Alternative and Non-traditional Treatments of Glaucoma

  • Joseph R. Zelefsky
  • Robert Ritch


Glaucoma often exists and progresses at normal or even low intraocular pressure (IOP) levels, on the basis of IOP-independent risk factors. Pressure-independent risk factors have only begun to be explored. Decreased perfusion of the optic nerve head may result from orthostatic hypotension, nocturnal hypotension, atrial fibrillation, migraine, Raynaud’s phenomenon, abnormally low intracranial pressure, autoimmune phenomena, and sleep apnea. Hemorheologic abnormalities, such as increased erythrocyte agglutinability, decreased erythrocyte deformability, increased serum viscosity, or increased platelet aggregability, may also play a role. Recent evidence has implicated oxidative stress as playing a significant role in retinal ganglion cell (RGC) damage in glaucoma. Gamma-aminobutyric acid (GABAA) receptors are expressed on RGCs and may play a role in apoptosis induced by oxidative stress.


Retinal Pigment Epithelial Cell Grape Seed Extract Ginkgo Biloba Extract Macular Pigment Central Retinal Artery Occlusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors have no financial interest in products mentioned. From the Einhorn Clinical Research Center, New York Eye and Ear Infirmary, New York, NY, USA and The New York Medical College, Valhalla, NY, USA. Supported in part by the Derald H. Ruttenberg Foundation and the New York Glaucoma Research Institute, New York City


  1. 1.
    Liu Q, Ju WK, Crowston JG, et al. Oxidative stress is an early event in hydrostatic pressure induced retinal ganglion cell damage. Invest Ophthalmol Vis Sci. 2007;48:4580–4589.PubMedCrossRefGoogle Scholar
  2. 2.
    Okumichi H, Mizukami M, Kiuchi Y, et al. GABA(A) receptors are associated with retinal ganglion cell death induced by oxidative stress. Exp Eye Res. 2008;86:727-733. Epub ahead of print.PubMedCrossRefGoogle Scholar
  3. 3.
    Goralska M, Dackor R, Holley B, et al. Alpha lipoic acid changes iron uptake and storage in lens epithelial cells. Exp Eye Res. 2003;76:241–248.PubMedCrossRefGoogle Scholar
  4. 4.
    Kojima M, Sun L, Hata I, et al. Efficacy of alpha-lipoic acid against diabetic cataract in rat. Jpn J Ophthalmol. 2007;51:10–13.PubMedCrossRefGoogle Scholar
  5. 5.
    Maitra I, Serbinova E, Tritschler HJ, et al. Stereospecific effects of R-lipoic acid on buthionine sulfoximine-induced cataract formation in newborn rats. Biochem Biophys Res Commun. 1996;221:422–429.PubMedCrossRefGoogle Scholar
  6. 6.
    Borenshtein D, Ofri R, Werman M, et al. Cataract development in diabetic sand rats treated with alpha-lipoic acid and its gamma-linolenic acid conjugate. Diabetes Metab Res Rev. 2001;17:44–50.PubMedCrossRefGoogle Scholar
  7. 7.
    Zhang WJ, Bird KE, McMillen TS, et al. Dietary alpha-lipoic acid supplementation inhibits atherosclerotic lesion development in apolipoprotein E-deficient and apolipoprotein E/low-density lipoprotein receptor-deficient mice. Circulation. 2008;117:421–428.PubMedCrossRefGoogle Scholar
  8. 8.
    Abiko T, Abiko A, Clermont AC, et al. Characterization of retinal leukostasis and hemodynamics in insulin resistance and diabetes: role of oxidants and protein kinase-C activation. Diabetes. 2003;52:829–837.PubMedCrossRefGoogle Scholar
  9. 9.
    Berkowitz BA, Roberts R, Stemmler A, et al. Impaired apparent ion demand in experimental diabetic retinopathy: correction by lipoic acid. Invest Ophthalmol Vis Sci. 2007;48:4753–4758.PubMedCrossRefGoogle Scholar
  10. 10.
    Roberts R, Luan H, Berkowitz BA. Alpha-lipoic acid corrects late-phase supernormal retinal oxygenation response in experimental diabetic retinopathy. Invest Ophthalmol Vis Sci. 2006;47:4077–4082.PubMedCrossRefGoogle Scholar
  11. 11.
    Jia L, Liu Z, Sun L, et al. Acrolein, a toxicant in cigarette smoke, causes oxidative damage and mitochondrial dysfunction in RPE cells: protection by (R)-alpha-lipoic acid. Invest Ophthalmol Vis Sci. 2007;48:339–348.PubMedCrossRefGoogle Scholar
  12. 12.
    Rotstein NP, Politi LE, German OL, et al. Protective effect of docosahexaenoic acid on oxidative stress-induced apoptosis of retina photoreceptors. Invest Ophthalmol Vis Sci. 2003;44:2252–2259.PubMedCrossRefGoogle Scholar
  13. 13.
    Bazan NG. Cell survival matters: docosahexaenoic acid signaling, neuroprotection and photoreceptors. Trends Neurosci. 2006;29:263–271.PubMedCrossRefGoogle Scholar
  14. 14.
    Bazan NG. Neuroprotectin D1 (NPD1): a DHA-derived mediator that protects brain and retina against cell injury-induced oxidative stress. Brain Pathol. 2005;15:159–166.PubMedCrossRefGoogle Scholar
  15. 15.
    Miyauchi O, Mizota A, Adachi-Usami E, et al. Protective effect of docosahexaenoic acid against retinal ischemic injury: an electroretinographic study. Ophthalmic Res. 2001;33:191–195.PubMedCrossRefGoogle Scholar
  16. 16.
    Mizota A, Sato E, Taniai M, et al. Protective effects of dietary docosahexaenoic acid against kainate-induced retinal degeneration in rats. Invest Ophthalmol Vis Sci. 2001;42:216–221.PubMedGoogle Scholar
  17. 17.
    Murayama K, Yoneya S, Miyauchi O, et al. Fish oil (polyunsaturated fatty acid) prevents ischemic-induced injury in the mammalian retina. Exp Eye Res. 2002;74:671–676.PubMedCrossRefGoogle Scholar
  18. 18.
    Chucair AJ, Rotstein MP, Sangiovanni JP, et al. Lutein and zeaxanthin protect photoreceptors from apoptosis induced by oxidative stress: relation with docosahexaenoic acid. Invest Ophthalmol Vis Sci. 2007;48:5168–5177.PubMedCrossRefGoogle Scholar
  19. 19.
    Smith W, Mitchell P, Leeder SR. Dietary fat and fish intake and age-related maculopathy. Arch Ophthalmol. 2000;118:401–404.PubMedGoogle Scholar
  20. 20.
    Cho E, Hung S, Willett WC, et al. Prospective study of dietary fat and the risk of age-related macular degeneration. Am J Clin Nutr. 2001;73:209–218.PubMedGoogle Scholar
  21. 21.
    Seddon JM, Rosner B, Sperduto RD, et al. Dietary fat and risk for advanced age-related macular degeneration. Arch Ophthalmol. 2001;119:1191–1199.PubMedGoogle Scholar
  22. 22.
    Cellini M, Caramazza N, Mangiafico P, et al. Fatty acid use in glaucomatous optic neuropathy treatment. Acta Ophthalmol Scand. 1998;227(suppl):41–42.Google Scholar
  23. 23.
    Mancino M, Ohia E, Kulkarni P. A comparative study between cod liver oil and liquid lard intake on IOP in rabbits. Prostaglandins Leukot Essent Fatty Acids. 1992;45:239–243.PubMedCrossRefGoogle Scholar
  24. 24.
    Nguyen CTO, Bui BV, Sinclair AJ, et al. Dietary omega 3 fatty acids decrease intraocular pressure with age by increasing aqueous outflow facility. Invest Opthalmol Vis Sci. 2007;48:756–762.CrossRefGoogle Scholar
  25. 25.
    Moriguchi K, Yuri T, Yoshizawa K, et al. Dietary docosahexaenoic acid protects against N-methyl-N-nitrosourea-induced retinal degeneration in rats. Exp Eye Res. 2003;77:167–173.PubMedCrossRefGoogle Scholar
  26. 26.
    Reme CE, Malnoe A, Jung HH, et al. Effect of dietary fish oil on acute light-induced photoreceptor damage in the rat retina. Invest Ophthalmol Vis Sci. 1994;35:78–90.PubMedGoogle Scholar
  27. 27.
    Aonuma H, Koide K, Masuda K, et al. Retinal light damage: protective effect of alpha-tocopherol. Jpn J Ophthalmol. 1997;41:160–167.PubMedCrossRefGoogle Scholar
  28. 28.
    Tanito M, Yoshida Y, Kaidzu S, et al. Acceleration of age-related changes in the retina in alpha-tocopherol transfer protein null mice fed a vitamin E-deficient diet. Invest Ophthalmol Vis Sci. 2007;4:396–404.CrossRefGoogle Scholar
  29. 29.
    Van der Worp HB, Bar PR, Kappelle LJ, et al. Dietary vitamin E levels affect outcome of permanent focal cerebral ischemia in rats. Stroke. 1998;29:1002–1005.PubMedGoogle Scholar
  30. 30.
    Takahashi H, Kosaka N, Nakagawa S. Alpha-Tocopherol protects PC12 cells from hyperoxia-induced apoptosis. J Neurosci Res. 1998;52:184–191.PubMedCrossRefGoogle Scholar
  31. 31.
    Tagami M, Yamagata K, Ikeda K, et al. Vitamin E prevents apoptosis in cortical neurons during hypoxia and oxygen reperfusion. Lab Invest. 1998;78:1415–1429.PubMedGoogle Scholar
  32. 32.
    Haas AL, Boscoboinik D, Mojon DS, et al. Vitamin E inhibits proliferation of human Tenon’s capsule fibroblasts in vitro. Ophthalmic Res. 1996;28:171–175.PubMedCrossRefGoogle Scholar
  33. 33.
    Pinilla I, Larrosa JM, Polo V, et al. Alpha-tocopherol derivatives in an experimental model of filtering surgery. Ophthalmic Res. 1999;31:440–445.PubMedCrossRefGoogle Scholar
  34. 34.
    Kuzniarz M, Mitchell P, Cumming RG, et al. Use of vitamin supplements and cataract: the Blue Mountains Eye Study. Am J Ophthalmol. 2001;132:19–26.PubMedCrossRefGoogle Scholar
  35. 35.
    Kojima M, Shui YB, Murano H, et al. Inhibition of steroid-induced cataract in rat eyes by administration of vitamin-E ophthalmic solution. Ophthalmic Res. 1996;28(suppl 2):64–67.PubMedCrossRefGoogle Scholar
  36. 36.
    Rouhiainen P, Rouhiainen H, Salonen JT. Association between low plasma vitamin E concentration and progression of early cortical lens opacities. Am J Epidemiol. 1996;144:496–500.PubMedGoogle Scholar
  37. 37.
    Nagata M, Kojima M, Sasaki K. Effect of vitamin E eye drops on naphthalene-induced cataract in rats. J Ocul Pharmacol Ther. 1999;15:345–350.PubMedCrossRefGoogle Scholar
  38. 38.
    Sen CK, Khanna S, Roy S. Tocotrienols: vitamin E beyond tocopherols. Life Sci. 2006;78:2088–2098.PubMedCrossRefGoogle Scholar
  39. 39.
    Khanna S, Roy S, Slivka A, et al. Neuroprotective properties of the natural vitamin E alpha-tocotrienol. Stroke. 2005;36:2258–2264.PubMedCrossRefGoogle Scholar
  40. 40.
    Osakada F, Hashino A, Kume T, et al. Alpha-tocotrienol provides the most potent neuroprotection among vitamin E analogs on cultured striatal neurons. Neuropharmacology. 2004;47:904–915.PubMedCrossRefGoogle Scholar
  41. 41.
    Das S, Powell SR, Wang P, et al. Cardioprotection with palm tocotrienol: antioxidant activity of tocotrienol is linked with its ability to stabilize proteasomes. Am J Physiol Heart Circ Physiol. 2005;289:H361-H367.PubMedCrossRefGoogle Scholar
  42. 42.
    Sun W, Wang Q, Chen B, et al. Gamma-tocotrienol-induced apoptosis in human gastric cancer SGC-7901 cells is associated with a suppression in mitogen-activated protein kinase signalling. Br J Nutr. 2008;99:1247-1254. Epub ahead of print.PubMedCrossRefGoogle Scholar
  43. 43.
    Samant GV, Sylvester PW. Gamma-tocotrienol inhibits ErbB3-dependent PI3K/Akt mitogenic signalling in neoplastic mammary epithelial cells. Cell Prolif. 2006;39:563–574.PubMedCrossRefGoogle Scholar
  44. 44.
    Pessotto P, Valeri P, Arrigoni-Martelli E. The presence of L-carnitine in ocular tissues of the rabbit. J Ocul Pharmacol. 1994;10:643–651.PubMedCrossRefGoogle Scholar
  45. 45.
    Llansola M, Erceg S, Hernandez-Viadel M, et al. Prevention of ammonia and glutamate neurotoxicity by carnitine: molecular mechanisms. Metab Brain Dis. 2002;17:389–397.PubMedCrossRefGoogle Scholar
  46. 46.
    Kocer I, Kulacoglu D, Altuntas I, et al. Protection of the retina from ischemia-reperfusion injury by L-carnitine in guinea pigs. Eur J Ophthalmol. 2003;13:80–85.PubMedGoogle Scholar
  47. 47.
    Beal MF. Bioenergetic approaches for neuroprotection in Parkinson’s disease. Ann Neurol. 2003;53(suppl 3):S39-S47.PubMedCrossRefGoogle Scholar
  48. 48.
    Geraldine P, Sneha B, Elanchezhian R, et al. Prevention of selenite-induced cataracttogenesis by acetyl-L-carnitine: an experimental study. Exp Eye Res. 2006;83:1340–1349.PubMedCrossRefGoogle Scholar
  49. 49.
    Shamsi FA, Chaudhry IA, Bouton ME, et al. L-carnitine protects human retinal pigment epithelial cells from oxidative damage. Curr Eye Res. 2007;32:575–584.PubMedCrossRefGoogle Scholar
  50. 50.
    Grieb P, Rejdak R. Pharmacodynamics of citicoline relevant to the treatment of glaucoma. J Neurosci Res. 2002;67:143–148.PubMedCrossRefGoogle Scholar
  51. 51.
    Secades JJ, Frontera G. CDP-choline: pharmacological and clinical review. Methods Find Exp Clin Pharmacol. 1995;17(suppl B):1–54.PubMedGoogle Scholar
  52. 52.
    Oshitari T, Fujimoto N, Adachi-Usami E. Citicoline has a protective effect on damaged retinal ganglion cells in mouse culture retina. Neuroreport. 2002;13:2109–2111.PubMedCrossRefGoogle Scholar
  53. 53.
    Rejdak R, Toczolowski J, Kurkowski J, et al. Oral citicoline treatment improves visual pathway function in glaucoma. Med Sci Monit. 2003;9:PI24-PI28.PubMedGoogle Scholar
  54. 54.
    Parisi V. Electrophysiological assessment of glaucomatous visual dysfunction during treatment with cytidine-5′-diphosphocholine (citicoline): a study of 8 years of follow-up. Doc Ophthalmol. 2005;110:91–102.PubMedCrossRefGoogle Scholar
  55. 55.
    Parisi V, Manni G, Colacino G, et al. Cytidine-5′-diphosphocholine (citicoline) improves retinal and cortical responses in patients with glaucoma. Ophthalmology. 1999;106:1126–1134.PubMedCrossRefGoogle Scholar
  56. 56.
    Park CH, Kim YS, Lee HK, et al. Citicoline reduces upregulated clusterin following kainic acid injection in the rat retina. Curr Eye Res. 2007;32:1055–1063.PubMedCrossRefGoogle Scholar
  57. 57.
    Han YS, Chung IY, Park JM, et al. Neuroprotective effect of citicoline on retinal cell damage induced by kainic acid in rats. Korean J Ophthalmol. 2005;19:219–226.PubMedCrossRefGoogle Scholar
  58. 58.
    Schuettauf F, Rejdak R, Thaler S, et al. Citicoline and lithium rescue retinal ganglion cells following partial optic nerve crush in the rat. Exp Eye Res. 2006;83:1128–1134.PubMedCrossRefGoogle Scholar
  59. 59.
    Yucel N, Cayli SR, Ates O, et al. Evaluation of the neuroprotective effects of citicoline after experimental spinal cord injury: improved behavioral and neuroanatomical recovery. Neurochem Res. 2006;31:767–775.PubMedCrossRefGoogle Scholar
  60. 60.
    Fosslien E. Mitochondrial medicine - molecular pathology of defective oxidative phosphorylation. Ann Clin Lab Sci. 2001;31:25–67.PubMedGoogle Scholar
  61. 61.
    Sandhu JK, Pandey S, Ribecco-Lutkiewicz M, et al. Molecular mechanisms of glutamate neurotoxicity in mixed cultures of NT2-derived neurons and astrocytes: protective effects of coenzyme Q10. J Neurosci Res. 2003;72:691–703.PubMedCrossRefGoogle Scholar
  62. 62.
    Papucci L, Schiavone N, Witort E, et al. Coenzyme Q10 prevents apoptosis by inhibiting mitochondrial depolarization independently of its free radical-scavenging property. J Biol Chem. 2003;278:28220–28228.PubMedCrossRefGoogle Scholar
  63. 63.
    Nucci C, Tartaglione R, Cerulli A. Retinal damage caused by high intraocular pressure-induced transient ischemia is prevented by coenzyme Q10 in rat. Int Rev Neurobiol. 2007;82:397–406.PubMedCrossRefGoogle Scholar
  64. 64.
    Rosenfeldt FL, Haas SJ, Krum H, et al. Coenzyme Q10 in the treatment of hypertension: a meta-analysis of the clinical trials. J Hum Hypertens. 2007;21:297–306.PubMedGoogle Scholar
  65. 65.
    Shults CW, Oakes D, Kieburtz K, et al. Effects of coenzyme Q(10) in early Parkinson disease - evidence of slowing of the functional decline. Arch Neurol. 2002;59:1541–1552.PubMedCrossRefGoogle Scholar
  66. 66.
    Bayer AU, Keller ON, Ferrari F, et al. Association of glaucoma with neurodegenerative diseases with apoptotic cell death: Alzheimer’s disease and Parkinson’s disease. Am J Ophthalmol. 2002;133:135–137.PubMedCrossRefGoogle Scholar
  67. 67.
    Tilak JC, Banerjee M, Mohan H, et al. Antioxidant availability of turmeric in relation to its medicinal and culinary uses. Phytother Res. 2004;18:798–804.PubMedCrossRefGoogle Scholar
  68. 68.
    Weber WM, Hunsaker LA, Abcouwer SF, et al. Anti-oxidant activities of curcumin and related enones. Bioorg Med Chem. 2005;13:3811–3820.PubMedCrossRefGoogle Scholar
  69. 69.
    Goel A, Kunnumakkara AB, Aggarwal BB. Curcumin as “Curecumin”: from kitchen to clinic. Biochem Pharmacol. 2008;75:787–809.PubMedCrossRefGoogle Scholar
  70. 70.
    Swarnakar S, Ganguly K, Kundu P, et al. Curcumin regulates expression and activity of matrix metalloproteinases 9 and 2 during prevention and healing of indomethacin-induced gastric ulcer. J Biol Chem. 2005;280:9409–9415.PubMedCrossRefGoogle Scholar
  71. 71.
    Mohan R, Sivak J, Ashton P, et al. Curcuminoids inhibit the angiogenic response stimulated by fibroblast growth factor-2, including expression of matrix metalloproteinase gelatinase B. J Biol Chem. 2000;275:10405–10412.PubMedCrossRefGoogle Scholar
  72. 72.
    Hatcher H, Planalp R, Cho J, et al. Curcumin: from ancient medicine to current clinical trials. Cell Mol Life Sci. 2008;65:1631–1652.PubMedCrossRefGoogle Scholar
  73. 73.
    Al-Omar FA, Nagi MN, Abdulgadir MM, et al. Immediate and delayed treatments with curcumin prevents forebrain ischemia-induced neuronal damage and oxidative insult in the rat hippocampus. Neurochem Res. 2006;31:611–618.PubMedCrossRefGoogle Scholar
  74. 74.
    Wang Q, Sun AY, Simonyi A, et al. Neuroprotective mechanisms of curcumin against cerebral ischemia-induced neuronal apoptosis and behavioral deficits. J Neurosci Res. 2005;82:138–148.PubMedCrossRefGoogle Scholar
  75. 75.
    Zbarsky V, Datla KP, Parkar S, et al. Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson’s disease. Free Radic Res. 2005;39:1119–1125.PubMedCrossRefGoogle Scholar
  76. 76.
    Garcia-Alloza M, Borrelli LA, Rozkalne A, et al. Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model. J Neurochem. 2007;102:1095–1104.PubMedCrossRefGoogle Scholar
  77. 77.
    Reddy RC, Vatsala PG, Keshamouni VG, et al. Curcumin for malaria therapy. Biochem Biophys Res Commun. 2005;326:472–474.PubMedCrossRefGoogle Scholar
  78. 78.
    Panchatcharam M, Miriyala S, Gayathri VS, et al. Curcumin improves wound healing by modulating collagen and decreasing reactive oxygen species. Mol Cell Biochem. 2006;290:87–96.PubMedCrossRefGoogle Scholar
  79. 79.
    Morimoto T, Sunagawa Y, Kawamura T, et al. The dietary compound curcumin inhibits p300 histone acetyltransferase activity and prevents heart failure in rats. J Clin Invest. 2008;118:868–878.PubMedGoogle Scholar
  80. 80.
    Suryanarayana P, Saraswat M, Mrudula T, et al. Curcumin and turmeric delay streptozotocin-induced diabetic cataract in rats. Invest Ophthalmol Vis Sci. 2005;46:2092–2099.PubMedCrossRefGoogle Scholar
  81. 81.
    Raju TN, Kumar CS, Kanth VR, et al. Cumulative antioxidant defense against oxidative challenge in galactose-induced cataractogenesis in Wistar rats. Indian J Exp Biol. 2006;44:733–739.PubMedGoogle Scholar
  82. 82.
    Pandya U, Saini MK, Jin GF, et al. Dietary curcumin prevents ocular toxicity of naphthalene in rats. Toxicol Lett. 2000;115:195–204.PubMedCrossRefGoogle Scholar
  83. 83.
    Kumar PA, Suryanarayana P, Reddy PY, et al. Modulation of alpha-crystallin chaperone activity in diabetic rat lens by curcumin. Mol Vis. 2005;11:561–568.PubMedGoogle Scholar
  84. 84.
    Matteucci A, Frank C, Domenici MR, et al. Curcumin treatment protects rat retinal neurons against excitotoxicity: effect on N-methyl-d: -aspartate-induced intracellular Ca(2+) increase. Exp Brain Res. 2005;167:641–648.PubMedCrossRefGoogle Scholar
  85. 85.
    Mrudula T, Suryanaryana P, Srinivas PN, et al. Effect of curcumin on hyperglycemia-induced vascular endothelial growth factor expression in streptozotocin-induced diabetic rat retina. Biochem Biophys Res Commun. 2007;361:528–532.PubMedCrossRefGoogle Scholar
  86. 86.
    Lal B, Kapoor AK, Agrawal PK, et al. Role of curcumin in idiopathic inflammatory orbital pseudotumours. Phytother Res. 2000;14:443–447.PubMedCrossRefGoogle Scholar
  87. 87.
    Lal B, Kapoor AK, Asthana OP, et al. Efficacy of curcumin in the management of chronic anterior uveitis. Phytother Res. 1999;13:318–322.PubMedCrossRefGoogle Scholar
  88. 88.
    Wu YJ, Hong CY, Lin SJ, et al. Increase of vitamin E content in LDL and reduction of atherosclerosis in cholesterol-fed rabbits by a water-soluble antioxidant-rich fraction of Salvia miltiorrhiza. Arterioscler Thromb Vasc Biol. 1998;18:481–486.PubMedGoogle Scholar
  89. 89.
    Chen YH, Lin SJ, Ku HH, et al. Salvianolic acid B attenuates VCAM-1 and ICAM-1 expression in TNF-alpha-treated human aortic endothelial cells. J Cell Biochem. 2001;82:512–521.PubMedCrossRefGoogle Scholar
  90. 90.
    Lam BY, Lo AC, Sun X, et al. Neuroprotective effects of tanshinones in transient focal cerebral ischemia in mice. Phytomedicine. 2003;10:286–291.PubMedCrossRefGoogle Scholar
  91. 91.
    Min LQ, Dang LY, Ma WY. Clinical study on effect and therapeutical mechanism of composite Salvia injection on acute cerebral infarction. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2002;22:353–355.PubMedGoogle Scholar
  92. 92.
    Zhang WH, Wang JS, Zhou Y, et al. Gadolinium chloride and salvia miltiorrhiza compound ameliorate reperfusion injury in hepatocellular mitochondria. World J Gastroenterol. 2003;9:2040–2044.PubMedGoogle Scholar
  93. 93.
    Zhu MD, Cai FY. Evidence of compromised circulation in the pathogenesis of optic nerve damage in chronic glaucomatous rabbit. Chin Med J. 1993;106:922–927.PubMedGoogle Scholar
  94. 94.
    Wu ZZ, Jiang YQ, Yi SM, et al. Radix salviae miltiorrhizae in middle and late-stage glaucoma. Chin Med J. 1983;96:445–447.PubMedGoogle Scholar
  95. 95.
    Yue KK, Lee KW, Shan KK, et al. Danshen prevents the occurrence of oxidative stress in the eye and aorta of diabetic rats without affecting the hyperglycemic state. J Ethnopharmacol. 2006;106:136–141.PubMedCrossRefGoogle Scholar
  96. 96.
    Sun X, Chan LN, Gong X, et al. N-methyl-d-aspartate receptor antagonist activity in traditional Chinese stroke medicines. Neurosignals. 2003;12:31–38.PubMedCrossRefGoogle Scholar
  97. 97.
    Clarke R, Daily L, Robinson K, et al. Hypermocysteinemia: an independent risk factor for vascular disease. N Engl J Med. 1991;324:1149–1155.PubMedCrossRefGoogle Scholar
  98. 98.
    Stampfer MJ, Malinow MR, Willet WC, et al. A prospective study of plasma homocysteine and risk of myocardial infarction in US physicians. JAMA. 1992;268:877–881.PubMedCrossRefGoogle Scholar
  99. 99.
    Perry IJ, Refsum H, Morris RW, et al. Prospective study of serum total homocysteine concentration and risk of stroke in middle-aged British me. Lancet. 1995;346:1395–1398.PubMedCrossRefGoogle Scholar
  100. 100.
    Leblhuber F, Walli J, Artner-Dworzak E, et al. Hyperhomocysteinemia in dementia. J Neural Transm. 2000;107:1469–1474.PubMedCrossRefGoogle Scholar
  101. 101.
    Ho PI, Ashline D, Dhitavat S, et al. Folate deprivation induces neurodegeneration: roles of oxidative stress and increased homocysteine. Neurobiol Dis. 2003;14:32–42.PubMedCrossRefGoogle Scholar
  102. 102.
    Lobo A, Naso A, Arheart K, et al. Reduction of homocysteine levels in coronary artery disease by low-dose folic acid combined with vitamins B6 and B12. Am J Cardiol. 1999;83:821–825.PubMedCrossRefGoogle Scholar
  103. 103.
    Ritch R. Exfoliation syndrome: the most common identifiable cause of open-angle glaucoma. J Glaucoma. 1994;3:176–178.PubMedGoogle Scholar
  104. 104.
    Mitchell P, Wang JJ, Smith W. Association of pseudoexfoliation with increased vascular risk. Am J Ophthalmol. 1997;124:685–687.PubMedGoogle Scholar
  105. 105.
    Linnér E, Popovic V, Gottfries CG, et al. The exfoliation syndrome in cognitive impairment of cerebrovascular or Alzheimer’s type. Acta Ophthalmol Scand. 2001;79:283–285.PubMedCrossRefGoogle Scholar
  106. 106.
    Leibovitch I, Kurtz S, Shemesh G, et al. Hyperhomocystinemia in pseudoexfoliation glaucoma. J Glaucoma. 2003;12:36–39.PubMedCrossRefGoogle Scholar
  107. 107.
    Vessani RM, Liebmann JM, Jofe M, et al. Plasma homocysteine is elevated in patients with exfoliation syndrome. Am J Ophthalmol. 2003;136:41–46.PubMedCrossRefGoogle Scholar
  108. 108.
    Roedl JB, Bleich S, Reulbach U, et al. Vitamin deficiency and hyperhomocysteinemia in pseudoexfoliation glaucoma. J Neural Transm. 2007;114:571–575.PubMedCrossRefGoogle Scholar
  109. 109.
    Jünemann AG, von Ahsen B, Kornhuber H, et al. MTHFR C677T Polymorphism Is a genetic risk factor for primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2003;35(suppl):748–752.Google Scholar
  110. 110.
    De Feudis FV. Ginkgo biloba extract (EGb 761): pharmacological activities and clinical applications. Paris: Elsevier; 1991.Google Scholar
  111. 111.
    Ritch R. A potential role for Ginkgo biloba extract in the treatment of glaucoma. Med Hypotheses. 2000;54:221–235.PubMedCrossRefGoogle Scholar
  112. 112.
    Köse K, Dogan P. Lipoperoxidation induced by hydrogen peroxide in human erythrocyte membranes. 1. Protective effect of Ginkgo biloba extract (EGb 761). J Int Med Res. 1995;23:1–8.PubMedGoogle Scholar
  113. 113.
    Sastre J, Lloret A, Borras C, et al. GBE EGb 761 protects against mitochondrial aging in the brain and in the liver. Cell Mol Biol. 2002;48:685–692.PubMedGoogle Scholar
  114. 114.
    Pierre S, Jamme I, Droy-Lefaix MT, et al. Ginkgo biloba extract (EGb 761) protects NaK-ATPase activity during cerebral ischemia in mice. Neuroreport. 1999;10:47–51.PubMedCrossRefGoogle Scholar
  115. 115.
    Janssens D, Delaive E, Remacle J, et al. Protection by bilobalide of the ischaemia-induced alterations of the mitochondrial respiratory activity. Fundam Clin Pharmacol. 2000;14:193–201.PubMedCrossRefGoogle Scholar
  116. 116.
    Marcocci L, Maguire JJ, Droy-Lefaix MT, et al. The nitric oxide-scavenging properties of Ginkgo biloba extract (EGb 761). Biochem Biophys Res Commun. 1994;201:748–755.PubMedCrossRefGoogle Scholar
  117. 117.
    Kobuchi H, Droy-Lefaix MT, Christen Y, et al. Ginkgo biloba extract (EGb 761): inhibitory effect on nitric oxide production in the macrophage cell line RAW 264.7. Biochem Pharmacol. 1997;53:897–904.PubMedCrossRefGoogle Scholar
  118. 118.
    Ahlemeyer B, Krieglstein J. Pharmacological studies supporting the therapeutic use of Ginkgo biloba extract for Alzheimer’s disease. Pharmacopsychiatry. 2003;36(suppl 1):S8-S14.PubMedGoogle Scholar
  119. 119.
    Smith PF, Maclennan K, Darlington CL. The neuroprotective properties of the Ginkgo biloba leaf: a review of the possible relationship to platelet-activating factor (PAF). J Ethnopharmacol. 1996;50:131–139.PubMedCrossRefGoogle Scholar
  120. 120.
    Zhu L, Wu J, Liao H, et al. Antagonistic effects of extract from leaves of Ginkgo biloba on glutamate neurotoxicity. Acta Pharmacol Sin. 1997;18:344–347.Google Scholar
  121. 121.
    Oyama Y, Chikahisa L, Ueha T, et al. Ginkgo biloba extract protects brain neurons against oxidative stress induced by hydrogen peroxide. Brain Res. 1996;712:349–352.PubMedCrossRefGoogle Scholar
  122. 122.
    Ahlemeyer B, Mowes A, Krieglstein J. Inhibition of serum deprivation- and staurosporine-induced neuronal apoptosis by Ginkgo biloba extract and some of its constituents. Eur J Pharmacol. 1999;367:423–430.PubMedCrossRefGoogle Scholar
  123. 123.
    Zhou LJ, Zhu XZ. Reactive oxygen species-induced apoptosis in PC12 cells and protective effect of bilobalide. J Pharmacol Exp Ther. 2000;293:982–988.PubMedGoogle Scholar
  124. 124.
    Guidetti C, Paracchini S, Lucchini S, et al. Prevention of neuronal cell damage induced by oxidative stress in vitro: effect of different Ginkgo biloba extracts. J Pharmacy Pharmacol. 2001;53:387–392.CrossRefGoogle Scholar
  125. 125.
    Lu G, Wu Y, Mak YT, et al. Molecular evidence of the neuroprotective effect of Ginkgo biloba (EGb761) using bax/bcl-2 ratio after brain ischemia in senescence-accelerated mice, strain-prone 8. Brain Res. 2006;1090:23–28.PubMedCrossRefGoogle Scholar
  126. 126.
    Punkt K, Welt K, Schaffranietz L. Changes of enzyme activities in the rat myocardium caused by experimental hypoxia with and without ginkgo biloba extract EGb 761 pretreatment, A cytophotometrical study. Acta Histochem. 1995;97:67–79.PubMedGoogle Scholar
  127. 127.
    Haramaki N, Aggarwal S, Kawabata T, et al. Effects of natural antioxidant Ginkgo biloba extract (EGb 761). on myocardial ischemia-reperfusion injury. Free Radic Biol Med. 1994;16:789–794.PubMedCrossRefGoogle Scholar
  128. 128.
    Trumbeckaite S, Barenatoniene J, Majiene D, et al. Effect of Ginkgo biloba extract on the rat heart mitochondrial function. J Ethnopharmacol. 2007;111:512–516.PubMedCrossRefGoogle Scholar
  129. 129.
    Le Bars PL, Katz MM, Berman N, et al. A Placebo-controlled, double-blind, randomized trial of an extract of Ginkgo biloba for dementia. JAMA. 1997;278:1327–1332.PubMedCrossRefGoogle Scholar
  130. 130.
    Hofferberth B. The efficacy of EGb 761 in patients with senile dementia of the Alzheimer type. A double-blind, placebo-controlled study on different levels of investigation. Hum Psychopharmacol. 1994;9:215–222.CrossRefGoogle Scholar
  131. 131.
    Dartigues JF, Carcaillon L, Helmer C, et al. Vasodilators and nootropics as predictors of dementia and mortality in the PAQUID cohort. J Am Geriatr Soc. 2007;55:395–399.PubMedCrossRefGoogle Scholar
  132. 132.
    Droy-Lefaix MT, Szabo-Tosaki ME, Doly MN. Free radical scavenger properties of EGb 761 on functional disorders induced by experimental diabetic retinopathy. In: Cutler RG, Packe L, Bertram J, Mori A, eds. Oxidative stress and aging. Basel: Birkhäuser Verlag; 1996.Google Scholar
  133. 133.
    Szabo ME, Droy-Lefaix MT, Doly M, et al. Modification of ischemia/reperfusion-induced ion shifts (Na+, K+, Ca2+ and Mg2+) by free radical scavengers in the rat retina. Ophthalmic Res. 1993;25:1.PubMedCrossRefGoogle Scholar
  134. 134.
    Ranchon I, Gorrand JM, Cluzel J, et al. Functional protection of photoreceptors from light-induced damage by dimethylthiourea and Ginkgo biloba extract. Invest Ophthalmol Vis Sci. 1999;40:1191–1199.PubMedGoogle Scholar
  135. 135.
    Xie Z, Wu X, Gong Y, et al. Intraperitoneal injection of Ginkgo biloba extract enhances antioxidation ability of retina and protects photoreceptors after light-induced retinal damage in rats. Curr Eye Res. 2007;32:471–479.PubMedCrossRefGoogle Scholar
  136. 136.
    Meyniel G, Doly M, Millerin M, et al. Involvement of PAF (Platelet-Activating Factor) in chloroquine-induced retinopathy. C R Acad Sci III. 1992;314:61–65.PubMedGoogle Scholar
  137. 137.
    Droy-Lefaix MT, Szabo ME, Doly MN. Ischaemia and reperfusion-induced injury in the retina obtained form normotensive and spontaneously hypertensive rats: effects of free radical scavengers. Int J Tissue React. 1993;15:85–91.PubMedGoogle Scholar
  138. 138.
    Quaranta L, Bettelli S, Uva MG, et al. Effect of Ginkgo biloba extract on pre-existing visual field damage in normal tension glaucoma. Ophthalmology. 2003;110:359–364.PubMedCrossRefGoogle Scholar
  139. 139.
    Raabe A, Raabe M, Ihm P. Therapeutic follow-up using automatic perimetry in chronic cerebroretinal ischemia in elderly patients, prospective double-blind study with graduated dose Ginkgo biloba treatment. Klin Monatsbl Augenheilkd. 1991;199:432–438.PubMedCrossRefGoogle Scholar
  140. 140.
    Chung HS, Harris A, Kristinsson JK, et al. Ginkgo biloba extract increases ocular blood flow velocity. J Ocul Pharmacol Ther. 1999;15:233–240.PubMedCrossRefGoogle Scholar
  141. 141.
    Wimpissinger B, Berisha F, Garhoefer G, et al. Influence of Gingko biloba on ocular blood flow. Acta Ophthalmol Scand. 2007;85:445–449.PubMedCrossRefGoogle Scholar
  142. 142.
    Attele AS, Wu JA, Yuan CS. Ginseng pharmacology: multiple constituents and multiple actions. Biochem Pharmacol. 1999;58:1685–1693.PubMedCrossRefGoogle Scholar
  143. 143.
    Kim YC, Kim SR, Markelonis GJ, et al. Ginsenosides Rb1 and Rg3 protect cultured rat cortical cells from glutamate-induced neurodegeneration. J Neurosci Res. 1998;53:426–432.PubMedCrossRefGoogle Scholar
  144. 144.
    Kim S, Ahn K, Oh TH, et al. Inhibitory effect of ginsenosides on NMDA receptor-mediated signals in rat hippocampal neurons. Biochem Biophys Res Commun. 2002;296:247–254.PubMedCrossRefGoogle Scholar
  145. 145.
    Lim JH, Wen TC, Matsuda S, et al. Protection of ischemic hippocampal neurons by ginsenoside Rb1, a main ingredient of ginseng root. Neurosci Res. 1997;28:191–200.PubMedCrossRefGoogle Scholar
  146. 146.
    Chen YS, Wu CH, Yao CH, et al. Ginsenoside Rb1 enhances peripheral nerve regeneration across wide gaps in silicone rubber chambers. Int J Artif Organs. 2002;25:1103–1108.PubMedGoogle Scholar
  147. 147.
    Cho JY, Yoo ES, Baik KU, et al. In vitro inhibitory effect of protopanaxadiol ginsenosides on tumor necrosis factor (TNF)-alpha production and its modulation by known TNF-alpha antagonists. Planta Med. 2001;67:213–218.PubMedCrossRefGoogle Scholar
  148. 148.
    Carneiro CS, Costa-Pinto FA, da Silva AP, et al. Pfaffia paniculata (Brazilian ginseng) methanolic extract reduces angiogenesis in mice. Exp Toxicol Pathol. 2007;58:427–431.PubMedCrossRefGoogle Scholar
  149. 149.
    Izzotti A, Sacca SC, Cartiglia C, et al. Oxidative deoxyribonucleic acid damage in the eyes of glaucoma patients. Am J Med. 2003;114:638–646.PubMedCrossRefGoogle Scholar
  150. 150.
    Yang J, Tezel G, Patil RV, et al. Serum autoantibody against glutathione S-transferase in patients with glaucoma. Invest Ophthalmol Vis Sci. 2001;42:1273–1276.PubMedGoogle Scholar
  151. 151.
    Juronen E, Tasa G, Veromann S, et al. Polymorphic glutathione S-transferase M1 is a risk factor of primary open-angle glaucoma among Estonians. Exp Eye Res. 2000;71:447–452.PubMedCrossRefGoogle Scholar
  152. 152.
    Unal M, Guven M, Devranoglu K, et al. Glutathione S transferase M1 and T1 genetic polymorphisms are related to the risk of primary open-angle glaucoma: a study in a Turkish population. Br J Ophthalmol. 2007;91:527–530.PubMedCrossRefGoogle Scholar
  153. 153.
    Bunin AI, Filina AA, Erichev VP. A glutathione deficiency in open-angle glaucoma and the approaches to its correction. Vestn Oftalmol. 1992;108:13–15.PubMedGoogle Scholar
  154. 154.
    Zenkel M, Kruse F, Naumann GO, Schlötzer-Schrehardt U. Impaired cytoprotective mechanisms in eyes with pseudoexfoliation syndrome/glaucoma. Invest Ophthalmol Vis Sci. 2007;48:5558–5566.PubMedCrossRefGoogle Scholar
  155. 155.
    Bagchi D, Bagchi M, Stohs S, et al. Cellular protection with proanthocyanidins derived from grape seeds. Ann N Y Acad Sci. 2002;957:260–270.PubMedCrossRefGoogle Scholar
  156. 156.
    Yamakoshi J, Saito M, Kataoka S, et al. Procyanidin-rich extract from grape seeds prevents cataract formation in hereditary cataractous (ICR/f) rats. J Agric Food Chem. 2002;50:4983–4988.PubMedCrossRefGoogle Scholar
  157. 157.
    Bagchi D, Sen CK, Ray SD, et al. Molecular mechanisms of cardioprotection by a novel grape seed proanthocyanidin extract. Mutat Res. 2003;523-524:87–97.PubMedCrossRefGoogle Scholar
  158. 158.
    Shao ZH, Becker LB, Vanden Hoek TL, et al. Grape seed proanthocyanidin extract attenuates oxidant injury in cardiomyocytes. Pharmacol Res. 2003;47:463–469.PubMedCrossRefGoogle Scholar
  159. 159.
    Pataki T, Bak I, Kovacs P, et al. Grape seed proanthocyanidins improved cardiac recovery during reperfusion after ischemia in isolated rat hearts. Am J Clin Nutrition. 2002;75:894–899.Google Scholar
  160. 160.
    Kalin R, Righi A, Del Rosso A, et al. Activin, a grape seed-derived proanthocyanidin extract, reduces plasma levels of oxidative stress and adhesion molecules (ICAM-1, VCAM-1 and E-selectin) in systemic sclerosis. Free Radical Res. 2002;36:819–825.CrossRefGoogle Scholar
  161. 161.
    Natella F, Belelli F, Gentili V, et al. Grape seed proanthocyanidins prevent plasma postprandial oxidative stress in humans. J Agric Food Chem. 2002;50:7720–7725.PubMedCrossRefGoogle Scholar
  162. 162.
    Nair MP, Kandaswami C, Mahajan S, et al. Grape seed extract proanthocyanidins downregulate HIV-1 entry coreceptors, CCR2b, CCR3 and CCR5 gene expression by normal peripheral blood mononuclear cells. Biol Res. 2002;35:421–431.PubMedCrossRefGoogle Scholar
  163. 163.
    Raina K, Singh RP, Agarwal R, et al. Oral grape seed extract inhibits prostate tumor growth and progression in TRAMP mice. Cancer Res. 2007;67:5976–5982.PubMedCrossRefGoogle Scholar
  164. 164.
    Barden CA, Chandler HL, Lu P, et al. Effect of grape polyphenols on oxidative stress in canine lens epithelial cells. Am J Vet Res. 2008;69:94–100.PubMedCrossRefGoogle Scholar
  165. 165.
    Higdon JV, Frei B. Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Crit Rev Food Sci Nutr. 2003;43:89–143.PubMedCrossRefGoogle Scholar
  166. 166.
    Lee SR, Im KJ, Suh SI, et al. Protective effect of green tea polyphenol (-)-epigallocatechin gallate and other antioxidants on lipid peroxidation in gerbil brain homogenates. Phytother Res. 2003;17:206–209.PubMedCrossRefGoogle Scholar
  167. 167.
    Weinreb O, Mandel S, Youdim MB. cDNA gene expression profile homology of antioxidants and their antiapoptotic and proapoptotic activities in human neuroblastoma cells. FASEB J. 2003;17:935–937.PubMedGoogle Scholar
  168. 168.
    van Jaarsveld H, Kuyl JM, Schulenburg DH, et al. Effect of flavonoids on the outcome of myocardial mitochondrial ischemia/reperfusion injury. Res Commun Mol Pathol Pharmacol. 1996;91:65–75.PubMedGoogle Scholar
  169. 169.
    Nakagawa T, Yokozawa T. Direct scavenging of nitric oxide and superoxide by green tea. Food Chem Toxicol. 2002;40:1745–1750.PubMedCrossRefGoogle Scholar
  170. 170.
    Gupta SK, Halde N, Sivastava S, et al. Green tea (Camellia sinensis) protects against selenite-induced oxidative stress in experimental cataractogenesis. Ophthalmic Res. 2002;34:258–263.PubMedCrossRefGoogle Scholar
  171. 171.
    Thiagarajan G, Chandani S, Sundari CS, et al. Antioxidant properties of green and black tea, and their potential ability to retard the progression of eye lens cataract. Exp Eye Res. 2001;73:393–401.PubMedCrossRefGoogle Scholar
  172. 172.
    Kakuda T. Neuroprotective effects of the green tea components theanine and catechins. Biol Pharm Bull. 2002;25:1513–1518.PubMedCrossRefGoogle Scholar
  173. 173.
    Zhang B, Osborne NN. Oxidative-induced retinal degeneration is attenuated by epigallocatechin gallate. Brain Res. 2006;1124:176–187.PubMedCrossRefGoogle Scholar
  174. 174.
    Zhang B, Safa R, Rusciano D, et al. Epigallocatechin gallate, an active ingredient from green tea, attenuates damaging influences to the retina caused by ischemia/reperfusion. Brain Res. 2007;1159:40–53.PubMedCrossRefGoogle Scholar
  175. 175.
    Bone RA, Landrum JT, Guerra LH, et al. Lutein and zeaxanthin dietary supplements raise macular pigment density and serum concentrations of these carotenoids in humans. J Nutr. 2003;133:992–998.PubMedGoogle Scholar
  176. 176.
    Age-Related Eye Disease Study Research Group T. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E and beta carotene, and zinc for age-related cataract and vision loss. AREDS report No. 9. Arch Ophthalmol. 2001;119:1439–1452.Google Scholar
  177. 177.
    Age-Related Eye Disease Study Research Group. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss. AREDS report No. 8. Arch Ophthalmol. 2001;119:1417–1436.Google Scholar
  178. 178.
    Falsini B, Piccardi M, Iarossi G, et al. Influence of short-term antioxidant supplementation on macular function in age-related maculopathy: a pilot study including electrophysiologic assessment. Ophthalmology. 2003;110:51–60.PubMedCrossRefGoogle Scholar
  179. 179.
    Thomson LR, Toyoda Y, Delori FC, et al. Long term dietary supplementation with zeaxanthin reduces photoreceptor death in light-damaged Japanese quail. Exp Eye Res. 2002;75:529–542.PubMedCrossRefGoogle Scholar
  180. 180.
    Jacques PF, Chylack LT Jr, Hankinson SE, et al. Long-term nutrient intake and early age-related nuclear lens opacities. Arch Ophthalmol. 2001;119:1009–1019.PubMedGoogle Scholar
  181. 181.
    Berendschot TT, Broekmans WM, Klopping-Ketelaars IA, et al. Lens aging in relation to nutritional determinants and possible risk factors for age-related cataract. Arch Ophthalmol. 2002;120:1732–1737.PubMedGoogle Scholar
  182. 182.
    Yamazaki Y, Hayamizu F, Tanaka C. Effects of long-term methylcobalamin treatment on the progression of visual field defects in normal-tension glaucoma. Curr Ther Res. 2000;61:443–451.CrossRefGoogle Scholar
  183. 183.
    Azumi I, Kosaki H, Nakatani H. Effects of metcobalamin (Methylcobal) on the visual field of chronic glaucoma - a multicenter open study. Folia Ophthalmol Jpn. 1983;34:873–878.Google Scholar
  184. 184.
    Kikuchi M, Kashii S, Honda Y, et al. Protective effects of methylcobalamin, a vitamin B12 analog, against glutamate-induced neurotoxicity in retinal cell culture. Invest Ophthalmol Vis Sci. 1997;38:848–854.PubMedGoogle Scholar
  185. 185.
    Denis U, Lecomte M, Paget C, et al. Advanced glycation end-products induce apoptosis of bovine retinal pericytes in culture: involvement of diacylglycerol/ceramide production and oxidative stress induction. Free Radic Biol Med. 2002;33:236–247.PubMedCrossRefGoogle Scholar
  186. 186.
    England K, O’Driscoll C, Cotter TG. Carbonylation of glycolytic proteins is a key response to drug-induced oxidative stress and apoptosis. Cell Death Differ. 2004;11:252–260.PubMedCrossRefGoogle Scholar
  187. 187.
    Hori K, Katayama M, Sato N, et al. Neuroprotection by glial cells through adult T cell leukemia-derived factor/human thioredoxin (ADF/TRX). Brain Res. 1994;652:304–310.PubMedCrossRefGoogle Scholar
  188. 188.
    Zhang XY, Hayasaka S, Hayasaka Y, et al. Effect of N-acetylcysteine on lipopolysaccharide-induced uveitis in rats. Jpn J Ophthalmol. 2007;51:14–20.PubMedCrossRefGoogle Scholar
  189. 189.
    Rohdewald P. A review of the French maritime pine bark extract (Pycnogenol), a herbal medication with a diverse clinical pharmacology. Int J Clin Pharmacol Ther. 2002;40:158–168.PubMedGoogle Scholar
  190. 190.
    Araghi-Niknam M, Hosseini S, Larson D, et al. Pine bark extract reduces platelet aggregation. Integrative Med. 2000;2:73–77.CrossRefGoogle Scholar
  191. 191.
    Koch R. Comparative study of Venostasin and Pycnogenol in chronic venous insufficiency. Phytother Res. 2002;16(suppl 1):S1-S5.PubMedCrossRefGoogle Scholar
  192. 192.
    Devaraj S, Vega-Lopez S, Kaul NS, et al. Supplementation with a pine bark extract rich in polyphenols increases plasma antioxidant capacity and alters the plasma lipoprotein profile. Lipids. 2002;37:931–934.PubMedCrossRefGoogle Scholar
  193. 193.
    Stanislavov R, Nikolova V, Rohdewald P. Improvement of erectile function with Prelox: a randomized, double-blind, placebo-controlled, crossover trial. Int J Impot Res. 2008;20:173–180.PubMedCrossRefGoogle Scholar
  194. 194.
    Cesarone MR, Belcaro G, Rohdewald P, et al. Rapid relief of signs/symptoms in chronic venous microangiopathy with pycnogenol: a prospective, controlled study. Angiology. 2006;57:569–576.PubMedCrossRefGoogle Scholar
  195. 195.
    Cesarone MR, Belcaro G, Rohdewald P, et al. Improvement of diabetic microangiopathy with pycnogenol: a prospective, controlled study. Angiology. 2006;57:431–436.PubMedCrossRefGoogle Scholar
  196. 196.
    Belcaro G, Cesarone MR, Errichi BM, et al. Venous ulcers: microcirculatory improvement and faster healing with local use of Pycnogenol. Angiology. 2005;56:56.Google Scholar
  197. 197.
    Belcaro G, Cesarone MR, Errichi BM, et al. Diabetic ulcers: microcirculatory improvement and faster healing with pycnogenol. Clin Appl Thromb Hemost. 2006;12:318–323.PubMedCrossRefGoogle Scholar
  198. 198.
    Grimm T, Chovanova Z, Muchova J, et al. Inhibition of NF-kappaB activation and MMP-9 secretion by plasma of human volunteers after ingestion of maritime pine bark extract (Pycnogenol). J Inflamm (Lond). 2006;27:1.CrossRefGoogle Scholar
  199. 199.
    Schafer A, Chovanova Z, Muchova J, et al. Inhibition of COX-1 and COX-2 activity by plasma of human volunteers after ingestion of French maritime pine bark extract (Pycnogenol). Biomed Pharmacother. 2006;60:5–9.PubMedCrossRefGoogle Scholar
  200. 200.
    Kobayashi MS, Han D, Packer L. Antioxidants and herbal extracts protect HT-4 neuronal cells against glutamate-induced cytotoxicity. Free Radic Res. 2000;32:115–124.PubMedCrossRefGoogle Scholar
  201. 201.
    Liu F, Lau BH, Peng Q, et al. Pycnogenol protects vascular endothelial cells from beta-amyloid-induced injury. Biol Pharm Bull. 2000;23:735–737.PubMedGoogle Scholar
  202. 202.
    Peng QL, Buz'Zard AR, Lau BH. Pycnogenol((R)) protects neurons from amyloid-beta peptide-induced apoptosis. Brain Res Mol Brain Res. 2002;104:55–65.PubMedCrossRefGoogle Scholar
  203. 203.
    Buz’Zard AR, Lau BH. Pycnogenol reduces talc-induced neoplastic transformation in human ovarian cell cultures. Phytother Res. 2007;21:579–586.PubMedCrossRefGoogle Scholar
  204. 204.
    Packer L, Rimbach G, Virgili F. Antioxidant activity and biologic properties of a procyanidin-rich extract from pine (Pinus maritima) bark, pycnogenol. Free Radic Biol Med. 1999;27:704–724.PubMedCrossRefGoogle Scholar
  205. 205.
    Schonlau F, Rohdewald P. Pycnogenol for diabetic retinopathy, a review. Int Ophthalmol. 2001;24:161–171.PubMedCrossRefGoogle Scholar
  206. 206.
    Kamuren ZT, McPeek CG, Sanders RA, et al. Effects of low-carbohydrate diet and Pycnogenol treatment on retinal antioxidant enzymes in normal and diabetic rats. J Ocul Pharmacol Ther. 2006;22:10–18.PubMedCrossRefGoogle Scholar
  207. 207.
    Wadsworth TL, Koop D. Effects of Ginkgo biloba extract (EGb 761) and quercetin on lipopolysaccharide-induced release of nitric oxide. Chem Biol Interact. 2001;137:43–58.PubMedCrossRefGoogle Scholar
  208. 208.
    Wadsworth TL, McDonald TL, Koop DR. Effects of Ginkgo biloba extract (EGb 761) and quercetin on lipopolysaccharide-induced signaling pathways involved in the release of tumor necrosis factor-alpha. Biochem Pharmacol. 2001;62:963–974.PubMedCrossRefGoogle Scholar
  209. 209.
    Dok-Go H, Lee KH, Kim HJ, et al. Neuroprotective effects of antioxidative flavonoids, quercetin, (+)-dihydroquercetin and quercetin 3-methyl ether, isolated from Opuntia ficus-indica var. saboten. Brain Res. 2003;965:130–136.PubMedCrossRefGoogle Scholar
  210. 210.
    Su JF, Guo CJ, Wei JY, et al. Protection against hepatic ischemia-reperfusion injury in rats by oral pretreatment with quercetin. Biomed Environ Sci. 2003;16:1–8.PubMedGoogle Scholar
  211. 211.
    Tezel G, Wax M. Increased production of tumor necrosis factor-alpha by glial cells exposed to simulated ischemia or elevated hydrostatic pressure induces apoptosis in cocultured retinal ganglion cells. J Neurosci. 2000;20:8693–8700.PubMedGoogle Scholar
  212. 212.
    Ueda T, Ueda T, Armstrong D. Preventive effect of natural and synthetic antioxidants on lipid peroxidation in the mammalian eye. Ophthalmic Res. 1996;28:184–192.PubMedCrossRefGoogle Scholar
  213. 213.
    Orhan H, Marol S, Hepsen IF, et al. Effects of some probable antioxidants on selenite-induced cataract formation and oxidative stress-related parameters in rats. Toxicology. 1999;139:219–232.PubMedCrossRefGoogle Scholar
  214. 214.
    Cao XG, Li XX, Bao YZ, et al. Responses of human lens epithelial cells to quercetin and DMSO. Invest Ophthalmol Vis Sci. 2007;48:3714–3718.PubMedCrossRefGoogle Scholar
  215. 215.
    Ramana BV, Raju TN, Kumar VV, et al. Defensive role of quercetin against imbalances of calcium, sodium, and potassium in galactosemic cataract. Biol Trace Elem Res. 2007;119:35–41.PubMedCrossRefGoogle Scholar
  216. 216.
    Valenzano DR, Cellerino A. Resveratrol and the pharmacology of aging: a new vertebrate model to validate an old molecule. Cell Cycle. 2006;5:1027–1032.PubMedCrossRefGoogle Scholar
  217. 217.
    Baur JA, Pearson KJ, Price NL, et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006;444:337–342.PubMedCrossRefGoogle Scholar
  218. 218.
    Michan S, Sinclair D. Sirtuins in mammals: insights into their biological function. Biochem J. 2007;404:1–13.PubMedCrossRefGoogle Scholar
  219. 219.
    Shigematsu S, Ishida S, Hara M, et al. Resveratrol, a red wine constituent polyphenol, prevents superoxide-dependent inflammatory responses induced by ischemia/reperfusion, platelet-activating factor, or oxidants. Free Radic Biol Med. 2003;34:810–817.PubMedCrossRefGoogle Scholar
  220. 220.
    Frankel EN, Waterhouse AL, Kinsella JE. Inhibition of human LDL oxidation by resveratrol. Lancet. 1993;341:1103–1104.PubMedCrossRefGoogle Scholar
  221. 221.
    Chanvitayapongs S, Draczynska-Lusiak B, Sun AY. Amelioration of oxidative stress by antioxidants and resveratrol in PC12 cells. Neuroreport. 1997;8:1499–1502.PubMedCrossRefGoogle Scholar
  222. 222.
    Araki T, Sasaki Y, Milbrandt J. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science. 2004;305:954–955.CrossRefGoogle Scholar
  223. 223.
    Lu KT, Chiou RY, Chen LG, et al. Neuroprotective effects of resveratrol on cerebral ischemia-induced neuron loss mediated by free radical scavenging and cerebral blood flow elevation. J Agric Food Chem. 2006;54:3126–3131.PubMedCrossRefGoogle Scholar
  224. 224.
    Losa GA. Resveratrol modulates apoptosis and oxidation in human blood mononuclear cells. Eur J Clin Invest. 2003;33:818–823.PubMedCrossRefGoogle Scholar
  225. 225.
    Zhuang H, Kim YS, Koehler RC, et al. Potential mechanism by which resveratrol, a red wine constituent, protects neurons. Ann NY Acad Sci. 2003;993:276–286.PubMedCrossRefGoogle Scholar
  226. 226.
    Doganay S, Borazan M, Iraz M, et al. The effect of resveratrol in experimental cataract model formed by sodium selenite. Curr Eye Res. 2006;31:147–153.PubMedCrossRefGoogle Scholar
  227. 227.
    Nagaoka T, Hein TW, Yoshida A, et al. Resveratrol, a component of red wine, elicits dilation of isolated porcine retinal arterioles: role of nitric oxide and potassium channels. Invest Ophthalmol Vis Sci. 2007;48:4232–4239.PubMedCrossRefGoogle Scholar
  228. 228.
    Shindler KS, Verntura E, Rex TS, et al. SIRT1 activation confers neuroprotection in experimental optic neuritis. Invest Ophthalmol Vis Sci. 2007;48:3602–3609.PubMedCrossRefGoogle Scholar
  229. 229.
    Militante JD, Lombardini JB. Taurine: evidence of physiological function in the retina. Nutr Neurosci. 2002;5:75–90.PubMedCrossRefGoogle Scholar
  230. 230.
    Di Leo MA, Santini SA, Cercone S, et al. Chronic taurine supplementation ameliorates oxidative stress and Na+ K+ ATPase impairment in the retina of diabetic rats. Amino Acids. 2002;23:401–406.PubMedCrossRefGoogle Scholar
  231. 231.
    Bantseev V, Bhardwaj R, Rathbun W, et al. Antioxidants and cataract: (cataract induction in space environment and application to terrestrial aging cataract). Biochem Mol Biol Int. 1997;42:1189–1197.PubMedGoogle Scholar
  232. 232.
    Cubillos S, Fazzino F, Lima L. Medium requirements for neuritic outgrowth from goldfish retinal explants and the trophic effect of taurine. Int J Dev Neurosci. 2002;20:607–617.PubMedCrossRefGoogle Scholar
  233. 233.
    Pasantes-Morales H, Quiroz H, Quesada O. Treatment with taurine, diltiazem, and vitamin E retards the progressive visual field reduction in retinitis pigmentosa: a 3-year follow-up study. Metab Brain Dis. 2002;17:183–197.PubMedCrossRefGoogle Scholar
  234. 234.
    Son HY, Kim H, Kwon Y. Taurine prevents oxidative damage of high glucose-induced cataractogenesis in isolated rat lenses. J Nutr Sci Vitaminol (Tokyo). 2007;53:324–330.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Joseph R. Zelefsky
    • 1
  • Robert Ritch
    • 2
    • 3
  1. 1.Department of OphthalmologyNew York UniversityNew YorkUSA
  2. 2.Department of OphthalmologyThe New York Eye and Ear InfirmaryNew YorkUSA
  3. 3.Department of OphthalmologyThe New York Medical CollegeValhallaUSA

Personalised recommendations