuous wave Nd:YAG laser cyclophotocoagulation. Ophthalmic Res. 1994;26:65-79.PubMedCrossRefGoogle Scholar
  25. Arnavielle S, Creuzot-Garcher C, Bron AM. Anterior chamber paracentesis in patients with acute elevation of intraocular pressure. Graefes Arch Clin Exp Ophthalmol. 2007;245:345-350.PubMedCrossRefGoogle Scholar
  26. Lai JS, Tham CC, Lam DS. Limited argon laser peripheral iridoplasty as immediate treatment for an acute attack of primary angle-closure glaucoma: a preliminary study. Eye. 1999;13:26-30.PubMedGoogle Scholar
  27. Lam DS, Lai JS, Tham CC. Immediate argon laser peripheral iridoplasty as treatment for acute attack of primary angle-closure glaucoma: a preliminary study. Ophthalmology. 1998;105:2231-2236.PubMedGoogle Scholar
  28. Luxenberg MN, Green K. Reduction of corneal edema with topical hypertonic agents. Am J Ophthalmol. 1971;71:847-853.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Douglas Gaasterland
    • 1
  1. 1.Eye Doctors of Washington, Department of OphthalmologyGeorgetown University & George Washington UniversityChevy ChaseUSA

Personalised recommendations