Systemic Side Effects of Glaucoma Medications

  • Paul Lama


Direct ophthalmic administration is the usual method by which ophthalmologists medically manage most ocular diseases. Topical instillation of pharmacologic agents in the management of ocular disease offers the advantages of rapidly achieving high intraocular drug levels, particularly in the aqueous humor, using significantly smaller doses than that used to treat systemic disease. The management of chronic disease states such as glaucoma, in particular, involves long-term or lifelong administration of often multiple topical agents. Thus, chronic exposure to agents that are systemically active are of great importance from the perspective of safety. This is especially true in glaucoma since the prevalence of disease increases with age as does the prevalence of significant comorbidities that not only can influence the disease process, but can also pose limitations on various treatments due to potential systemic interactions leading to undesired side effects and toxicity. Although the total dosage relative to a comparable systemic agent is far lower, a topical agent is directly absorbed into the systemic circulation via the nasopharyngeal mucosa following passage through the nasolacrimal duct.


Chronic Obstructive Pulmonary Disease Patient Carbonic Anhydrase Inhibitor Nasolacrimal Duct Prostaglandin Analog Central Nervous System Depression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    van der Valk R, Webers CA, Schouten JS, et al. Intraocular pressure-lowering effects of all commonly used glaucoma drugs: a meta-analysis of randomized clinical trials. Ophthalmology. 2005;112(7):1177–1185.PubMedCrossRefGoogle Scholar
  2. 2.
    Lipworth BJ. Clinical pharmacology of beta 3-adrenoceptors. Br J Clin Pharmacol. 1996;42(3):291–300.PubMedCrossRefGoogle Scholar
  3. 3.
    Weyer C, Gautier JF, Danforth E Jr. Development of beta 3-adrenoceptor agonists for the treatment of obesity and diabetes-an update. Diabetes Metab. 1999;25(1):11–21.PubMedGoogle Scholar
  4. 4.
    Kobayashi I, Ishigami T, Umemura S. Insulin resistance and beta 3-adrenergic receptor function. Nippon Rinsho. 2000;58(2):333–337.PubMedGoogle Scholar
  5. 5.
    Vuori ML, Kaila T. Plasma kinetics and anatgonist activity of topical ocular timolol in elderly patients. Arch Clin Exp Ophthalmol. 1995;233:131–134.CrossRefGoogle Scholar
  6. 6.
    Physicians’ Desk Reference. 53rd ed. Montvale, NJ: Medical Economics Co.; 1999:1741.Google Scholar
  7. 7.
    Bobik A, Jennings GL, Asley P, et al. Timolol pharmacokinetics and effects on heart rate and blood pressure after acute and chronic administration. Eur J Clin Pharmacol. 1979;16:243–249.CrossRefGoogle Scholar
  8. 8.
    Wilson TW, Fior WB, Johnson GE, et al. Timolol and propranolol: bioavailability, plasma concentration, and beta blockade. Clin Pharmacol Ther. 1982;32:676–685.PubMedCrossRefGoogle Scholar
  9. 9.
    Shedden A, Laurence J, Tipping R, et al. Efficacy and tolerability of timolol maleate gel-forming solution versus timolol ophthalmic solution in adults with open angle glaucoma and ocular hypertension: a 6-month, double-masked, multicenter study. Clin Ther. 2001;23:440–450.PubMedCrossRefGoogle Scholar
  10. 10.
    The MIAMI Trial Research Group. Metoprolol in acute myocardial infarction (MIAMI). A randomised placebo-controlled international trial. The MIAMI Trial Research Group. Eur Heart J. 1985;6:199–226.Google Scholar
  11. 11.
    First International Study on Infarct Survival Collaborative Group. Randomised trial of intravenous atenolol among 16, 027 cases of suspected acute myocardial infarction: ISIS-1. First international study of infarct survival collaborative group. Lancet. 1986;2:823–827.Google Scholar
  12. 12.
    Teerlink JR, Massie BM. Beta-adrenergic blocker mortality trials in congestive heart failure. Am J Cardiol. 1999;84:94R-102R.PubMedCrossRefGoogle Scholar
  13. 13.
    CIBIS II Investigators and Commitees. The cardiac insufficiency bisoprolol study II (CIBIS II). Lancet. 1999;353:9–13.CrossRefGoogle Scholar
  14. 14.
    MERIT-HF Study Group. Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL randomised intervention trial in congestive heart failure (MERIT-HF). Lancet. 1999;353:2001–2007.CrossRefGoogle Scholar
  15. 15.
    Packer M, Bristow MR, Cohn JN, et al. The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. U.S. Carvedilol Heart Failure Study Group. N Engl J Med. 1996;334:1349–1355.PubMedCrossRefGoogle Scholar
  16. 16.
    Packer M, Coats AJ, Fowler MB, et al. Effect of carvedilol on survival in severe chronic heart failure. N Engl J Med. 2001;344:1651–1658.PubMedCrossRefGoogle Scholar
  17. 17.
    Beta-Blocker Evaluation of Survival Trial Investigators. A trial of the beta-blocker bucindolol in patients with advanced chronic heart failure. N Engl J Med. 2001;344:1659–1667.CrossRefGoogle Scholar
  18. 18.
    Klein L, O’Connor CM, Gattis WA, et al. Pharmacologic therapy for patients with chronic heart failure and reduced systolic function: review of trials and practical considerations. Am J Cardiol. 2003;91(9A):18F-40F.PubMedCrossRefGoogle Scholar
  19. 19.
    Hjalmarson A. Prevention of sudden cardiac death with beta blockers. Clin Cardiol. 1999;22(suppl 5):V11-V15.PubMedGoogle Scholar
  20. 20.
    Domanski MJ, Krause-Steinrauf H, Massie BM, et al. A comparative analysis of the results from 4 trials of beta-blocker therapy for heart failure: BEST, CIBIS-II, MERIT-HF, and COPERNICUS. J Card Fail. 2003;9(5):354–363.PubMedCrossRefGoogle Scholar
  21. 21.
    McBride BF, White CM. Critical differences among beta-adrenoreceptor antagonists in myocardial failure: debating the MERIT of COMET. J Clin Pharmacol. 2005;45(1):6–24.PubMedCrossRefGoogle Scholar
  22. 22.
    Finley AC, Elliott BM, Robison JJ, Brothers TE. Prophylactic beta-blocker use to prevent perioperative morbidity and mortality. J S C Med Assoc. 2004;100(8):223–226.PubMedGoogle Scholar
  23. 23.
    Kertai MD, Boersma E, Westerhout CM, et al. A combination of statins and beta-blockers is independently associated with a reduction in the incidence of perioperative mortality and nonfatal myocardial infarction in patients undergoing abdominal aortic aneurysm surgery. Eur J Vasc Endovasc Surg. 2004;28(4):343–352.PubMedCrossRefGoogle Scholar
  24. 24.
    Lindenauer PK, Fitzgerald J, Hoople N, Benjamin EM. The potential preventability of postoperative myocardial infarction: underuse of perioperative beta-adrenergic blockade. Arch Intern Med. 2004;164(7):762–766.PubMedCrossRefGoogle Scholar
  25. 25.
    Wiesbauer F, Schlager O, Domanovits H, et al. Perioperative beta-blockers for preventing surgery-related mortality and morbidity: a systematic review and meta-analysis. Anesth Analg. 2007;104(1):27–41.PubMedCrossRefGoogle Scholar
  26. 26.
    Glaab T, Weiss T. Use of beta blockers in cardiovascular diseases and bronchial asthma/COPD. Internist (Berl). 2004;45(2):221–227.CrossRefGoogle Scholar
  27. 27.
    Chen J, Radford MJ, Wang Y, Marciniak TA, Krumholz HM. Effectiveness of beta-blocker therapy after acute myocardial infarction in elderly patients with chronic obstructive pulmonary disease or asthma. J Am Coll Cardiol. 2001;37(7):1950–1956.PubMedCrossRefGoogle Scholar
  28. 28.
    Gutierrez ME, Labovitz AJ. Underutilization of beta-adrenoceptor antagonists post-myocardial infarction. Am J Cardiovasc Drugs. 2005;5(1):23–29.PubMedCrossRefGoogle Scholar
  29. 29.
    Fu M. Beta-blocker therapy in heart failure in the elderly. Int J Cardiol. 2008;125(2):149–153.PubMedCrossRefGoogle Scholar
  30. 30.
    Coats AJ. Beta-adrenoceptor antagonists in elderly patients with chronic heart failure: therapeutic potential of third-generation agents. Drugs Aging. 2006;23(2):93–99.PubMedCrossRefGoogle Scholar
  31. 31.
    Dobre D, van Veldhuisen DJ, Mordenti G, et al. SENIORS Investigators. Tolerability and dose-related effects of nebivolol in elderly patients with heart failure: data from the Study of the Effects of Nebivolol Intervention on Outcomes and Rehospitalisation in Seniors with Heart Failure (SENIORS) trial. Am Heart J. 2007;154(1):109–115.PubMedCrossRefGoogle Scholar
  32. 32.
    Lévy S, Ricard P. Using the right drug: a treatment algorithm for regular supraventricular tachycardias. Eur Heart J. 1997;18(suppl C):C27-C32.PubMedGoogle Scholar
  33. 33.
    Akhtar M, Jazayeri MR, Sra J, et al. Atrioventricular nodal reentry. Clinical, electrophysiological, and therapeutic considerations. Circulation. 1993;88(1):282-295. Review.PubMedGoogle Scholar
  34. 34.
    Chiang CE. Congenital and acquired long QT syndrome. Current concepts and management.Cardiol Rev. 2004;12(4):222–234.PubMedCrossRefGoogle Scholar
  35. 35.
    Dorian P. Antiarrhythmic action of beta-blockers: potential mechanisms. J Cardiovasc Pharmacol Ther. 2005;10(suppl 1):S15-S22.PubMedCrossRefGoogle Scholar
  36. 36.
    Salpeter SR, Ormiston TM, Salpeter EE, Poole PJ, Cates CJ. Cardioselective beta-blockers for chronic obstructive pulmonary disease: a meta-analysis. Respir Med. 2003;97(10):1094–1101.PubMedCrossRefGoogle Scholar
  37. 37.
    Salpeter SR, Ormiston TM, Salpeter EE. Cardioselective beta-blockers in patients with reactive airway disease: a meta-analysis. Ann Intern Med. 2002;137(9):715–725.PubMedGoogle Scholar
  38. 38.
    Waal HJ. Propranolol-induced depression. Br Med J. 1967;2(5543):50.PubMedCrossRefGoogle Scholar
  39. 39.
    Fitzgerald JD. Propranolol-induced depression. Br Med J. 1967;2(5548):372–373.PubMedCrossRefGoogle Scholar
  40. 40.
    Nolan BT. Acute suicidal depression associated with use of timolol. JAMA. 1982;247(11):1567.PubMedCrossRefGoogle Scholar
  41. 41.
    Avorn J, Everitt DE, Weiss S. Increased antidepressant use in patients prescribed beta-blockers. JAMA. 1986;255(3):357–360.PubMedCrossRefGoogle Scholar
  42. 42.
    Parker WA. Propranolol-induced depression and psychosis. Clin Pharm. 1985;4(2):214–218.PubMedGoogle Scholar
  43. 43.
    Griffin SJ, Friedman MJ. Depressive symptoms in propranolol users. J Clin Psychiatry. 1986;47(9):453–457.PubMedGoogle Scholar
  44. 44.
    Acosta Artiles F, Suárez Cabrera M, Acosta Artiles M, Acosta Artiles P. Beta blocker induced depression. A case report [Spanish]. Actas Esp Psiquiatr. 2006;34(5):352–354.PubMedGoogle Scholar
  45. 45.
    Steffensmeier JJ, Ernst ME, Kelly M, Hartz AJ. Do randomized controlled trials always trump case reports? A second look at propranolol and depression. Pharmacotherapy. 2006;26(2):162–167.PubMedCrossRefGoogle Scholar
  46. 46.
    Ried LD, McFarland BH, Johnson RE, Brody KK. Beta-blockers and depression: the more the murkier? Ann Pharmacother. 1998;32(6):699–708.PubMedCrossRefGoogle Scholar
  47. 47.
    Artigas F, Adell A, Celada P. Pindolol augmentation of antidepressant response. Curr Drug Targets. 2006;7(2):139–147.PubMedCrossRefGoogle Scholar
  48. 48.
    Gerstman BB, Jolson HM, Bauer M, et al. The incidence of depression in new users of beta-blockers and selected antihypertensives. J Clin Epidemiol. 1996;49(7):809–815.PubMedCrossRefGoogle Scholar
  49. 49.
    van Melle JP, Verbeek DE, van den Berg MP, et al. Beta-blockers and depression after myocardial infarction: a multicenter prospective study. J Am Coll Cardiol. 2006;48(11):2209–2214.PubMedCrossRefGoogle Scholar
  50. 50.
    Ko DT, Hebert PR, Coffey CS, et al. Beta-blocker therapy and symptoms of depression, fatigue, and sexual dysfunction. JAMA. 2002;288(3):351–357.PubMedCrossRefGoogle Scholar
  51. 51.
    Sorgi P, Ratey J, Knoedler D, et al. Depression during treatment with beta-blockers: results from a double-blind placebo-controlled study. J Neuropsychiatry Clin Neurosci. 1992;4(2):187–189.PubMedGoogle Scholar
  52. 52.
    Pérez-Stable EJ, Halliday R, Gardiner PS, et al. The effects of propranolol on cognitive function and quality of life: a randomized trial among patients with diastolic hypertension. Am J Med. 2000;108(5):359–365.PubMedCrossRefGoogle Scholar
  53. 53.
    Kaiserman I, Kaiserman N, Elhayany A, Vinker S. Topical beta-blockers are not associated with an increased risk of treatment for depression. Ophthalmology. 2006;113(7):1077–1080.PubMedCrossRefGoogle Scholar
  54. 54.
    Radack K, Deck C. Beta-adrenergic blocker therapy does not worsen intermittent claudication in subjects with peripheral arterial disease. A meta-analysis of randomized controlled trials. Arch Intern Med. 1991;151(9):1769–1776.PubMedCrossRefGoogle Scholar
  55. 55.
    Umited Kingdom Prospective Diabetes Study Group. Efficacy of atenolol and captopril in reducing risk of macrovascular and microvascular complications in type 2 diabetes. Br Med J. 1998;317:713–720.Google Scholar
  56. 56.
    Madu EC, Reddy RC, Madu AN, et al. Review: the effects of antihypertensive agents on serum lipids. Am J Med Sci. 1996;312:76–84.PubMedCrossRefGoogle Scholar
  57. 57.
    Lakshman R, Reda DJ, Materson BJ, et al. Diuretics and beta-blockers do not have adverse effects at 1 year on plasma lipid and lipoprotein profiles in men with hypertension. Arch Intern Med. 1999;159:551–558.PubMedCrossRefGoogle Scholar
  58. 58.
    Coleman AL, Diehl DLC, Jampel HD, et al. Topical timolol decreases plama high-density lipoprotein cholesterol level. Arch Ophthalmol. 1990;108:1260–1263.PubMedGoogle Scholar
  59. 59.
    Stewart WC, Dubiner HB, Mundorf TK, et al. Effects of carteolol and timolol on plasma lipid profiles in older women with ocular hypertension or primary open-angle glaucoma. Am J Ophthalmol. 1999;127:142–147.PubMedCrossRefGoogle Scholar
  60. 60.
    Freedman SF, Freedman NF, Shields MB, et al. Effects of ocular carteolol and timolol on plasma high-density lipoprotein cholesterol level. Am J Ophthalmol. 1993;116:600–611.PubMedGoogle Scholar
  61. 61.
    Ko DT, Hebert PR, Coffey CS, Sedrakyan A, Curtis JP, Krumholz HM. Beta-blocker therapy and symptoms of depression, fatigue, and sexual dysfunction. JAMA. 2002;288(3):351–357.PubMedCrossRefGoogle Scholar
  62. 62.
    Gordon NF, Duncan JJ. Effect of beta-blockers on exercise physiology: implications for exercise training. Med Sci Sports Exerc. 1991;23:668–676.PubMedGoogle Scholar
  63. 63.
    Vanhees L, Defoor JG, Schepers D, et al. Effect of bisoprolol and atenolol on endurance exercise capacity in healthy men. J Hypertens. 2000;18:35–43.PubMedCrossRefGoogle Scholar
  64. 64.
    Dickstein K, Aarsland T. Comparison of the effects of aqueous and gellan ophthalmic timolol on peak exercise performance in middle-aged men. Am J Ophthalmol. 1996;121(4):367–371.PubMedGoogle Scholar
  65. 65.
    Friedenwald JS. The formation of intraocular fluid. Am J Ophthalmol. 1949;32:9.PubMedGoogle Scholar
  66. 66.
    Becker B. Chemical composition of human aqueous humor; effects of acetazoleamide. AMA Arch Ophthalmol. 1957;57(6):793–800.PubMedGoogle Scholar
  67. 67.
    Maren TH. The relation between enzyme inhibition and physiologic response in the carbonic anhydrase system. J Pharmacol Exp Ther. 1963;139:140.PubMedGoogle Scholar
  68. 68.
    Krupin T, Sly WS, Whyte MP, Dodgson SJ. Failure of acetazolamide to decrease intraocular pressure in patients with carbonic anhydrase II deficiency. Am J Ophthalmol. 1985;99(4):396–399.PubMedGoogle Scholar
  69. 69.
    Friedland BR, Mallonee J, Anderson DR. Short-term dose response characteristics of acetazolamide in man. Arch Ophthalmol. 1977;95(10):1809–1812.PubMedGoogle Scholar
  70. 70.
    Berson FG, Epstein DL, Grant WM, Hutchinson BT, Dobbs PC. Acetazolamide dosage forms in the treatment of glaucoma. Arch Ophthalmol. 1980;98(6):1051–1054.PubMedGoogle Scholar
  71. 71.
    Stone RA, Zimmerman TJ, Shin DH, Becker B, Kass MA. Low-dose methazolamide and intraocular pressure. Am J Ophthalmol. 1977;83(5):674–679.PubMedGoogle Scholar
  72. 72.
    Ellison DH, Okusa MD, Schrier RW. Mechanisms of diuretic action. In: Schrier RW, ed. Diseases of the Kidney and Urinary Tract. 7th ed. Philadelphia, PA: Lippincott, Williams, & Wilkins; 2001:2426–2429.Google Scholar
  73. 73.
    Kass MA, Kolker AE, Gordon M, et al. Acetazolamide and urolithiasis. Ophthalmology. 1981;88(3):261–265.PubMedGoogle Scholar
  74. 74.
    Rossert J, Rondeau E, Jondeau G, et al. Tamm-Horsfall protein accumulation in glomeruli during acetazolamide-induced acute renal failure. Am J Nephrol. 1989;9(1):56–57.PubMedCrossRefGoogle Scholar
  75. 75.
    Elinav E, Ackerman Z, Gottehrer NP, Heyman SN. Recurrent life-threatening acidosis induced by acetazolamide in a patient with diabetic type IV renal tubular acidosis. Ann Emerg Med. 2002;40(2):259–260.PubMedCrossRefGoogle Scholar
  76. 76.
    De Marchi S, Cecchin E. Severe metabolic acidosis and disturbances of calcium metabolism induced by acetazolamide in patients on haemodialysis. Clin Sci (Lond). 1990;78(3):295–302.Google Scholar
  77. 77.
    Physician’s Desk Reference for Ophthalmology. 28th ed. Montvale, NJ: Medical Economics Co.; 1999.Google Scholar
  78. 78.
    Takeda K, Nakamoto M, Yasunaga C, et al. Acute hemorrhagic gastritis associated with acetazolamide intoxication in a patient with chronic renal failure. Clin Nephrol. 1997;48(4):266–268.PubMedGoogle Scholar
  79. 79.
    Boccardo P, Remuzzi G, Galbusera M. Platelet dysfunction in renal failure. Semin Thromb Hemost. 2004;30(5):579–589.PubMedCrossRefGoogle Scholar
  80. 80.
    Fraunfelder FT, Meyer SM, Bagby GC Jr, Dreis MW. Hematologic reactions to carbonic anhydrase inhibitors. Am J Ophthalmol. 1985;100(1):79–81.PubMedGoogle Scholar
  81. 81.
    Schwenk MH, St Peter WL, Meese MG, Singhal PC. Acetazolamide toxicity and pharmacokinetics in patients receiving hemodialysis. Pharmacotherapy. 1995;15(4):522–527.PubMedGoogle Scholar
  82. 82.
    Roy LF, Dufresne LR, Legault L, Long H, Morin C. Acetazolamide in hemodialysis patients: a rational use after ocular surgery. Am J Kidney Dis. 1992;20(6):650–652.PubMedGoogle Scholar
  83. 83.
    Vaziri ND, Saiki J, Barton CH, Rajudin M, Ness RL. Hemodialyzability of acetazolamide. South Med J. 1980;73(4):422–423.PubMedGoogle Scholar
  84. 84.
    Aronheim JC. Special problems in the Geriatric patient. In: Bennet JC, Plum F, eds. Cecil Textbook of Medicine. Philadelphia: WB Saunders Co.; 1996:21–22.Google Scholar
  85. 85.
    Maren TH, Conroy CW, Wynns GC, Levy NS. Ocular absorption, blood levels, and excretion of dorzolamide, a topically active carbonic anhydrase inhibitor. J Ocul Pharmacol Ther. 1997;13(1):23–30.PubMedCrossRefGoogle Scholar
  86. 86.
    Robin AL. The role of alpha-agonists in glaucoma therapy. Curr Opin Ophthalmol. 1997;8(2):42–49.PubMedCrossRefGoogle Scholar
  87. 87.
    Robin AL, Coleman AL. Apraclonidine hydrochloride: an evaluation of plasma concentrations, and a comparison of its intraocular pressure lowering and cardiovascular effects to timolol maleate. Trans Am Ophthalmol Soc. 1990;88:149–159.PubMedGoogle Scholar
  88. 88.
    Walters G, Taylor RH. Severe systemic toxicity caused by brimonidine drops in an infant with presumed juvenile xanthogranuloma. Eye. 1999;13(Pt 6):797–798.PubMedGoogle Scholar
  89. 89.
    Bowman RJ, Cope J, Nischal KK. Ocular and systemic side effects of brimonidine 0.2% eye drops (Alphagan) in children. Eye. 2004;18(1):24–26.PubMedCrossRefGoogle Scholar
  90. 90.
    Wei CP, Anderson JA, Leopold I. Ocular absorption and metabolism of topically applied epinephrine and adipivalyl ester of epinephrine. Invest Ophthalmol Vis Sci. 1978;17(4):315–321.PubMedGoogle Scholar
  91. 91.
    Kerr CR, Hass I, Drance SM, Walters MB, Schulzer M. Cardiovascular effects of epinephrine and dipivalyl epinephrine applied topically to the eye in patients with glaucoma. Br J Ophthalmol. 1982;66(2):109–114.PubMedCrossRefGoogle Scholar
  92. 92.
    Kohn AN, Moss AP, Hargett NA, Ritch R, Smith H Jr, Podos SM. Clinical comparison of dipivalyl epinephrine and epinephrine in the treatment of glaucoma. Am J Ophthalmol. 1979;87(2):196–201.PubMedGoogle Scholar
  93. 93.
    Blondeau P, Cote M. Cardiovascular effects of epinephrine and dipivefrin in patients using timolol: a single-dose study. Can J Ophthalmol. 1984;19(1):29–32.PubMedGoogle Scholar
  94. 94.
    Taylor P. Cholinergic agonists. In: Gilman AG, Goodman LS, Gilman A, eds; Mayer SE, Melmon KL, Assoc. eds. Goodman and Gilman’s Pharmacological Basis of Therapeutics. New York: Macmillan Publishing Co., Inc.; 1980:90–119.Google Scholar
  95. 95.
    Mayer SE. Neurohumoral transmission and the autonomic nervous system. In: Gilman AG, Goodman LS, Gilman A, eds; Mayer SE, Melmon KL, Assoc. eds. Goodman and Gilman’s Pharmacological Basis of Therapeutics. 6th ed. New York: Macmillan Publishing Co., Inc.; 1980:56–91.Google Scholar
  96. 96.
    Hendrickson RG, Morocco AP, Greenberg MI. Pilocarpine toxicity and the treatment of xerostomia. J Emerg Med. 2004;26(4):429–432.PubMedCrossRefGoogle Scholar
  97. 97.
    Fryer AD, Okanlami OA. Neuronal M2 muscarinic receptor function in guinea-pig lungs is inhibited by indomethacin. Am Rev Respir Dis. 1993;147(3):559–564.PubMedGoogle Scholar
  98. 98.
    Fryer AD, Wills-Karp M. Dysfunction of M2-muscarinic receptors in pulmonary parasympathetic nerves after antigen challenge. J Appl Physiol. 1991;71(6):2255–2261.PubMedGoogle Scholar
  99. 99.
    Golkar L, Yarkony KA, Fryer AD. Inhibition of neuronal M(2) muscarinic receptor function in the lungs by extracellular nitric oxide. Br J Pharmacol. 2000;131(2):312–318.PubMedCrossRefGoogle Scholar
  100. 100.
    Kushnick H, Liebmann JM, Ritch R. Systemic pilocarpine toxicity from Ocusert leakage. Arch Ophthalmol. 1996;114(11):1432.PubMedGoogle Scholar
  101. 101.
    Wahl JW, Tyner GS. Echothiophate iodide. The effect of 0.0625 per cent solution on blood cholinesterase. Am J Ophthalmol. 1965;60(3):419–425.PubMedGoogle Scholar
  102. 102.
    De Roetth A, Jr WA, Dettbarn W, Rosenberg P, Wilensky JG. Blood cholinesterase activity of glaucoma patients treated with phospholine iodide. Am J Ophthalmol. 1966;62(5):834–838.PubMedGoogle Scholar
  103. 103.
    Hiscox PE, McCulloch C. Cardiac arrest occurring in a patient on echothiophate iodide therapy. Am J Ophthalmol. 1965;60(3):425–427.PubMedGoogle Scholar
  104. 104.
    Manoguerra A, Whitney C, Clark RF, Anderson B, Turchen S. Cholinergic toxicity resulting from ocular instillation of echothiophate iodide eye drops. J Toxicol Clin Toxicol. 1995;33(5):463–465.PubMedCrossRefGoogle Scholar
  105. 105.
    Donati F, Bevan DR. Controlled succinylcholine infusion in a patient receiving echothiophate eyedrops. Can Anaesth Soc J. 1981;28(5):488–490.PubMedCrossRefGoogle Scholar
  106. 106.
    Packman PM, Meyer DA, Verdun RM. Hazards of succinylcholine administration during electrotherapy. Arch Gen Psychiatry. 1978;35(9):1137–1141.PubMedGoogle Scholar
  107. 107.
    Cavallaro RJ, Krumperman LW, Kugler F. Effect of echothiophate therapy on the metabolism of succinylcholine in man. Anesth Analg. 1968;47(5):570–574.PubMedCrossRefGoogle Scholar
  108. 108.
    Gesztes T. Prolonged apnoea after suxamethonium injection associated with eye drops containing an anticholinesterase agent. Br J Anaesth. 1966;38(5):408–409.PubMedCrossRefGoogle Scholar
  109. 109.
    Mezer E, Krivoy N, Scharf J, Miller B. Echothiophate iodide induced transient hyper- and hypothyroidism. J Glaucoma. 1996;5(3):191–192.PubMedCrossRefGoogle Scholar
  110. 110.
    Parrish RK, Palmberg P, Sheu WP, XLT Study Group. A comparison of latanoprost, bimatoprost, and travoprost in patients with elevated intraocular pressure: a 12-week, randomized, masked-evaluator multicenter study. Am J Ophthalmol. 2003;135(5):688–703.PubMedCrossRefGoogle Scholar
  111. 111.
    Weinreb RN, Lindsey JD, Marchenko G, Marchenko N, Angert M, Strongin A. Prostaglandin FP agonists alter metalloproteinase gene expression in sclera. Invest Ophthalmol Vis Sci. 2004;45(12):4368–4377.PubMedCrossRefGoogle Scholar
  112. 112.
    Hedner J, Everts B, Moller CS. Latanoprost and respiratory function in asthmatic patients: randomized, double-masked, placebo-controlled crossover evaluation. Arch Ophthalmol. 1999;117(10):1305–1309.PubMedGoogle Scholar
  113. 113.
    Hedner J, Svedmyr N, Lunde H, Mandahl A. The lack of respiratory effects of the ocular hypotensive drug latanoprost in patients with moderate-steroid treated asthma. Surv Ophthalmol. 1997;41(suppl 2):S111-S115.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Paul Lama
    • 1
    • 2
  1. 1.Columbia UniversityNew YorkUSA
  2. 2.Glaucoma Division, Department of OphthalmologySaint Barnabas Health Care SystemHackensackUSA

Personalised recommendations