Advertisement

Systemic Diseases and Glaucoma

  • Paul Lama
Chapter

Abstract

Although, the level of intraocular pressure (IOP) is presently the most important and only modifiable risk factor in the development and progression of open-angle glaucoma, disease progression in many patients may occur with average IOP while others with ocular hypertension never develop glaucoma. Clearly then, non-pressure-related factors are playing an important role in modifying risk of disease progression. While the Ocular Hypertension Treatment Study (OHTS) served to identify age and central corneal thickness in addition to IOP as important factors in determination of risk to glaucomatous progression, the association between nonocular systemic factors and glaucoma has been controversial. Perplexingly, data from the OHTS in fact, found that having diabetes was “protective” of progression to glaucoma. Confounding the relationship between glaucoma and systemic disease is the fact that prevalence of glaucoma and systemic diseases such as cardiovascular disease and hypertension, diabetes, and thyroid dysfunction also increase with age. What then is the relationship between various systemic disease conditions and open-angle glaucoma risk and are there shared pathogenetic mechanisms involved? The relationship between various systemic disorders and glaucomatous nerve damage is intriguing and has been studied for the last three decades.

Keywords

Obstructive Sleep Apnea Sleep Apnea Retinal Nerve Fiber Layer Glaucoma Patient Central Corneal Thickness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Gordon MO, Beiser JA, Brandt JD, et al. The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120(6):714-720; discussion 829–830.PubMedGoogle Scholar
  2. 2.
    Hayreh SS. Inter-individual variation in blood supply of the optic nerve head. Its importance in various ischemic disorders of the optic nerve head, and glaucoma, low-tension glaucoma and allied disorders. Doc Ophthalmol. 1985;30;59(3):217–246.CrossRefGoogle Scholar
  3. 3.
    Mitchell P, Lee AJ, Rochtchina E, Wang JJ. Open-angle glaucoma and systemic hypertension: the Blue Mountains Eye Study. J Glaucoma. 2004;13(4):319–326.PubMedCrossRefGoogle Scholar
  4. 4.
    Hennis A, Wu SY, Nemesure B, Leske MC, Barbados Eye Studies Group. Hypertension, diabetes, and longitudinal changes in intraocular pressure. Ophthalmology. 2003;110(5):908–914.PubMedCrossRefGoogle Scholar
  5. 5.
    Leske MC, Wu SY, Nemesure B, Hennis A. Incident open-angle glaucoma and blood pressure. Arch Ophthalmol. 2002;120(7):954–959.PubMedGoogle Scholar
  6. 6.
    Hulsman CA, Vingerling JR, Hofman A, et al. Blood pressure, arterial stiffness, and open-angle glaucoma: the Rotterdam study. Arch Ophthalmol. 2007;125(6):805–812.PubMedCrossRefGoogle Scholar
  7. 7.
    Suzuki Y, Iwase A, Araie M, et al, Tajimi Study Group. Risk factors for open-angle glaucoma in a Japanese population: the Tajimi Study. Ophthalmology. 2006;113(9):1613–1617.PubMedCrossRefGoogle Scholar
  8. 8.
    Bonomi L, Marchini G, Marraffa M, et al. Vascular risk factors for primary open angle glaucoma: the Egna-Neumarkt Study. Ophthalmology. 2000;107(7):1287–1293.PubMedCrossRefGoogle Scholar
  9. 9.
    Tielsch JM, Katz J, Sommer A, et al. Hypertension, perfusion pressure, and primary open-angle glaucoma. A population-based assessment. Arch Ophthalmol. 1995;113(2):216–221.PubMedGoogle Scholar
  10. 10.
    Oparil S. Arterial hypertension. In: Wyngaarden JB, Smith LH Jr, Bennet JC, eds. Cecil Textbook of Medicine. 20th ed. Philadelphia: W.B. Saunders; 1996:256–270.Google Scholar
  11. 11.
    The sixth report of the Joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure. Arch Intern Med. 1997;157:2413–2446.Google Scholar
  12. 12.
    Chobanian AV, Bakris GL, Black HR, et al. The seventh report of the Joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report. JAMA. 2003;289(19):2560–2572.PubMedCrossRefGoogle Scholar
  13. 13.
    Atilla K, Vasan RS. Prehypertension and risk of cardiovascular disease. Expert Rev Cardiovasc Ther. 2006;4(1):111–117.PubMedCrossRefGoogle Scholar
  14. 14.
    Vasan RS, Larson MG, Leip EP, et al. Impact of high normal blood pressure on the risk of cardiovascular disease. N Engl J Med. 2001;345(18):1291–1297.PubMedCrossRefGoogle Scholar
  15. 15.
    Haffner SM, Lehto S, Ronnemaa T, et al. Mortality from coronary heart disease in subjects with type 2 diabetes and in non-diabetic subjects with and without prior myocardial infarction. N Eng J Med. 1998;339(4):229–234.CrossRefGoogle Scholar
  16. 16.
    Hansson L, Zanchetti A, Carruthers SG, et al. Effects of intensive blood-pressure lowering and low-dose aspirin in patients with hypertension: principal results of the Hypertension Optimal Treatment (HOT) randomised trial. HOT Study Group. Lancet. 1998;351(9118):1755–1762.PubMedCrossRefGoogle Scholar
  17. 17.
    Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. UK Prospective Diabetes Study Group. BMJ. 1998;317(7160):703–713.Google Scholar
  18. 18.
    Mann JF, Gerstein HC, Pogue J, et al. Renal insufficiency as a predictor of cardiovascular outcomes and the impact of ramipril: the HOPE randomized trial. Ann Intern Med. 2001;134(8):629–636.PubMedGoogle Scholar
  19. 19.
    Mann JF, Yi QL, Gerstein HC. Albuminuria as a predictor of cardiovascular and renal outcomes in people with known atherosclerotic cardiovascular disease. Kidney Int Suppl. 2004;(92):S59-S62.Google Scholar
  20. 20.
    Duka I, Bakris G. Influence of microalbuminuria in achieving blood pressure goals. Curr Opin Nephrol Hypertens. 2008;17(5):457–463.PubMedCrossRefGoogle Scholar
  21. 21.
    Kario K, Pickering TG, Matsuo T, et al. Stroke prognosis and abnormal nocturnal blood pressure falls in older hypertensives. Hypertension. 2001;38(4):852–857.PubMedCrossRefGoogle Scholar
  22. 22.
    Kario K, Shimada K. Risers and extreme-dippers of nocturnal blood pressure in hypertension: antihypertensive strategy for nocturnal blood pressure. Clin Exp Hypertens. 2004;26(2):177–189.PubMedCrossRefGoogle Scholar
  23. 23.
    Kario K. [Blood pressure variation and cardiovascular risk in hypertension]. Nippon Rinsho. 2004;62(11):2145-2156 [in Japanese].PubMedGoogle Scholar
  24. 24.
    Tsivgoulis G, Vemmos KN, Zakopoulos N, et al. Association of blunted nocturnal blood pressure dip with intracerebral hemorrhage. Blood Press Monit. 2005;10(4):189–195.PubMedCrossRefGoogle Scholar
  25. 25.
    Giles TD. Circadian rhythm of blood pressure and the relation to cardiovascular events. J Hypertens Suppl. 2006;24(2):S11-S16.PubMedCrossRefGoogle Scholar
  26. 26.
    Izzedine H, Launay-Vacher V, Deray G. Abnormal blood pressure circadian rhythm: a target organ damage? Int J Cardiol. 2006;107(3):343–349.PubMedCrossRefGoogle Scholar
  27. 27.
    Metoki H, Ohkubo T, Kikuya M, et al. Prognostic significance for stroke of a morning pressor surge and a nocturnal blood pressure decline: the Ohasama study. Hypertension. 2006;47(2):149–154.PubMedCrossRefGoogle Scholar
  28. 28.
    Cicconetti P, Donadio C, Pazzaglia MC, et al. [Circadian rhythm of blood pressure: non-dipping pattern and cardiovascular risk]. Recenti Prog Med. 2007;98(7-8):401-406 [in Italian].PubMedGoogle Scholar
  29. 29.
    Schwartz GL, Bailey KR, Mosley T, et al. Association of ambulatory blood pressure with ischemic brain injury. Hypertension. 2007;49(6):1228–1234.PubMedCrossRefGoogle Scholar
  30. 30.
    Hermida RC, Ayala DE, Portaluppi F. Circadian variation of blood pressure: the basis for the chronotherapy of hypertension. Adv Drug Deliv Rev. 2007;59(9-10):904–922.PubMedCrossRefGoogle Scholar
  31. 31.
    Hermida RC, Calvo C, Ayala DE, et al. Dose- and administration time-dependent effects of nifedipine gits on ambulatory blood pressure in hypertensive subjects. Chronobiol Int. 2007;24(3):471–493.PubMedCrossRefGoogle Scholar
  32. 32.
    Hermida RC. Ambulatory blood pressure monitoring in the prediction of cardiovascular events and effects of chronotherapy: rationale and design of the MAPEC study. Chronobiol Int. 2007;24(4):749–775.PubMedCrossRefGoogle Scholar
  33. 33.
    Leske MC, Heijl A, Hyman L, et al. EMGT Group. Predictors of long-term progression in the early manifest glaucoma trial. Ophthalmology. 2007;114(11):1965–1972.PubMedCrossRefGoogle Scholar
  34. 34.
    Leske MC, Wu SY, Hennis A, et al, BESs Study Group. Risk factors for incident open-angle glaucoma: the Barbados Eye Studies. Ophthalmology. 2008;115(1):85–93.PubMedCrossRefGoogle Scholar
  35. 35.
    Prevention of stroke by antihypertensive drug treatment in older persons with isolated systolic hypertension. Final results of the Systolic Hypertension in the Elderly Program (SHEP). SHEP Cooperative Research Group. JAMA. 1991;265(24):3255–3264.Google Scholar
  36. 36.
    Black HR. Isolated systolic hypertension in the elderly: lessons from clinical trials and future directions. J Hypertens Suppl. 1999;17(5):S49-S54.PubMedGoogle Scholar
  37. 37.
    Wang JG, Staessen JA. The benefit of treating isolated systolic hypertension. Curr Hypertens Rep. 2001;3(4):333–339.PubMedCrossRefGoogle Scholar
  38. 38.
    Staessen JA, Wang JG, Thijs L, Fagard R. Overview of the outcome trials in older patients with isolated systolic hypertension. J Hum Hypertens. 1999;13(12):859–863.PubMedCrossRefGoogle Scholar
  39. 39.
    Pickering TG. Clinical applications of ambulatory blood pressure monitoring: the white coat syndrome. Clin Invest Med. 1991;14(3):212–217.PubMedGoogle Scholar
  40. 40.
    Follman P, Palotas C, Suveges I, Petrovits A. Nocturnal blood pressure and intraocular pressure measurement in glaucoma patients and healthy controls. Int Ophthalmol. 1996-1997;20(1-3):83–87.Google Scholar
  41. 41.
    Graham SL, Drance SM, Wijsman K, et al. Ambulatory blood pressure monitoring in glaucoma patients: the nocturnal dip. Ophthalmology. 1995;102(1):61–69.PubMedGoogle Scholar
  42. 42.
    Kaiser HJ, Flammer J. Systemic hypotension: risk factor for glaucomatous damage? Ophthalmologica. 1991;203(3):105–108.PubMedCrossRefGoogle Scholar
  43. 43.
    Hayreh SS, Zimmerman MB, Podhajsky P, Alward WL. Nocturnal arterial hypotension and its role in optic nerve head and ocular ischemic disorders. Am J Ophthalmol. 1994;117(5):603–624.PubMedGoogle Scholar
  44. 44.
    Orgül S, Kaiser HJ, Flammer J, Gasser P. Systemic blood pressure and capillary blood-cell velocity in glaucoma patients: a preliminary study. Eur J Ophthalmol. 1995;5:88–91.PubMedGoogle Scholar
  45. 45.
    Collignon N, Dewe W, Guillaume S, Collignon-Brach J. Ambulatory blood pressure monitoring in glaucoma patients. The nocturnal systolic dip and its relationship with disease progression. Int Ophthalmol. 1998;22(1):19–25.PubMedCrossRefGoogle Scholar
  46. 46.
    Meyer JH, Brandi-Dohrn J, Funk J. Twenty-four hour blood pressure monitoring in normal tension glaucoma. Br J Ophthalmol. 1996;80(10):864–867.PubMedCrossRefGoogle Scholar
  47. 47.
    Bechetoille A, Bresson-Dumont H. Diurnal and nocturnal blood pressure drops in patients with focal ischemic glaucoma. Graefes Arch Clin Exp Ophthalmol. 1994;232(11):675–679.PubMedCrossRefGoogle Scholar
  48. 48.
    Kashiwagi K, Hosaka O, Tsukahara S. Comparison of nocturnal dip of blood pressure and other blood circulatory parameters in normal tension glaucoma and normal subjects (abstract). Invest Ophthalmol Vis Sci. 1997;38(suppl):S274.Google Scholar
  49. 49.
    Detry M, Boschi A, Ellinghaus G, De Plaen JF. Simultaneous 24-hour monitoring of intraocular pressure and arterial blood pressure in patients with progressive and non-progressive primary open-angle glaucoma. Eur J Ophthalmol. 1996;6(3):273–278.PubMedGoogle Scholar
  50. 50.
    Dillman WH. The thyroid. In: Wyngaarden JB, Smith LH Jr, Bennet JC, eds. Cecil Textbook of Medicine, vol. 2. 20th ed. Philadelphia: W.B. Saunders; 1996:1237–1240.Google Scholar
  51. 51.
    Hertel G. Einiges uber den Augendruck und Glaukom. Klin Monatsbl Augenheilkd. 1920;64:390–392.Google Scholar
  52. 52.
    Becker B, Kolker AE, Ballin N. Thyroid function and glaucoma. Am J Ophthalmol. 1966;61:997–999.PubMedGoogle Scholar
  53. 53.
    Pohjanpelto P. The thyroid gland and intraocular pressure. Tonographic study of 187 patients with thyroid disease. Acta Ophthalmol (Copenh). 1968:suppl 97:1–70.Google Scholar
  54. 54.
    Smith KD, Tevaarwerk GJ, Allen LH. An ocular dynamic study supporting the hypothesis that hypothyroidism is a treatable cause of secondary open-angle glaucoma. Can J Ophthalmol. 1992;27(7):341–344.PubMedGoogle Scholar
  55. 55.
    Bahçeci UA, Ozdek S, Pehlivanli Z, et al. Changes in intraocular pressure and corneal and retinal nerve fiber layer thicknesses in hypothyroidism. Eur J Ophthalmol. 2005;15(5):556–561.PubMedGoogle Scholar
  56. 56.
    Smith KD, Tevaarwerk GJ, Allen LH. Reversal of poorly controlled glaucoma on diagnosis and treatment of hypothyroidism. Can J Ophthalmol. 1992;27(7):345–347.PubMedGoogle Scholar
  57. 57.
    Smith KD, Arthurs BP, Saheb N. An association between hypothyroidism and primary open-angle glaucoma. Ophthalmology. 1993;100(10):1580–1584.PubMedGoogle Scholar
  58. 58.
    Gillow JT, Shah P, O'Neill EC. Primary open angle glaucoma and hypothyroidism: chance or true association? Eye. 1997;11(Pt 1):113–114.PubMedGoogle Scholar
  59. 59.
    Muñoz-Negrete FJ, Rebolleda G, Almodóvar F, et al. Hypothyroidism and primary open-angle glaucoma. Ophthalmologica. 2000;214(5):347–349.PubMedCrossRefGoogle Scholar
  60. 60.
    Tahat AA, al-Khawaldeh AM. Hypothyroidism and open-angle glaucoma: an accidental or an essential coexistence? East Mediterr Health J. 2000;6(2-3):299–303.PubMedGoogle Scholar
  61. 61.
    Karadimas P, Bouzas EA, Topouzis F, et al. Hypothyroidism and glaucoma. A study of 100 hypothyroid patients. Am J Ophthalmol. 2001;131(1):126–128.PubMedCrossRefGoogle Scholar
  62. 62.
    Gawaii H, Friedrich Y, Dickstein G, Friedman Z. [Does hypothyroidism contribute to the etiology of primary open angle glaucoma or is it just a coincidence?] Harefuah. 2003;142(4):246-248, 320 [in Hebrew].PubMedGoogle Scholar
  63. 63.
    Lee AJ, Rochtchina E, Wang JJ, et al. Open-angle glaucoma and systemic thyroid disease in an older population: The Blue Mountains Eye Study. Eye. 2004;18(6):600–608.PubMedCrossRefGoogle Scholar
  64. 64.
    Girkin CA, McGwin G Jr, McNeal SF, et al. Hypothyroidism and the development of open-angle glaucoma in a male population. Ophthalmology. 2004;111(9):1649–1652.PubMedCrossRefGoogle Scholar
  65. 65.
    Motsko SP, Jones JK. Is there an association between hypothyroidism and open-angle glaucoma in an elderly population? An epidemiologic study. Ophthalmology. 2008;115(9):1581–1584.PubMedCrossRefGoogle Scholar
  66. 66.
    Sherwin RS. Diabetes mellitus. In: Wyngaarden JB, Smith LH Jr, Bennet JC, eds. Cecil Textbook of Medicine, vol. 2. 20th ed. Philadelphia: W.B. Saunders; 1996:1258–1277.Google Scholar
  67. 67.
    Kannel WB, McGee DL. Diabetes and cardiovascular risk factors: the Framingham study. Circulation. 1979;59(1):8–13.PubMedGoogle Scholar
  68. 68.
    Kannel WB, McGee DL. Diabetes and glucose tolerance as risk factors for cardiovascular disease: the Framingham study. Diabetes Care. 1979;2(2):120–126.PubMedCrossRefGoogle Scholar
  69. 69.
    Brewer HB Jr. New features of the National Cholesterol Education Program Adult Treatment Panel III lipid-lowering guidelines. Clin Cardiol. 2003;26(4 suppl 3):III19-III24.PubMedGoogle Scholar
  70. 70.
    Grundy SM, Cleeman JI, Merz CN, et al. Coordinating Committee of the National Cholesterol Education Program Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III Guidelines. J Am Coll Cardiol. 2004;44(3):720–732.PubMedCrossRefGoogle Scholar
  71. 71.
    Kohzaki K, Vingrys AJ, Bui BV. Early inner retinal dysfunction in streptozotocin-induced diabetic rats. Invest Ophthalmol Vis Sci. 2008;49(8):3595–3604.PubMedCrossRefGoogle Scholar
  72. 72.
    Qin Y, Xu G, Wang W. Dendritic abnormalities in retinal ganglion cells of three-month diabetic rats. Curr Eye Res. 2006;31(11):967–974.PubMedCrossRefGoogle Scholar
  73. 73.
    Zhang L, Ino-ue M, Dong K, Yamamoto M. Retrograde axonal transport impairment of large- and medium-sized retinal ganglion cells in diabetic rat. Curr Eye Res. 2000;20(2):131–136.PubMedGoogle Scholar
  74. 74.
    Soares AS, Artes PH, Andreou P, et al. Factors associated with optic disc hemorrhages in glaucoma. Ophthalmology. 2004;111(9):1653–1657.PubMedCrossRefGoogle Scholar
  75. 75.
    Elisaf M, Kitsos G, Bairaktari E, et al. Metabolic abnormalities in patients with primary open-angle glaucoma. Acta Ophthalmol Scand. 2001;79(2):129–132.PubMedCrossRefGoogle Scholar
  76. 76.
    Oh SW, Lee S, Park C, Kim DJ. Elevated intraocular pressure is associated with insulin resistance and metabolic syndrome. Diabetes Metab Res Rev. 2005;21(5):434–440.PubMedCrossRefGoogle Scholar
  77. 77.
    Gordon MO, Beiser JA, Kass MA, Ocular Hypertension Treatment Study Group. Is a history of diabetes mellitus protective against developing primary open-angle glaucoma? Arch Ophthalmol. 2008;126(2):280–281.PubMedCrossRefGoogle Scholar
  78. 78.
    Tielsch JM, Katz J, Quigley HA, et al. Diabetes, intraocular pressure, and primary open-angle glaucoma in the Baltimore Eye Survey. Ophthalmology. 1995;102(1):48–53.PubMedGoogle Scholar
  79. 79.
    Sommer A. Glaucoma risk factors observed in the Baltimore Eye Survey. Curr Opin Ophthalmol. 1996;7(2):93–98.PubMedCrossRefGoogle Scholar
  80. 80.
    Vijaya L, George R, Baskaran M, et al. Prevalence of primary open-angle glaucoma in an urban south Indian population and comparison with a rural population. The Chennai Glaucoma Study. Ophthalmology. 2008;115(4):648–654.PubMedCrossRefGoogle Scholar
  81. 81.
    de Voogd S, Ikram MK, Wolfs RC, et al. Is diabetes mellitus a risk factor for open-angle glaucoma? The Rotterdam Study. Ophthalmology. 2006;113(10):1827–1831.PubMedCrossRefGoogle Scholar
  82. 82.
    Ellis JD, Evans JM, Ruta DA, et al. Glaucoma incidence in an unselected cohort of diabetic patients: is diabetes mellitus a risk factor for glaucoma? DARTS/MEMO collaboration. Diabetes Audit and Research in Tayside Study. Medicines Monitoring Unit. Br J Ophthalmol. 2000;84(11):1218–1224.PubMedCrossRefGoogle Scholar
  83. 83.
    Klein BE, Klein R, Moss SE. Intraocular pressure in diabetic persons. Ophthalmology. 1984;91(11):1356–1360.PubMedGoogle Scholar
  84. 84.
    Klein BE, Klein R, Moss SE. Incidence of self-reported glaucoma in people with diabetes mellitus. Br J Ophthalmol. 1997;81(9):743–747.PubMedCrossRefGoogle Scholar
  85. 85.
    Memarzadeh F, Ying-Lai M, Azen SP, Varma R, Los Angeles Latino Eye Study Group. Associations with intraocular pressure in Latinos: the Los Angeles Latino Eye Study. Am J Ophthalmol. 2008;146(1):69–76.PubMedCrossRefGoogle Scholar
  86. 86.
    Chopra V, Varma R, Francis BA, et al, Los Angeles Latino Eye Study Group. Type 2 diabetes mellitus and the risk of open-angle glaucoma the Los Angeles Latino Eye Study. Ophthalmology. 2008;115(2):227-232.e1.PubMedCrossRefGoogle Scholar
  87. 87.
    Hennis A, Wu SY, Nemesure B, Leske MC, Barbados Eye Studies Group. Hypertension, diabetes, and longitudinal changes in intraocular pressure. Ophthalmology. 2003;110(5):908–914.PubMedCrossRefGoogle Scholar
  88. 88.
    Leske MC, Wu SY, Hennis A, et al, Barbados Eye Studies Group. Nine-year incidence of age-related macular degeneration in the Barbados Eye Studies. Ophthalmology. 2006;113(1):29–35.PubMedCrossRefGoogle Scholar
  89. 89.
    Pasquale LR, Kang JH, Manson JE, et al. Prospective study of type 2 diabetes mellitus and risk of primary open-angle glaucoma in women. Ophthalmology. 2006;113(7):1081–1086.PubMedCrossRefGoogle Scholar
  90. 90.
    Medeiros FA, Weinreb RN, Sample PA, et al. Validation of a predictive model to estimate the risk of conversion from ocular hypertension to glaucoma. Arch Ophthalmol. 2005;123(10):1351–1360.PubMedCrossRefGoogle Scholar
  91. 91.
    Miglior S, Zeyen T, Pfeiffer N, et al, European Glaucoma Prevention Study Group. The European glaucoma prevention study design and baseline description of the participants. Ophthalmology. 2002;109(9):1612–1621.PubMedCrossRefGoogle Scholar
  92. 92.
    Miglior S, Zeyen T, Pfeiffer N, et al, European Glaucoma Prevention Study (EGPS) Group. Results of the European Glaucoma Prevention Study. Ophthalmology. 2005;112(3):366–375.PubMedCrossRefGoogle Scholar
  93. 93.
    Bonovas S, Peponis V, Filioussi K. Diabetes mellitus as a risk factor for primary open-angle glaucoma: a meta-analysis. Diabet Med. 2004;21(6):609–614.PubMedCrossRefGoogle Scholar
  94. 94.
    Krueger RR, Ramos-Esteban JC. How might corneal elasticity help us understand diabetes and intraocular pressure? J Refract Surg. 2007;23(1):85–88.PubMedGoogle Scholar
  95. 95.
    Plum F. Disorders of sleep and arousal. In: Wyngaarden JB, Smith LH Jr, Bennet JC, eds. Cecil Textbook of Medicine. 20th ed. Philadelphia: W.B. Saunders; 1996:1982–1985.Google Scholar
  96. 96.
    Punjabi NM. The epidemiology of adult obstructive sleep apnea. Proc Am Thorac Soc. 2008;5(2):136–143.PubMedCrossRefGoogle Scholar
  97. 97.
    Ferini-Strambi L, Fantini ML, Castronovo C. Epidemiology of obstructive sleep apnea syndrome. Minerva Med. 2004;95(3):187–202.PubMedGoogle Scholar
  98. 98.
    Stradling JR, Davies RJ. Obstructive sleep apnoea/hypopnoea syndrome: definitions, epidemiology, and natural history. Thorax. 2004;59(1):73–78.PubMedCrossRefGoogle Scholar
  99. 99.
    Dorasamy P. Obstructive sleep apnea and cardiovascular risk. Ther Clin Risk Manag. 2007;3(6):1105–1111.PubMedGoogle Scholar
  100. 100.
    Peppard PE, Young T, Palta M, et al. Longitudinal study of moderate weight change and sleep-disordered breathing. JAMA. 2000;284(23):3015–3021.PubMedCrossRefGoogle Scholar
  101. 101.
    Newman AB, Foster G, Givelber R, et al. Progression and regression of sleep-disordered breathing with changes in weight: the Sleep Heart Health Study. Arch Intern Med. 2005;165(20):2408–2413.PubMedCrossRefGoogle Scholar
  102. 102.
    Yilmaz F, Ozyildirim S, Talay F, et al. Obstructive sleep apnea as a risk factor for cardiovascular diseases. Cardiol J. 2007;14(6):534–537.PubMedGoogle Scholar
  103. 103.
    Chami HA, Devereux RB, Gottdiener JS, et al. Left ventricular morphology and systolic function in sleep-disordered breathing: the Sleep Heart Health Study. Circulation. 2008;117(20):2599–2607.PubMedCrossRefGoogle Scholar
  104. 104.
    Peppard PE, Young T, Palta M, Skatrud J. Prospective study of the association between sleep-disordered breathing and hypertension. N Engl J Med. 2000;342(19):1378–1384.PubMedCrossRefGoogle Scholar
  105. 105.
    Young T, Peppard P, Palta M, et al. Population-based study of sleep-disordered breathing as a risk factor for hypertension. Arch Intern Med. 1997;157(15):1746–1752.PubMedCrossRefGoogle Scholar
  106. 106.
    Valham F, Mooe T, Rabben T, et al. Increased risk of stroke in patients with coronary artery disease and sleep apnea: a 10-year follow-up. Circulation. 2008;118(9):955–960.PubMedCrossRefGoogle Scholar
  107. 107.
    Punjabi NM, Polotsky VY. Disorders of glucose metabolism in sleep apnea. J Appl Physiol. 2005;99:1998–2007.PubMedCrossRefGoogle Scholar
  108. 108.
    Young T, Finn L, Peppard PE, et al. Sleep disordered breathing and mortality: eighteen-year follow-up of the Wisconsin sleep cohort. Sleep. 2008;31(8):1071–1078.PubMedGoogle Scholar
  109. 109.
    Marshall NS, Wong KK, Liu PY, et al. Sleep apnea as an independent risk factor for all-cause mortality: the Busselton Health Study. Sleep. 2008;31(8):1079–1085.PubMedGoogle Scholar
  110. 110.
    Sanders MH, Montserrat JM, Farré R, Givelber RJ. Positive pressure therapy: a perspective on evidence-based outcomes and methods of application. Proc Am Thorac Soc. 2008;5(2):161–172.PubMedCrossRefGoogle Scholar
  111. 111.
    Mojon DS, Hess CW, Goldblum D, et al. High prevalence of glaucoma in patients with sleep apnea syndrome. Ophthalmology. 1999;106(5):1009–1012.PubMedCrossRefGoogle Scholar
  112. 112.
    Karakucuk S, Goktas S, Aksu M. Ocular blood flow in patients with obstructive sleep apnea syndrome (OSAS). Graef Arch Clin Exp Ophthalmol. 2008;246(1):129–134.CrossRefGoogle Scholar
  113. 113.
    Mojon DS, Hess CW, Goldblum D, et al. Primary open-angle glaucoma is associated with sleep apnea syndrome. Ophthalmologica. 2000;214(2):115–118.PubMedCrossRefGoogle Scholar
  114. 114.
    Bendel RE, Kaplan J, Heckman M, Fredrickson PA, Lin SC. Prevalence of glaucoma in patients with obstructive sleep apnoea across-sectional case-series. Eye. 2007;22(9):1105–1109.PubMedCrossRefGoogle Scholar
  115. 115.
    Sergi M, Salerno DE, Rizzi M, et al. Prevalence of normal tension glaucoma in obstructive sleep apnea syndrome patients. J Glaucoma. 2007;16(1):42–46.PubMedCrossRefGoogle Scholar
  116. 116.
    Batisse JL, Vix J, Swalduz B, et al. Sleep-related breathing disorders and normal or high-tension glaucoma: 35 patients with polysomnographic records. J Fr Ophtalmol. 2004;27(6 Pt 1):605–612.PubMedCrossRefGoogle Scholar
  117. 117.
    Girkin CA, McGwin G Jr, McNeal SF, Owsley C. Is there an association between pre-existing sleep apnoea and the development of glaucoma? Br J Ophthalmol. 2006;90(6):679–681.PubMedCrossRefGoogle Scholar
  118. 118.
    Geyer O, Cohen N, Segev E, et al. The prevalence of glaucoma in patients with sleep apnea syndrome: same as in the general population. Am J Ophthalmol. 2003;136(6):1093–1096.PubMedCrossRefGoogle Scholar
  119. 119.
    Mojon DS, Hess CW, Goldblum D, et al. Normal-tension glaucoma is associated with sleep apnea syndrome. Ophthalmologica. 2002;216(3):180–184.PubMedCrossRefGoogle Scholar
  120. 120.
    Marcus DM, Costarides AP, Gokhale P, et al. Sleep disorders: a risk factor for normal-tension glaucoma? J Glaucoma. 2001;10(3):177–183.PubMedCrossRefGoogle Scholar
  121. 121.
    Onen SH, Mouriaux F, Berramdane L, et al. High prevalence of sleep-disordered breathing in patients with primary open-angle glaucoma. Acta Ophthalmol Scand. 2000;78(6):638–641.PubMedCrossRefGoogle Scholar
  122. 122.
    Shaw SM, Fildes JE, Yonan N, Williams SG. Pleiotropic effects and cholesterol-lowering therapy. Cardiology. 2008;112(1):4–12.PubMedCrossRefGoogle Scholar
  123. 123.
    Schönbeck U, Libby P. Inflammation, immunity, and HMG-CoA reductase inhibitors: statins as antiinflammatory agents? Circulation. 2004;109(21 suppl 1):II18-II26.PubMedGoogle Scholar
  124. 124.
    Correia LC. Is there a true beneficial effect of statin therapy in the acute phase of unstable angina or myocardial infarction? Curr Vasc Pharmacol. 2007;5(3):221–225.PubMedCrossRefGoogle Scholar
  125. 125.
    Arca M, Gaspardone A. Atorvastatin efficacy in the primary and secondary prevention of cardiovascular events. Drugs. 2007;67(Suppl 1):29–42.PubMedCrossRefGoogle Scholar
  126. 126.
    Schwartz GG, Olsson AG, Ezekowitz MD, et al, Myocardial Ischemia Reduction with Aggressive Cholesterol Lowering (MIRACL) Study Investigators. Effects of atorvastatin on early recurrent ischemic events in acute coronary syndromes: the MIRACL study: a randomized controlled trial. JAMA. 2001;285(13):1711–1718.PubMedCrossRefGoogle Scholar
  127. 127.
    Pedersen TR, Faergeman O, Kastelein JJ, et al, Incremental Decrease in End Points Through Aggressive Lipid Lowering (IDEAL) Study Group. High-dose atorvastatin vs usual-dose simvastatin for secondary prevention after myocardial infarction: the IDEAL study: a randomized controlled trial. JAMA. 2005;294(19):2437–2445.PubMedCrossRefGoogle Scholar
  128. 128.
    Patti G, Pasceri V, Colonna G, et al. Atorvastatin pretreatment improves outcomes in patients with acute coronary syndromes undergoing early percutaneous coronary intervention: results of the ARMYDA-ACS randomized trial. J Am Coll Cardiol. 2007;49(12):1272–1278.PubMedCrossRefGoogle Scholar
  129. 129.
    Patti G, Chello M, Candura D, et al. Randomized trial of atorvastatin for reduction of postoperative atrial fibrillation in patients undergoing cardiac surgery: results of the ARMYDA-3 (Atorvastatin for Reduction of MYocardial Dysrhythmia After cardiac surgery) study. Circulation. 2006;114(14):1455–1461.PubMedCrossRefGoogle Scholar
  130. 130.
    Tokaç M, Ozeren A, Aktan M, et al. The role of inflammation markers in triggering acute coronary events. Heart Vessels. 2003;18(4):171–176.PubMedCrossRefGoogle Scholar
  131. 131.
    Blake GJ, Ridker PM. C-reactive protein and other inflammatory risk markers in acute coronary syndromes. J Am Coll Cardiol. 2003;41(4 suppl S):37S-42S.PubMedCrossRefGoogle Scholar
  132. 132.
    Kinlay S, Schwartz GG, Olsson AG, et al, Myocardial Ischemia Reduction with Aggressive Cholesterol Lowering Study Investigators. High-dose atorvastatin enhances the decline in inflammatory markers in patients with acute coronary syndromes in the MIRACL study. Circulation. 2003;108(13):1560–1566.PubMedCrossRefGoogle Scholar
  133. 133.
    Chan KY, Boucher ES, Gandhi PJ, Silva MA. HMG-CoA reductase inhibitors for lowering elevated levels of C-reactive protein. Am J Health Syst Pharm. 2004;61(16):1676–1681.PubMedGoogle Scholar
  134. 134.
    Tezel G, Yang J, Wax MB. Heat shock proteins, immunity and glaucoma. Brain Res Bull. 2004;62(6):473–480.PubMedCrossRefGoogle Scholar
  135. 135.
    Wax MB, Tezel G. Neurobiology of glaucomatous optic neuropathy: diverse cellular events in neurodegeneration and neuroprotection. Mol Neurobiol. 2002;26(1):45–55.PubMedCrossRefGoogle Scholar
  136. 136.
    Wax M, Yang J, Tezel G. Autoantibodies in glaucoma. Curr Eye Res. 2002;25(2):113–116.PubMedCrossRefGoogle Scholar
  137. 137.
    Wax MB, Tezel G, Kawase K, Kitazawa Y. Serum autoantibodies to heat shock proteins in glaucoma patients from Japan and the United States. Ophthalmology. 2001;108(2):296–302.PubMedCrossRefGoogle Scholar
  138. 138.
    Franklin TB, Krueger-Naug AM, et al. The role of heat shock proteins Hsp70 and Hsp27 in cellular protection of the central nervous system. Int J Hyperthermia. 2005;21(5):379–392.PubMedCrossRefGoogle Scholar
  139. 139.
    Whitlock NA, Lindsey K, Agarwal N, et al. Heat shock protein 27 delays Ca2+-induced cell death in a caspase-dependent and -independent manner in rat retinal ganglion cells. Invest Ophthalmol Vis Sci. 2005;46(3):1085–1091.PubMedCrossRefGoogle Scholar
  140. 140.
    Schmeer CW, Gamez A, Tausch S, et al. Statins modulate heat shock protein expression and enhance retinal ganglion cell survival after transient retinal ischemia/reperfusion in vivo. Invest Ophthalmol Vis Sci. 2008;49(11):4971–4981.PubMedCrossRefGoogle Scholar
  141. 141.
    Kretz A, Schmeer C, Tausch S, Isenmann S. Simvastatin promotes heat shock protein 27 expression and Akt activation in the rat retina and protects axotomized retinal ganglion cells in vivo. Neurobiol Dis. 2006;21(2):421–430.PubMedCrossRefGoogle Scholar
  142. 142.
    De Castro DK, Punjabi OS, Bostrom AG, et al. Effect of statin drugs and aspirin on progression in open-angle glaucoma suspects using confocal scanning laser ophthalmoscopy. Clin Experiment Ophthalmol. 2007;35(6):506–513.PubMedCrossRefGoogle Scholar
  143. 143.
    McGwin G Jr, McNeal S, Owsley C, et al. Statins and other cholesterol-lowering medications and the presence of glaucoma. Arch Ophthalmol. 2004;122(6):822–826.PubMedCrossRefGoogle Scholar

Bibliography

  1. 1.
    Deokule S, Weinreb RN. Relationships among systemic blood pressure, intraocular pressure, and open-angle glaucoma. Can J Ophthalmol. 2008;43(3):302-307.PubMedGoogle Scholar
  2. 2.
    Tielsch JM, Katz J, Sommer A, Quigley HA, Javitt JC. Hypertension, perfusion pressure, and primary open-angle glaucoma. A population-based assessment. Arch Ophthalmol. 1995;113(2):216-221.PubMedGoogle Scholar
  3. 3.
    Leske MC, Heijl A, Hyman L, Bengtsson B, Dong L, Yang Z. Predictors of long-term progression in the early manifest glaucoma trial. Ophthalmology. 2007;114(11):1965-1972.PubMedCrossRefGoogle Scholar
  4. 4.
    Miglior S, Torri V, Zeyen T, Pfeiffer N, Vaz JC, Adamsons I. Intercurrent factors associated with the development of open-angle glaucoma in the European glaucoma prevention study. Am J Ophthalmol. 2007;144(2):266-275.PubMedCrossRefGoogle Scholar
  5. 5.
    Pache M, Flammer J. A sick eye in a sick body? Systemic findings in patients with primary open-angle glaucoma. Surv Ophthalmol. 2006;51(3):179-212.PubMedCrossRefGoogle Scholar
  6. 6.
    Hayreh SS, Zimmerman MB, Podhajsky P, Alward WL. Nocturnal arterial hypotension and its role in optic nerve head and ocular ischemic disorders. Am J Ophthalmol. 1994;117(5):603-624.PubMedGoogle Scholar
  7. 7.
    Nicolela MT. Clinical clues of vascular dysregulation and its association with glaucoma. Can J Ophthalmol. 2008;43(3):337-341.PubMedGoogle Scholar
  8. 8.
    Flammer J, Mozaffarieh M. Autoregulation, a balancing act between supply and demand. Can J Ophthalmol. 2008;43(3):317-321.PubMedGoogle Scholar
  9. 9.
    Langman MJ, Lancashire RJ, Cheng KK, Stewart PM. Systemic hypertension and glaucoma: mechanisms in common and co-occurrence. Br J Ophthalmol. 2005;89(8):960-963.PubMedCrossRefGoogle Scholar
  10. 10.
    Topouzis F, Coleman AL, Harris A, et al. Association of blood pressure status with the optic disk structure in non-glaucoma subjects: the Thessaloniki eye study. Am J Ophthalmol. 2006;142(1):60-67.PubMedCrossRefGoogle Scholar
  11. 11.
    Hulsman CA, Vingerling JR, Hofman A, Witteman JC, de Jong PT. Blood pressure, arterial stiffness, and open-angle glaucoma: the Rotterdam study. Arch Ophthalmol. 2007;125(6):805-812.PubMedCrossRefGoogle Scholar
  12. 12.
    Punjabi OS, Stamper RL, Bostrom AG, Lin SC. Does treated systemic hypertension affect progression of optic nerve damage in glaucoma suspects? Curr Eye Res. 2007;32(2):153-160.PubMedCrossRefGoogle Scholar
  13. 13.
    Leske MC, Wu SY, Nemesure B, Hennis A. Incident open-angle glaucoma and blood pressure. Arch Ophthalmol. 2002;120(7):954-959.PubMedGoogle Scholar
  14. 14.
    Muskens RP, de Voogd S, Wolfs RC, et al. Systemic antihyper-tensive medication and incident open-angle glaucoma. Ophthalmology. 2007;114(12):2221-2226.PubMedCrossRefGoogle Scholar
  15. 15.
    Dielemans I, Vingerling JR, Algra D, Hofman A, Grobbee DE, de Jong PT. Primary open-angle glaucoma, intraocular pressure, and systemic blood pressure in the general elderly population. The Rotterdam Study. Ophthalmology. 1995;102(1):54-60.Google Scholar

Bibliography

  1. 1.
    Gordon MO, Beiser JA, Brandt, JD, et al. The ocular hypertension treatment study: baseline factors that predict the onset of primary open angle glaucoma. Arch Ophthalmol. 2002;120:714-720.PubMedCrossRefGoogle Scholar
  2. 2.
    The AGIS Investigators. The Advanced Glaucoma Intervention Study (AGIS):7. The relationship between control of intraocular pressure and visual field deterioration. Am J Ophthalmol. 2000;130:429-440.CrossRefGoogle Scholar
  3. 3.
    Leske MC, Connell AM, Wu SY, et al. Risk factors for open angle glaucoma. The Barbados Eye Study. Arch Ophthalmol. 1995;113:918-924.PubMedGoogle Scholar
  4. 4.
    Stewart WC. The effect of lifestyle on the relative risk to develop open-angle glaucoma. Curr Opin Ophthalmol. 1995;6:3-9.PubMedGoogle Scholar
  5. 5.
    Eisenberg DM, Davis RB, Ettner SL, et al. Trends in alternative medicine use in the United States, 1990-1997: results of a follow up national survey. JAMA. 1998;280:1569-1575.PubMedCrossRefGoogle Scholar
  6. 6.
    Morris CA, Avorn J. Internet marketing of herbal products. JAMA. 2003;290:1505-1509.PubMedCrossRefGoogle Scholar
  7. 7.
    Hampton T. More scrutiny for dietary supplements? JAMA. 2005;293:27-28.PubMedCrossRefGoogle Scholar
  8. 8.
    West AL, Oren GA, Moroi SE. Evidence for the use of nutritional supplements and herbal medicines in common eye diseases. Am J Ophthalmol. 2006;141:157-166.PubMedCrossRefGoogle Scholar
  9. 9.
    Kang JH, Pasquale LR, Willett W, et al. Antioxidant intake and primary open-angle glaucoma: a prospective study. Am J Epidemiol. 2003;158:337-346.PubMedCrossRefGoogle Scholar
  10. 10.
    Rhee DJ, Spaeth GL, Myer JS, et al. Prevalence of the use of complementary and alternative medicine for glaucoma. Ophthalmology. 2002;109:438-443.PubMedCrossRefGoogle Scholar
  11. 11.
    Rhee DJ, Katz LJ, Spaeth GL, et al. Complementary and alternative medicine for glaucoma. Surv Ophthalmol. 2001;46:43-55.PubMedCrossRefGoogle Scholar
  12. 12.
    West AL, Fetters MD, Hemmila MR, et al. Herb and vitamin supplementation use among a general ophthalmology practice population. Am J Ophthalmol. 2005;139:522-529.PubMedCrossRefGoogle Scholar
  13. 13.
    Chung HS, Harris A, Kristinsson JK, et al. Ginkgo biloba extract increases ocular blood flow velocity. J Ocul Pharmacol Ther. 1999;15:233-240.PubMedCrossRefGoogle Scholar
  14. 14.
    Shiose Y. The aging effect on intraocular pressure in an apparently normal population. Arch Ophthalmol. 1984;102:883-887.PubMedGoogle Scholar
  15. 15.
    Shiose Y, Kawase Y. A new approach to stratified normal intraocular pressure in a general population. Am J Ophthalmol. 1986;101:714-721.PubMedGoogle Scholar
  16. 16.
    Kawai SI, Vora S, Das S, et al. Modeling of risk factors for the degeneration of retinal ganglion cells following ischemia/reperfusion in rats: effects of age, caloric restriction, diabetes, pigmentation, and glaucoma. FASEB J. Express article 10.1096/fj.-0666fje (online March 2001).Google Scholar
  17. 17.
    Masoro EJ. Caloric restriction and aging: an update. Exp Gerontol. 2000;35:299-305.PubMedCrossRefGoogle Scholar
  18. 18.
    Nicolas AS, Lanzmann-Petithory D, Villas B. Caloric restriction and aging. J Nutr Health Aging. 1999;3:77-83.PubMedGoogle Scholar
  19. 19.
    Guyton AC. Sports physiology. In: Guyton AC, ed. Guyton Textbook of Medical Physiology. 8th edn. Philadelphia: W.B. Saunders Company: Philadelphia; 1991.Google Scholar
  20. 20.
    Lempert P, Cooper KH, Culver JF, et al. The effect of exercise on intraocular pressure. Am J Ophthalmol. 1967;63:1673-1676.PubMedGoogle Scholar
  21. 21.
    Stewart RH, LeBlanc R, Becker B. Effects of exercise on aqueous dynamics. Am J Ophthalmol. 1970;69:245-248.PubMedGoogle Scholar
  22. 22.
    Leighton DA, Phillips CI. Effect of moderate exercise on ocular tension. Br J Ophthalmol. 1970;54:599-605.PubMedCrossRefGoogle Scholar
  23. 23.
    Passo MS, Goldberg L, Elliot DL, et al. Exercise conditioning and intraocular pressure. Am J Ophthalmol. 1987;103:754-757.PubMedGoogle Scholar
  24. 24.
    Passo MS, Elliot DL, Goldberg L. Long-term effects of exercise conditioning on intraocular pressure in glaucoma suspects. J Glaucoma. 1992;1:39-41.PubMedCrossRefGoogle Scholar
  25. 25.
    Passo MS, Goldberg L, Elliot DL, et al. Exercise training reduces intraocular pressure among subjects suspected of having glaucoma. Arch Ophthalmol. 1991;109:1096-1110.PubMedGoogle Scholar
  26. 26.
    Qureshi IA. Effects of exercise on intraocular pressure in physically fit subjects. Clin Exp Pharm Phys. 1996;23:648-652.CrossRefGoogle Scholar
  27. 27.
    Sargent TG, Blair SN, Magun JC, et al. Physical fitness and intraocular pressure. Am J Optom Physiol Opt. 1981;58:460-466.PubMedGoogle Scholar
  28. 28.
    Kielar RA, Teraslinna P, Rowe DG, et al. Standardized aerobic and anaerobic exercise: differential effects on intraocular tension, blood pH, and lactate. Invest Ophthalmol. 1975;14:132-145.Google Scholar
  29. 29.
    Ashkenazi I, Melamed S, Blumenthal M. The effect of continuous strenuous exercise on intraocular pressure. Invest Ophthalmol Vis Sci. 1992;33:2872-2877.Google Scholar
  30. 30.
    Oggel K, Sommer G, Neuhann T, et al. Veränderungen des augeninnendruckes bei intratherakaler druckerhöhung in abhägigkeit von der körperposition und der achsenlänge des augapfels. Graefes Arch Clin Exp Ophthalmol. 1982;218:51-54.PubMedCrossRefGoogle Scholar
  31. 31.
    Weinreb RN, Cook J, Friberg TR. The effect of inverted body position on intraocular pressure. Am J Ophthalmol. 1984;98:784-787.PubMedGoogle Scholar
  32. 32.
    Carlson KH, McLaren JW, Topper JE, et al. Effect of body body position on intraocular pressure and aqueous flow. Invest Ophthalmol Vis Sci. 1987;28:1346-1352.PubMedGoogle Scholar
  33. 33.
    Mehra KS, Roy PN, Khare BB. Tobacco smoking and glaucoma. Ann Ophthalmol. 1976;8:462-464.PubMedGoogle Scholar
  34. 34.
    Shepard RJ, Ponsford E, Basu PF, et al. Effects of cigarette smoking on intraocular pressure and vision. Br J Ophthalmol. 1978;62:682-687.CrossRefGoogle Scholar
  35. 35.
    Steward WC, Crinkley CMC, Murrell HP. Cigarette smoking in normal subjects, ocular hypertensive, and chronic open angle glaucoma patients. Am J Ophthalmol. 1994;117:267-268.Google Scholar
  36. 36.
    Klein BE, Klein R, Ritter LL. Relationship of drinking alcohol and smoking to prevalence of open-angle glaucoma: The Beaver Dam Eye Study. Ophthalmology. 1993;100:1609-1613.PubMedGoogle Scholar
  37. 37.
    Pecson JD, Grant WM. Glaucoma, alcohol, and intraocular pressure. Arch Ophthalmol. 1965;73:495-501.Google Scholar
  38. 38.
    Massey LK. Caffeine and the elderly. Drugs Aging. 1998;13:43-50.PubMedCrossRefGoogle Scholar
  39. 39.
    Ritchie JM, Central nervous system stimulants [continued]: the xanthines. In: Goodman L, Gilman A, eds. The Pharmacological Basis of Therapeutics. 5th ed. New York: MacMillan Publishing Company, Inc.; 1975:367-378.Google Scholar
  40. 40.
    Bunker ML, McWiliams M. Caffeine content of common beverages. J Am Diet Assoc. 1979;74:28-32.PubMedGoogle Scholar
  41. 41.
    Whitsett TL, Manien CV, Christensen HD. Cardiovascular effects of coffee and caffeine. Am J Cardiol. 1984;53:918-922.PubMedCrossRefGoogle Scholar
  42. 42.
    Casiglia E, Bongiovi S, Paleari CD, et al. Haemodynamic effects of coffee and caffeine in normal volunteers: a placebo-controlled clinical study. J Intern Med. 1191;229:501-504.Google Scholar
  43. 43.
    Peczon JD, Grant WM. Sedatives, stimulants, and intraocular pressure in glaucoma. Arch Ophthalmol. 1964;72:178-188.PubMedGoogle Scholar
  44. 44.
    Higginbotham EJ, Kilimanjaro HA, Wilenski JT, et al. The effect of caffeine on intraocular pressure in glaucoma patients. Ophthalmol. 1989;96:624-626.Google Scholar
  45. 45.
    Okimi PH, Sportsman S, Pickard MR, et al. Effects of caffeinated coffee on intraocular pressure. Appl Nurs Res. 1991;4:72-76.PubMedCrossRefGoogle Scholar
  46. 46.
    Ajayi OB, Ukwade MT. Caffeine and intraocular pressure in a Nigerian population. J Glaucoma. 2001;10:25-31.PubMedCrossRefGoogle Scholar
  47. 47.
    Avisar R, Avisar E, Weinberger D. Effect of coffee consumption on intraocular pressure. Ann Pharmacother. 2002;36:992-995.PubMedCrossRefGoogle Scholar
  48. 48.
    Chandrasekaran S, Rochtchina E, Mitchell P. Effects of caffeine on intraocular pressure. J Glaucoma. 2005;14:504-507.PubMedCrossRefGoogle Scholar
  49. 49.
    Ricklefs G. [Studies on the ways of life of glaucoma patients]. Doc Ophthalmol. 1968;25:43-99 [in German].PubMedCrossRefGoogle Scholar
  50. 50.
    Ricklefs G, Pohls EU. [Effect of caffeine containing tablets and Coca Cola on intraocular pressure of patients without glaucoma and patients with regulated glaucoma]. Klin Monatsbl Augenheklkd. 1969;154:545-551 [in German].Google Scholar
  51. 51.
    Adams BA, Brubaker RF. Caffeine has no clinically significant effect on aqueous humor flow in the normal human eye. Ophthalmology. 1990;97:1031-1041.Google Scholar
  52. 52.
    Hepler RS, Frank IR. Marijuana smoking and intraocular pressure. JAMA. 1971;271:1392.CrossRefGoogle Scholar
  53. 53.
    Merritt JC, Crawford WJ, Alexander PC, et al. Effect of marihuana on intraocular and blood pressure in glaucoma. Ophthalmology. 1980;87:222-228.PubMedGoogle Scholar
  54. 54.
    Green K. Marihuana and the eye: a review. J Toxicol Cutan Ocul Toxicol. 1982;1:3-32.CrossRefGoogle Scholar
  55. 55.
    Green K. Marijuana effects on intraocular pressure. In: Drance SM, Neufeld AH, eds. Glaucoma: Applied Pharmacology in Medical Treatment. Orlando, FL: Grune and Stratton, Inc.; 1984: 507-526.Google Scholar
  56. 56.
    Jarvinen T, Pate DW, Laine K. Cannabinoids in the treatment of glaucoma. Pharmacol Ther. 2002;95:203-220.PubMedCrossRefGoogle Scholar
  57. 57.
    Tiedeman JS, Shields MD, Weber PA, et al. Effect of synthetic cannabinoids on elevated intraocular pressure. Ophthalmology. 1981;88:270-277.PubMedGoogle Scholar
  58. 58.
    Green K, Pederson JE. Effect of D¢ 1-tetrahydrocannabinol aqueous dynamics and ciliary body permeability in the rabbit. Exp Eye Res. 1973;15:499-507.PubMedCrossRefGoogle Scholar
  59. 59.
    Shields MB. Textbook of Glaucoma. 3rd ed. Baltimore, MD: Williams and Wilkins; 1992:515-516.Google Scholar
  60. 60.
    Flom MC, Adams AJ, Jones RT. Marijuana smoking and reduced pressure in human eyes: drug action or epiphenomenon? Invest Ophthalmol. 1975;14:52-55.PubMedGoogle Scholar
  61. 61.
    Green K, McDonald TF. Ocular toxicity of marijuana: an update. J Toxicol Cutan Ocul Toxicol. 1987;6:309-334.CrossRefGoogle Scholar
  62. 62.
    Agurell S, Dewey WL, Willette RE, eds. The Cannibinoids: Chemical, Pharmacological and Therapeutic Aspects. Orlando, FL: Academic Press Inc.; 1984.Google Scholar
  63. 63.
    Graham IDP. Cannibis and Health. Orlando, FL: Academic Press, Inc. 1976.Google Scholar
  64. 64.
    Dewey WL. Cannibinoid pharmacology. Pharmacol Rev. 1986;38:151-178.PubMedGoogle Scholar
  65. 65.
    Rosenkrantz H, Fleishman RW. Effects of cannibis on lungs. In: Nahas GG, Palon WDM, eds. Marihuana: Biological Effects. Elmsford, NY: Dergamon Press, Inc.; 1979:279-299.Google Scholar
  66. 66.
    Murray JB. Marijuana effects on human cognitive functions, psychomotor functions, and personality. J Gen Psychol. 1986;113:23-55.PubMedCrossRefGoogle Scholar
  67. 67.
    Leon-Carrion J. Mental performance in long-term heavy cannabis: a preliminary report. Psychol Rep. 1990;67:947-952.PubMedCrossRefGoogle Scholar
  68. 68.
    Solowij N. Cognitive impairments recover following cessation of cannibis use? Life Sci. 1995;5:2119-2126.CrossRefGoogle Scholar
  69. 69.
    Fletcher JM, Page JB, Francis DJ, et al. Cognitive correlates of long-term cannibis use in Costa Rican men. Arch Gen Psychiatry. 1996;53:1051-1057.PubMedGoogle Scholar
  70. 70.
    Pope HG, Yurgelun-Todd D. The residual cognitive effects of heavy marijuana use in college students. JAMA. 1996;275:521-527.PubMedCrossRefGoogle Scholar
  71. 71.
    Buckingham T, Young R. The rise and fall of intraocular pressure: the influence of physiological factors. Ophthal Physiol. 1986;6:95-99.CrossRefGoogle Scholar
  72. 72.
    Shily BG. Psychophysiological stress, elevated intraocular pressure, and acute closed angle glaucoma. Am J Optom Physiol Opt. 1987;64:866-870.PubMedGoogle Scholar
  73. 73.
    Sauerborn G, Schmitz M, Franzen U, et al. Stress and intraocular pressure in myopes. Psychol Health. 1992;6:61-68.CrossRefGoogle Scholar
  74. 74.
    Kaluza G, Strempel I, Mauer I. Stress reactivity of intraocular pressure after relaxation training in open-angle glaucoma patients. J Behav Med. 1996;19:587-598.PubMedCrossRefGoogle Scholar
  75. 75.
    Leung JP, Yap MKH. The relationship between stress and intraocular pressure of the eye. Psychologia. 1999;42:51-58.Google Scholar
  76. 76.
    Yamamoto K, Irie M, Sakamoto Y, et al. The relationship between IMPS-measured stress score and biomedical parameters regarding health status among public school workers. J Physiol Anthropol. 2007;26:149-158.PubMedCrossRefGoogle Scholar
  77. 77.
    Yamamoto K, Sakamoto Y, Masahiro I, et al. The relationship between IMPS-measured stress score and intraocular pressure among public school workers. J Physiol Anthropol. 2008;27:43-50.PubMedCrossRefGoogle Scholar
  78. 78.
    Weitzman ED, Henkind P, Leitman M, et al. Correlative 24-hour relationships between intraocular pressure and plasma cortisol in normal subjects and patients with glaucoma. Br J Ophthalmol. 1975;59:566-572.PubMedCrossRefGoogle Scholar

Bibliography

  1. 1.
    Schmeer C, Kretz A, Isenmann S. Statin-mediated protective effects in the central nervous system: general mechanisms and putative role of stress proteins. Restor Neurol Neurosci. 2006;24(2):79-95.PubMedGoogle Scholar
  2. 2.
    Guymer RH, Chiu AW, Lim L, Baird PN. HMG CoA reductase inhibitors (statins): do they have a role in age-related macular degeneration? Surv Ophthalmol. 2005;50(2):194-206.PubMedCrossRefGoogle Scholar
  3. 3.
    Gordon B, Chang S, Kavanagh M, et al. The effects of lipid lowering on diabetic retinopathy. Am J Ophthalmol. 1991;112(4):385-391.PubMedGoogle Scholar
  4. 4.
    Klein BE, Klein R, Lee KE, Grady LM. Statin use and incident nuclear cataract. JAMA. 2006;295(23):2752-2758.PubMedCrossRefGoogle Scholar
  5. 5.
    McGwin G Jr, McNeal S, Owsley C, Girkin C, Epstein D, Lee PP. Statins and other cholesterol-lowering medications and the presence of glaucoma. Arch Ophthalmol. 2004;122(6):822-826.PubMedCrossRefGoogle Scholar
  6. 6.
    De Castro DK, Punjabi OS, Bostrom AG, et al Effect of statin drugs and aspirin on progression in open-angle glaucoma suspects using confocal scanning laser ophthalmoscopy. Clin Experiment Ophthalmol. 2007;35(6):506-513.PubMedCrossRefGoogle Scholar
  7. 7.
    Song J, Deng PF, Stinnett SS, Epstein DL, Rao PV. Effects of cholesterol-lowering statins on the aqueous humor outflow pathway. Invest Ophthalmol Vis Sci. 2005;46(7):2424-2432.PubMedCrossRefGoogle Scholar
  8. 8.
    Schmeer C, Kretz A, Isenmann S. Therapeutic potential of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors for the treatment of retinal and eye diseases. CNS Neurol Disord Drug Targets. 2007;6(4):282-287.PubMedCrossRefGoogle Scholar
  9. 9.
    Miyahara S, Kiryu J, Yamashiro K, et al. Simvastatin inhibits leukocyte accumulation and vascular permeability in the retinas of rats with streptozotocin-induced diabetes. Am J Pathol. 2004;164(5):1697-1706.PubMedGoogle Scholar
  10. 10.
    Honjo M, Tanihara H, Nishijima K, et al. Statin inhibits leukocyte-endothelial interaction and prevents neuronal death induced by ischemia-reperfusion injury in the rat retina. Arch Ophthalmol. 2002;120(12):1707-1713.PubMedGoogle Scholar
  11. 11.
    Nagaoka T, Takahashi A, Sato E, et al. Effect of systemic administration of simvastatin on retinal circulation. Arch Ophthalmol. 2006;124(5):665-670.PubMedCrossRefGoogle Scholar
  12. 12.
    Swiercz JM, Kuner R, Behrens J, Offermanns S. Plexin-B1 directly interacts with PDZ-RhoGEF/LARG to regulate RhoA and growth cone morphology. Neuron. 2002;35(1):51-63.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Paul Lama
    • 1
    • 2
  1. 1.Columbia UniversityNew YorkUSA
  2. 2.Glaucoma Division, Department of OphthalmologySaint Barnabas Health Care SystemHackensackUSA

Personalised recommendations