Advertisement

Normal Pressure Glaucoma

  • Bruce E. PrumJr.
Chapter

Abstract

In 1857, the German ophthalmologist von Graefe described glaucomatous optic disc excavation with a “normal” intraocular pressure (IOP) by digital palpation. He called this “amaurosis and nerve head excavation.” At that time and for many decades following, open-angle glaucoma with a “normal” IOP was considered a rarity. In 1980, Levene, in a landmark paper, reviewed the definitions and known literature about this entity, which he called “low-tension glaucoma” (LTG). He outlined six historical definitions for LTG – one descriptive only and five both causal and descriptive.

Keywords

Optic Nerve Obstructive Sleep Apnea Syndrome Retinal Nerve Fiber Layer Optic Nerve Head Visual Field Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    von Graefe A. Amaurose mit Sehnervenexcavation. Archiv für Ophthalmol. 1857;3:484–487.Google Scholar
  2. 2.
    von Graefe A. Die iridectomie bei amauros mit sehnervenexcavation. Archiv für Ophthalmol. 1857;3:546.Google Scholar
  3. 3.
    Levene RZ. Low-tension glaucoma: a critical review and new material. Surv Ophthalmol. 1980;24:621–663.PubMedGoogle Scholar
  4. 4.
    The Collaborative Normal-Tension Glaucoma Treatment Study Group. Comparison of glaucomatous progression between untreated patients with normal-tension glaucoma and patients with therapeutically reduced intraocular pressure. Am J Ophthalmol. 1998;126:487–497.Google Scholar
  5. 5.
    The Collaborative Normal-Tension Glaucoma Treatment Study Group. The effectiveness of intraocular pressure reduction in the treatment of normal-tension glaucoma. Am J Ophthalmol. 1998;126:498–505.Google Scholar
  6. 6.
    The Advanced Glaucoma Intervention Study (AGIS) 4: Comparison of treatment outcomes within race. Seven-year results. Ophthalmology. 1998;105:1146–1164.Google Scholar
  7. 7.
    The Advanced Glaucoma Intervention Study (AGIS) 7: The relationship between control of intraocular pressure and visual field deterioration. Am J Ophthalmol. 2000;130:429–440.Google Scholar
  8. 8.
    Lichter PR, Musch DC, Gillespie BW, et al. Interim clinical outcomes in the Collaborative Initial Glaucoma Treatment Study comparing initial treatment randomized to medications or surgery. Ophthalmology. 2001;108:1943–1953.PubMedGoogle Scholar
  9. 9.
    Heijl A, Leske MC, Bengtsson B, et al, for the Early Manifest Glaucoma Trial Group. Reduction in intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol. 2002;120:1268-1279, discussion 1371–1372.PubMedGoogle Scholar
  10. 10.
    Kass MA, Heuer DK, Higginbotham EJ, et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medications delays or prevents the onset of primary open angle glaucoma. Arch Ophthalmol. 2002;120:701-713, discussion 829–830.PubMedGoogle Scholar
  11. 11.
    Grodum K, Heijl A, Bengtsson B. A comparison of glaucoma patients identified through mass screening and in routine clinical practice. Acta Ophthalmol Scand. 2002;80:627–631.PubMedGoogle Scholar
  12. 12.
    Sommer A, Tielsch JM, Katz J, et al. Relationship between intraocular pressure and primary open angle glaucoma among white and black Americans. The Baltimore eye survey. Arch Ophthalmol. 1991;109:1090–1095.PubMedGoogle Scholar
  13. 13.
    Leske MC, Wu SY, Honkanen R, et al. Nine-year incidence of open-angle glaucoma in the Barbados eye study. Ophthalmology. 2007;114:1058–1064.PubMedGoogle Scholar
  14. 14.
    Dielemans I, Vingerling JR, Wolfs RC, et al. The prevalence of primary open-angle glaucoma in a population-based study in the Netherlands. The Rotterdam study. Ophthalmology. 1994;101:1851–1855.PubMedGoogle Scholar
  15. 15.
    Bonomi L, Marchini G, Marraffa M, et al. Prevalence of glaucoma and intraocular pressure distribution in a defined population. The Egna-Neumarkt study. Ophthalmology. 1998;105:209–215.PubMedGoogle Scholar
  16. 16.
    Mitchell P, Smith W, Attebo K, et al. Prevalence of open-angle glaucoma in Australia. Ophthalmology. 1996;103:1661–1669.PubMedGoogle Scholar
  17. 17.
    Toupozis F, Wilson MR, Harris A, et al. Prevalence of open-angle glaucoma in Greece: the Thessaloniki eye study. Am J Ophthalmol. 2007;144:511–519.Google Scholar
  18. 18.
    Varma R, Ying-Lai M, Francis BA, et al. Prevalence of open-angle glaucoma and ocular hypertension in Latinos: the Los Angeles Latino eye study. Ophthalmology. 2004;111:1439–1448.PubMedGoogle Scholar
  19. 19.
    Iwase A, Suzuki Y, Araie M, et al. The prevalence of primary open-angle glaucoma in Japanese. The Tajimi study. Ophthalmology. 2004;111:1641–1648.PubMedGoogle Scholar
  20. 20.
    Vijaya L, George R, Paul PG, et al. Prevalence of open-angle glaucoma in a rural south Indian population. Invest Ophthalmol Vis Sci. 2005;46:2261–4467.Google Scholar
  21. 21.
    Yamagami J, Araie M, Shirato S, et al. [Diurnal variation of intraocular pressure in low tension glaucoma]. Nippon Ganka Gakkai Zasshi. 1991;95:495–499.PubMedGoogle Scholar
  22. 22.
    Yamagami J, Araie M, Aihara M, et al. Diurnal variation in intraocular pressure of normal-tension glaucoma eyes. Ophthalmology. 1993;100:643–650.PubMedGoogle Scholar
  23. 23.
    Ido T, Tomita G, Kitazawa Y. Diurnal variation of intraocular pressure in normal-tension glaucoma. Influence of sleep and arousal. Ophthalmology. 1991;98:296–300.PubMedGoogle Scholar
  24. 24.
    Collaer N, Zeyen T, Caprioli J. Sequential office pressure measurements in the management of glaucoma. J Glaucoma. 2005;14:196–200.PubMedGoogle Scholar
  25. 25.
    Kim DM, Seo JH, Kim SH, et al. Comparison of localized retinal nerve fiber layer defects between low-teen intraocular pressure group and a high-teen intraocular pressure group in normal-tension glaucoma. J Glaucoma. 2007;16:293–296.PubMedGoogle Scholar
  26. 26.
    Oguri A, Yamamoto T, Kitazawa Y. Spontaneous intraocular pressure reduction in normal-tension glaucoma and associated clinical factors. Jpn J Ophthalmol. 2000;44:263–267.PubMedGoogle Scholar
  27. 27.
    Okada K, Tsumamoto Y, Yamaski M, et al. The negative correlation between age and intraocular pressures measured nytohemerally in elderly normal-tension glaucoma patients. Graefes Arch Clin Exp Ophthalmol. 2003;241:19–23.PubMedGoogle Scholar
  28. 28.
    Cartwright MJ, Anderson DR. Correlation of asymmetric damage and asymmetric intraocular pressure in normal-tension glaucoma (low-tension glaucoma). Arch Ophthalmol. 1988;106:898–900.PubMedGoogle Scholar
  29. 29.
    Crichton A, Drance SM, Douglas GR, et al. Unequal intraocular pressure and its relation to asymmetric visual field defects in low-tension glaucoma. Ophthalmology. 1989;96:1312–1314.PubMedGoogle Scholar
  30. 30.
    Haefliger IO, Hitchings RA. Relationship between asymmetry in visual field defects and intraocular pressure difference in an untreated normal (low) tension glaucoma population. Acta Ophthalmol (Copenh). 1990;68:564–567.Google Scholar
  31. 31.
    Yamagami J, Shirato S, Araie M. The influence of the intraocular pressure on the visual field of low-tension glaucoma. Acta Soc Ophthalmol Jpn. 1990;94:514–518.Google Scholar
  32. 32.
    Dinn RB, Zimmerman MB, Shuba LM, et al. Concordance of diurnal intraocular pressure between fellow eyes in primary open-angle glaucoma. Ophthalmology. 2007;114:915–920.PubMedGoogle Scholar
  33. 33.
    Shuba LM, Doan AP, Maley MK, et al. Diurnal fluctuation and concordance of intraocular pressure in glaucoma suspects and normal tension glaucoma patients. J Glaucoma. 2007;16:307–312.PubMedGoogle Scholar
  34. 34.
    Shimmyo M, Ross AJ, Moy A, et al. Intraocular pressure, Goldmann applanation tension, corneal thickness, and corneal curvature in Caucasians, Asians, Hispanics, and African Americans. Am J Ophthalmol. 2003;136:603–613.PubMedGoogle Scholar
  35. 35.
    Hahn S, Azen S, Ying-Lai M, et al. Central corneal thickness in Latinos. Invest Ophthalmol Vis Sci. 2003;44:1508–1512.PubMedGoogle Scholar
  36. 36.
    Choi HJ, Kim DM, Hwang SS. Relationship between central corneal thickness and localized retinal nerve fiber layer defect in normal-tension glaucoma. J Glaucoma. 2006;15:120–123.PubMedGoogle Scholar
  37. 37.
    Shah H, Kniestedt C, Bostrom A, et al. Role of central corneal thickness on baseline parameters and progression of visual fields in open angle glaucoma. Eur J Ophthalmol. 2007;17:545–549.PubMedGoogle Scholar
  38. 38.
    Kim JW, Chen PP. Central corneal pachymetry and visual field progression in patients with open-angle glaucoma. Ophthalmology. 2004;111:2126–2132.PubMedGoogle Scholar
  39. 39.
    Brandt JD, Beiser JA, Gordon MO, et al. Central corneal thickness and measured IOP response to topical ocular hypotensive medication in the Ocular Hypertension Treatment Study. Am J Ophthalmol. 2004;138:717–722.PubMedGoogle Scholar
  40. 40.
    Liu J, Roberts CJ. Influence of corneal biomechanical properties on intraocular pressure measurement: quantitative analysis. J Cataract Refrac Surg. 2005;31:146–155.Google Scholar
  41. 41.
    Iliev ME, Meyenberg A, Buerki E, et al. Novel pressure-to cornea index in glaucoma. Br J Ophthalmol. 2007;91:1364–1368.PubMedGoogle Scholar
  42. 42.
    Brandt JD. Central corneal thickness, tonometry, and glaucoma – a guide for the perplexed. Can J Ophthalmol. 2007;42:562–563.PubMedGoogle Scholar
  43. 43.
    Brandt JD. Central corneal thickness – tonometry artifact, or something more? Ophthalmology. 2007;114:1963–1964.PubMedGoogle Scholar
  44. 44.
    Chuo JY, Mikelberg FS. Calibration errors of Goldmann tonometers in a tertiary eye care centre. Can J Ophthalmol. 2007;42:712–714.PubMedGoogle Scholar
  45. 45.
    Kumar N, Jivan S. Goldmann applanation tonometer calibration checks: current practice in the UK. Eye. 2007;21:733–734.PubMedGoogle Scholar
  46. 46.
    Gerzozi HJ, Chung HS, Lang Y, et al. Intraocular pressure and photorefractive keratectomy: a comparison of three different tonometers. Cornea. 2001;20:33–36.Google Scholar
  47. 47.
    Chatterjee A, Shah S, Bessant DA, et al. Reduction in intraocular pressure after excimer laser photorefractive keratectomy. Correlation with pretreatment myopia. Ophthalmology. 1997;104:355–359.PubMedGoogle Scholar
  48. 48.
    Mardelli PG, Piebenga LW, Whitacre MM, et al. The effect of excimer laser photorefractive keratectomy on intraocular pressure measurements using the Goldmann applanation tonometer. Ophthalmology. 1997;104:945-948, discussion 949.PubMedGoogle Scholar
  49. 49.
    Munger R, Hodge WG, Mintsioulis G, et al. Correction of intraocular pressure for changes in central corneal thickness following photorefractive keratectomy. Can J Ophthalmol. 1998;33:159–165.PubMedGoogle Scholar
  50. 50.
    Levy Y, Zadok D, Glovinsky Y, et al. Tono-pen versus Goldmann tonometry after excimer laser photorefractive keratectomy. J Cataract Refract Surg. 1999;25:486–491.PubMedGoogle Scholar
  51. 51.
    Zadok D, Tran DB, Twa M, et al. Pneumotonometry versus Goldmann applantion tonometry after laser in situ keratomileusis for myopia. J Cataract Refract Surg. 1999;25:1344–1348.PubMedGoogle Scholar
  52. 52.
    Duch S, Serra A, Castenera J, et al. Tonometry after laser in situ keratomileusis. J Glaucoma. 2001;10:261–265.PubMedGoogle Scholar
  53. 53.
    Park HJ, Uhm KB, Hong C. Reduction in intraocular pressure after laser in situ keratomileusis. J Cataract Refract Surg. 2001;27:303–309.PubMedGoogle Scholar
  54. 54.
    Siaganos DS, Papastergiou GI, Moedas C. Assessment of the Pascal dynamic contour tonometer in monitoring intraocular pressure in unoperated eyes and eyes after LASIK. J Cataract Refract Surg. 2004;30:746–751.Google Scholar
  55. 55.
    Liu L, Lei C, Li X, et al. Measurement of intraocular pressure after LASIK by dynamic contour tonometry. J Huazhong Univ Sci Technolog Med Sci. 2006;26:372–373.PubMedGoogle Scholar
  56. 56.
    Pepose JS, Feigenbaum SK, Qazi MA, et al. Changes in corneal biomechanics and intraocular pressure following LASIK using static, dynamic and noncontact tonometry. Am J Ophthalmol. 2007;143:39–47.PubMedGoogle Scholar
  57. 57.
    Kierstein EM, Hüsler A. Evaluation of the Orssengo-Pye IOP corrective algorithm in LASIK patients with thick corneas. Optometry. 2005;76:536–543.Google Scholar
  58. 58.
    Chang DH, Stulting RD. Change in intraocular pressure measurements after LASIK the effect of the refractive correction and the lamellar flap. Ophthalmology. 2005;112:1009–1016.PubMedGoogle Scholar
  59. 59.
    Kohlhaas M, Spörl E, Böhm AG, et al. Applanation tonometry in “normal” patients and patients after LASIK. Klin Monatsbl Augenhilkd. 2005;222:823–826.Google Scholar
  60. 60.
    Yang CC, Wang IJ, Chang YC, et al. A predictive model for ­postoperative intraocular pressure among patients undergoing laser in situ keratomileusis (LASIK). Am J Ophthalmol. 2006;141:530–536.PubMedGoogle Scholar
  61. 61.
    Kohlhaas M, Spoerl E, Boehm AG, et al. A correction formula for the real intraocular pressure after LASIK for the correction of myopic astigmatism. J Refract Surg. 2006;22:263–267.PubMedGoogle Scholar
  62. 62.
    Jonas JB, Papastathopoulos KI. Optic disc shape in glaucoma. Graefes Arch Clin Exp Ophthalmol. 1996;234:S167-S173.PubMedGoogle Scholar
  63. 63.
    Mikelberg FS, Drance SM, Schulzer M, et al. The normal human optic nerve. Axon count and axon diameter distribution. Ophthalmology. 1989;96:1325–1328.PubMedGoogle Scholar
  64. 64.
    Mikelberg FS, Yidegiligne HM, White VA, et al. Relation between optic nerve axon number and axon diameter to scleral canal area. Ophthalmology. 1991;98:60–63.PubMedGoogle Scholar
  65. 65.
    Jonas JB, Budde WM, Panda-Jonas S. Ophthalmoscopic evaluation of the optic nerve head. Surv Ophthalmol. 1999;43:293–320.PubMedGoogle Scholar
  66. 66.
    Tomlinson A, Leighton DA. Ocular dimensions in low tension glaucoma compared with open-angle glaucoma and the normal. Br J Ophthalmol. 1972;56(2):97–105.PubMedGoogle Scholar
  67. 67.
    Tomita G, Nyman K, Raitta C, et al. Interocular asymmetry of optic disc size and its relevance to visual field loss in normal-tension glaucoma. Graefes Arch Clin Exp Ophthalmol. 1994;232:290–296.PubMedGoogle Scholar
  68. 68.
    Jonas JB, Stürmer J, Papastathopoulos KI, et al. Optic disc size and optic nerve damage in normal pressure glaucoma. Br J Ophthalmol. 1995;79:1102–1105.PubMedGoogle Scholar
  69. 69.
    Gramer E, Althaus G, Leydhecker W. Site and depth of glaucomatous visual field defects in relation to sized of the neuroretinal edge zone of the optic disk in glaucoma without hypertension, simple glaucoma, pigmentary glaucoma. A clinical study with the Octopus perimeter 201 and the optic nerve analyzer. Klin Monatsbl Augenheilkd. 1986;189:190–198.PubMedGoogle Scholar
  70. 70.
    Lewis RA, Hayreh SS, Phelps CD. Optic disk and visual field correlations in primary open-angle glaucoma and low-tension glaucoma. Am J Ophthalmol. 1983;96:148–152.PubMedGoogle Scholar
  71. 71.
    Caprioli J, Spaeth GL. Comparison of the optic nerve head in high- and low-tension glaucoma. Arch Ophthalmol. 1985;103:1145–1149.PubMedGoogle Scholar
  72. 72.
    Eid TE, Spaeth GL, Moster MR, et al. Quantitative differences between the optic nerve head and peripapillary retina in low-tension and high-tension primary open-angle glaucoma. Am J Ophthalmol. 1997;124:805–813.PubMedGoogle Scholar
  73. 73.
    Iester M, Mikelberg FS. Optic nerve head morphologic characteristics in high-tension and normal-tension glaucoma. Arch Ophthalmol. 1999;117:1010–1013.PubMedGoogle Scholar
  74. 74.
    Iester M. Comparison of optic disc parameters between normal-tension glaucoma and visual-field-matched high tension glaucoma. In: Wall M, Mills RP, eds. Perimetry Update 2000/2001. The Hague, The Netherlands: Kugler Publications; 2001:323–329.Google Scholar
  75. 75.
    Tezel G, Kass MA, Kolker AE, et al. Comparative optic disc analysis in normal pressure glaucoma, primary open-angle glaucoma, and ocular hypertension. Ophthalmology. 1996;103:2105–2113.PubMedGoogle Scholar
  76. 76.
    Wang XH, Stewart WC, Jackson GJ. Differences in optic discs in low-tension glaucoma patients with relatively low or high pressures. Acta Ophthalmol Scand. 1996;74:364–367.PubMedGoogle Scholar
  77. 77.
    Miller KM, Quigley HA. Comparison of optic disc features in low-tension and typical open-angle glaucoma. Ophthalmic Surg. 1987;18:882–889.PubMedGoogle Scholar
  78. 78.
    Spaeth GL. Fluorescein angiography: its contribution towards understanding the mechanisms of visual loss in glaucoma. Trans Am Ophthalmol Soc. 1975;89:457–465.Google Scholar
  79. 79.
    Geijssen HC, Greve EL. The spectrum of primary open angle glaucoma. I: senile sclerotic glaucoma versus high tension glaucoma. Ophthalmic Surg. 1987;18:207–213.PubMedGoogle Scholar
  80. 80.
    Geijssen HC. Studies on Normal Pressure Glaucoma. Amsterdam, The Netherlands: Kugler Publications; 1991:1–178.Google Scholar
  81. 81.
    Geijssen HC, Greve GL. Focal ischaemic normal pressure glaucoma versus high pressure glaucoma. Doc Ophthalmol. 1990;75:291–301.PubMedGoogle Scholar
  82. 82.
    Javitt JC, Spaeth GL, Katz LJ, et al. Acquired pits of the optic nerve. Increased prevalence in patients with low-tension glaucoma. Ophthalmology. 1990;97:1038-1043, discussion 1043–1044.PubMedGoogle Scholar
  83. 83.
    Spaeth GL. A new classification of glaucoma including focal glaucoma. Surv Ophthalmol. 1994;38:S9-S17.PubMedGoogle Scholar
  84. 84.
    Yamazaki Y, Hayamizu F, Miyamoto S, et al. Optic disc findings in normal tension glaucoma. Jpn J Ophthalmol. 1997;41:260–267.PubMedGoogle Scholar
  85. 85.
    Ugurlu S, Weitzmann M, Nduaguba C, et al. Acquired pit of the optic nerve: a risk factor for progression of glaucoma. Am J Ophthalmol. 1998;125:457–464.PubMedGoogle Scholar
  86. 86.
    Nduaguba C, Ugurlu S, Caprioli J. Acquired pits of the optic nerve in glaucoma: prevalence and associated visual field loss. Acta Ophthalmol Scand. 1998;76:273–277.PubMedGoogle Scholar
  87. 87.
    Jonas JB, Budde WM. Optic cup deepening correlated with optic nerve damage in focal normal-pressure glaucoma. J Glaucoma. 1999;8:227–231.PubMedGoogle Scholar
  88. 88.
    Quigley HA, Addicks EM. Regional differences in the structure of the lamina cribrosa and their relation to glaucomatous optic nerve damage. Arch Ophthalmol. 1981;99:137–143.PubMedGoogle Scholar
  89. 89.
    Quigley HA, Green WR. The histology of human glaucoma cupping and optic nerve damage: clinicopathologic correlation in 21 eyes. Ophthalmology. 1979;86:1803–1830.PubMedGoogle Scholar
  90. 90.
    Jonas JB, Gründler A. Optic disc morphology in “age-related atrophic glaucoma”. Graefes Arch Clin Exp Ophthalmol. 1996;234:744–749.PubMedGoogle Scholar
  91. 91.
    Nicolela MT, McCormick TA, Drance SM, et al. Visual field and optic disc progression in patients with different types of optic disc damage: a longitudinal prospective study. Ophthalmology. 2003;110:2178–2184.PubMedGoogle Scholar
  92. 92.
    Broadway DC, Nicolela MT, Drance SM. Optic disk appearances in primary open angle glaucoma. Surv Ophthalmol. 1999;43:S223-S243.PubMedGoogle Scholar
  93. 93.
    Pederson JE, Anderson DR. The mode of progressive disc cupping in ocular hypertension and glaucoma. Arch Ophthalmol. 1980;98:490–495.PubMedGoogle Scholar
  94. 94.
    Jonas JB, Gründler AE, Gonzales-Cortés J. Pressure-dependent neuroretinal rim loss in normal-pressure glaucoma. Am J Ophthal­mol. 1998;125:137–144.PubMedGoogle Scholar
  95. 95.
    Nicolela MT, Walman BE, Buckley AR, et al. Various glaucomatous optic nerve appearances: a color Doppler imaging study of retrobulbar circulation. Ophthalmology. 1996;103:1670–1679.PubMedGoogle Scholar
  96. 96.
    Drance SM, Begg IS. Sector hemorrhage – a probable acute ischemic disc change in chronic simple glaucoma. Can J Ophthalmol. 1970;5:137–141.PubMedGoogle Scholar
  97. 97.
    Tan JCH, Poinoosawmy D, Hitchings RA. Tomographic identification of neuroretinal rim loss in high-pressure, normal pressure and suspected glaucoma. Invest Ophthal Vis Sci 2004;45:2279–2285.PubMedGoogle Scholar
  98. 97a.
    Begg IS, Drance SM, Sweeney VP. Ischaemic optic neuropathy in chronic simple glaucoma. Br J Ophthalmol. 1971;55:73–90.PubMedGoogle Scholar
  99. 98.
    Drance SM. Some factors in the production of low tension glaucoma. Br J Ophthalmol. 1972;56:229–242.PubMedGoogle Scholar
  100. 99.
    Drance SM. Disc hemorrhage in the glaucomas. Surv Ophthalmol. 1989;33:331–337.PubMedGoogle Scholar
  101. 100.
    Kim SJ, Park KH. Four cases of normal-tension glaucoma with disk hemorrhage combined with branch vein occlusion in the contralateral eye. Am J Ophthalmol. 2004;137:357–359.PubMedGoogle Scholar
  102. 101.
    Yoo YC, Park KH. Disc hemorrhage in patients with both normal-tension glaucoma and branch vein occlusion in different eyes. Korean J Ophthalmol. 2007;21:222–227.PubMedGoogle Scholar
  103. 102.
    Jonas JB, Budde WM. Optic nerve head appearance in juvenile-onset chronic high-pressure glaucoma and normal-pressure glaucoma. Ophthalmology. 2000;107:704–711.PubMedGoogle Scholar
  104. 103.
    Anderson DR. Correlation of peripapillary anatomy with the disc damage and field abnormalities in glaucoma. In: Greve EL, Heijl A, eds. Fifth International Visual Field Symposium. 1982. The Hague: Dr. W. Junk; 1983:1-10. (Doc Ophthalmol Proc Ser; 35).Google Scholar
  105. 104.
    Kawano J, Tomidokoro A, Mayama C, et al. Correlation between hemifield visual field damage and corresponding parapapillary atrophy in normal-tension glaucoma. Am J Ophthalmol. 2006;142:40–45.PubMedGoogle Scholar
  106. 105.
    Buus DR, Anderson DR. Peripapillary crescents and halos in normal-tension glaucoma and ocular hypertension. Ophthalmology. 1989;96:16–19.PubMedGoogle Scholar
  107. 106.
    Araie M, Sekine M, Suzuki Y, et al. Factors contributing to the progression of visual field damage in eyes with normal-tension glaucoma. Ophthalmology. 1994;101:1440–1444.PubMedGoogle Scholar
  108. 107.
    Jonas JB, Xu L. Parapapillary chorioretinal atrophy in normal-pressure glaucoma. Am J Ophthalmol. 1993;115:501–505.PubMedGoogle Scholar
  109. 108.
    Chumbley LC, Brubaker RF. Low-tension glaucoma. Am J Ophthalmol. 1976;81:761–767.PubMedGoogle Scholar
  110. 109.
    Motolko M, Drance SM, Douglas GR. Visual field defects in low-tension glaucoma. Comparison of defects in low-tension glaucoma and chronic open angle glaucoma. Arch Ophthalmol. 1982;100:1074–1077.PubMedGoogle Scholar
  111. 110.
    Hitchings RA, Anderton SA. A comparative study of visual field defects seen in patients with low-tension glaucoma and chronic simple glaucoma. Br J Ophthalmol. 1983;67:818–821.PubMedGoogle Scholar
  112. 111.
    Caprioli J, Spaeth GL. Comparison of visual field defects in the low-tension glaucomas with those in the high-tension glaucomas. Am J Ophthalmol. 1984;97:730–737.PubMedGoogle Scholar
  113. 112.
    King D, Drance SM, Douglas G, et al. Comparison of visual field defects in normal-tension glaucoma and high-tension glaucoma. Am J Ophthalmol. 1986;101:204–207.PubMedGoogle Scholar
  114. 113.
    Drance SM, Douglas GR, Airaksinen JP, et al. Diffuse visual field loss in chronic open-angle and low-tension glaucoma. Am J Ophthalmol. 1987;104:577–580.PubMedGoogle Scholar
  115. 114.
    Chauhan BC, Drance SM, Douglas GR, et al. Visual field damage in normal-tension glaucoma and high-tension glaucoma. Am J Ophthalmol. 1989;108:636–642.PubMedGoogle Scholar
  116. 115.
    Crichton A, Drance SM, Douglas GR, et al. Unequal intraocular pressure and its relation to asymmetric visual field defects in low-tension glaucoma. Ophthalmology. 1989;96:1312–1314.PubMedGoogle Scholar
  117. 116.
    Haefliger IO, Hitchings RA. Relationship between asymmetry of visual field and intraocular pressure difference in an untreated normal (low) tension glaucoma population. Acta Ophthalmol (Copenh). 1990;68:564–567.Google Scholar
  118. 117.
    Araie M, Kitazawa M, Koseki N. Intraocular pressure and central visual field of normal tension gluacoma. Br J Ophthalmol. 1997;81:852–856.PubMedGoogle Scholar
  119. 118.
    Chauhan BC, Drance SM. The influence of intraocular pressure on visual field damage in patients with norml-tension and high-tension glaucoma. Invest Ophthalmol Vis Sci. 1990;31:2367–2372.PubMedGoogle Scholar
  120. 119.
    Zeiter JH, Shin DH, Juzych MS, et al. Visual field defects in patients with normal-tension glaucoma and patients with high-tension glaucoma. Am J Ophthalmol. 1992;114:758–763.PubMedGoogle Scholar
  121. 120.
    Araie M, Yamagami J, Suziki Y. Visual field defects in normal-tension and high-tension glaucoma. Ophthalmology. 1993;100:1808–1814.PubMedGoogle Scholar
  122. 121.
    Koseki N, Araie M, Suzuki Y, et al. Visual field damage proximal to fixation in normal- and high-tension glaucoma eyes. Jpn J Ophthalmol. 1995;39:274–283.PubMedGoogle Scholar
  123. 122.
    Poinoosawmy D, Fontana L, Wu JX, et al. Frequency of asymmetric visual field defects in normal-tension glaucoma and high-tension glaucoma. Ophthalmology. 1998;105:988–991.PubMedGoogle Scholar
  124. 123.
    Reyes TD, Tomita G, Kitazawa Y. Retinal nerve fiber layer thickness within the area of apparently normal visual field in normal-tension glaucoma with hemifield defect. J Glaucoma. 1998;7:329–335.PubMedGoogle Scholar
  125. 124.
    Choi J, Cho HS, Lee CH, et al. Scanning laser polarimetry with variable corneal compensation in the area of apparently normal hemifield in eyes with normal-tension glaucoma. Ophthalmology. 2006;113:1954–1960.PubMedGoogle Scholar
  126. 125.
    Suzuki J, Tomidokoro A, Araie M, et al. Visual field damage in normal-tension glaucoma patients with or without ischemic changes in cerebral magnetic resonance imageing. Jpn J Ophthalmol. 2004;48:340–344.PubMedGoogle Scholar
  127. 126.
    Viswanathan AC, Hitchings RA, Fitzke FW. How often do patients need visual field tests? Graefes Arch Clin Exp Ophthalmol. 1997;235:563–568.PubMedGoogle Scholar
  128. 127.
    Zalta AH. Use of the central 10° field and size V stimulus to evaluate and monitor small central islands of vision in end stage glaucoma. Br J Ophthalmol. 1991;75:151–154.PubMedGoogle Scholar
  129. 128.
    Anderton SA, Coakes RC, Poisoowanamy S, et al. The nature of visual loss in low tension glaucoma. In: Heijl A, Greve EL, eds. Proceedings of the 6th International Visual Field Symposium. Dordrecht, The Netherlands: Dr W Junk Publishers; 1985:393–386.Google Scholar
  130. 129.
    Gliklich RE, Steinemann WC, Spaeth GL. Visual field change in low-tension glaucoma over a five-year follow-up. Ophthalmology. 1989;96:316–320.PubMedGoogle Scholar
  131. 130.
    Collaborative Normal-Tension Glaucoma Study Group. Natural history of normal-tension glaucoma. Ophthalmology. 2001;108:247–253.Google Scholar
  132. 131.
    Araie M, Sekine M, Suzuki Y, et al. Factors contributing to the progression of visual field damage in eyes with normal-tension glaucoma. Ophthalmology. 1994;101:1440–1444.PubMedGoogle Scholar
  133. 132.
    Daugeliene L, Yamamoto T, Kitazawa Y. Risk factors for visual field damage progression in normal-tension glaucoma. Graefes Arch Clin Exp Ophthalmol. 1999;237:105–108.PubMedGoogle Scholar
  134. 133.
    Yamazaki Y, Drance S. The relationship between progression of visual field defects and retrobulbar circulation in patients with glaucoma. Am J Ophthalmol. 1997;124(3):287–295.PubMedGoogle Scholar
  135. 134.
    Tanaka C, Yamazaki Y, Yokoyama H. [Study on the progression of visual field defect and clinical factors in normal-tension glaucoma]. Nippon Ganka Gakkai Zasshi. 2000;104:590–595.PubMedGoogle Scholar
  136. 135.
    Araie M, Arai M, Koseki N, et al. Influence of myopic refraction on visual field defects in normal tension and primary open angle glaucoma. Jpn J Ophthalmol. 1995;39:60–64.PubMedGoogle Scholar
  137. 136.
    Mayama C, Suzuki Y, Araie M, et al. Myopia and advanced-stage open-angle glaucoma. Ophthalmology. 2002;109:2072–2077.PubMedGoogle Scholar
  138. 137.
    Perkins ES, Phelps CD. Open angle glaucoma, ocular hypertension, low-tension glaucoma and refraction. Arch Ophthalmol. 1982;100:1464–1467.PubMedGoogle Scholar
  139. 138.
    Corbett JJ, Phelps CD, Eslinger P, et al. The neurologic evaluation of patients with low-tension glaucoma. Invest Ophthalmol Vis Sci. 1985;26:11011104.Google Scholar
  140. 139.
    Phelps CD, Corbett JJ. Migraine and low-tension glaucoma. A case-control study. Invest Ophthalmol Vis Sci. 1985;26:1105–1108.PubMedGoogle Scholar
  141. 140.
    Usui T, Iwata K, Motohiro S, et al. Prevalence of migraine in low-tension glaucoma and primary open-angle glaucoma. Br J Ophthalmol. 1991;75:224–226.PubMedGoogle Scholar
  142. 141.
    Lewis RA, Vijayan N, Watson CW, et al. Visual field loss in migraine. Ophthalmology. 1989;96:321–326.PubMedGoogle Scholar
  143. 142.
    Comoğlu S, Yarangümeli A, Köz OG, et al. Glaucomatous visual field defects in patients with migraine. J Neurol. 2003;250:201–206.PubMedGoogle Scholar
  144. 143.
    Drance S, Anderson DR, Schulzer M, et al. Risk factors for progression of visual field abnormalities in normal-tension glaucoma. Am J Ophthalmol. 2001;131:699–708.PubMedGoogle Scholar
  145. 144.
    Walsh JT, Montplaisir J. Familial glaucoma with sleep apnoea: a new syndrome? Thorax. 1982;37:845–849.PubMedGoogle Scholar
  146. 145.
    Mojon DS, Mathis J, Zulauf M, et al. Optic neuropathy associated with sleep apnea syndrome. Ophthalmology. 1998;105:874–877.PubMedGoogle Scholar
  147. 146.
    Mojon DS, Hess CW, Goldblum D, et al. High prevalence of glaucoma in patients with sleep apnea syndrome. Ophthalmology. 1999;106:1009–1012.PubMedGoogle Scholar
  148. 147.
    Goldblum D, Mathis J, Böhnke M, et al. [Nocturnal measurements of intraocular pressure in patients with normal-tension glaucoma and sleep apnea syndrome]. Klin Monatsbl Augenheilkd. 2000;216:246–249.PubMedGoogle Scholar
  149. 148.
    Marcus DM, Costarides AP, Gokhale P, et al. Sleep disorders: a risk factor for normal-tension glaucoma? J Glaucoma. 2001;10:177–183.PubMedGoogle Scholar
  150. 149.
    Kremmer S, Selbach JM, Ayertey HD, et al. [Normal tension glaucoma, sleep apnea syndrome and nasal continuous positive airway pressure therapy – case report with a review of the literature]. Klin Monatsbl Augenheilkd. 2001;218:263–268.PubMedGoogle Scholar
  151. 150.
    Mojon DS, Hess CW, Goldblum D, et al. Normal-tension glaucoma is associated with sleep apnea syndrome. Ophthalmologica. 2002;216:180–184.PubMedGoogle Scholar
  152. 151.
    Kargi SH, Altin R, Koksai M, et al. Retinal nerve fibre layer measurements are reduced in patients with obstructive sleep apnoea syndrome. Eye. 2005;19:575–579.PubMedGoogle Scholar
  153. 152.
    Tsang CS, Chong SL, Ho DK, et al. Moderate to severe obstructive sleep apnoea patients is associated with a higher incidence of visual field defect. Eye. 2006;20:38–42.PubMedGoogle Scholar
  154. 153.
    Geyer O, Cohen N, Segev E, et al. The prevalence of glaucoma in patients with sleep apnea syndrome: same as in the general population. Am J Ophthalmol. 2003;136:1093–1096.PubMedGoogle Scholar
  155. 154.
    Girkin CA, McGwin G Jr, McNeal SF, et al. Is there an association between pre-existing sleep apnoea and the development of glaucoma? Br J Ophthalmol. 2006;90:679–681.PubMedGoogle Scholar
  156. 155.
    Sergi M, Salerno DE, Rizzi M, et al. Prevalence of normal tension glaucoma in obstructive sleep apnea syndrome patients. J Glaucoma. 2007;16:42–46.PubMedGoogle Scholar
  157. 156.
    Karakucuk S, Goktas S, Aksu M, et al. Ocular blood flow in patients with obstructive sleep apnea syndrome (OSAS). Graefes Arch Clin Exp Ophthalmol. 2008;246:129–134.PubMedGoogle Scholar
  158. 157.
    Kass M. The treatment of normal-tension glaucoma. In Peril to the nerve – glaucoma and clinical neuro-ophthalmology. In: Leader BJ, Calkwood JC, eds. Proceedings of the 45th annual symposium of the New Orleans academy of ophthalmology. The Hague, The Netherlands: Kugler Publications; 1998:61–72.Google Scholar
  159. 158.
    Hoyng PFJ, Kitazawa Y. Medical treatment of normal-tension glaucoma. Surv Ophthalmol. 2002;47(suppl 1):S116-S124.PubMedGoogle Scholar
  160. 159.
    Kitazawa Y, Yamamoto T. Contemporary treatment of normal-tension glaucoma. Ophthalmol Clin N Am. 1991;4:889–895.Google Scholar
  161. 160.
    Cantor L. Achieving low target pressures with today’s glaucoma medications. Surv Ophthalmol. 2003;48(suppl 1):S8-S16.PubMedGoogle Scholar
  162. 161.
    Ngan R, Lam DL, Mudumbai RC, et al. Risk factors for noncompliance with follow-up among normal-tension glaucoma suspects. Am J Ophthalmol. 2007;144:310–311.PubMedGoogle Scholar
  163. 162.
    Ticho U, Nesher R. Laser trabeculoplasty in glaucoma. Ten-year evaluation. Arch Ophthalmol. 1989;107:844–846.PubMedGoogle Scholar
  164. 163.
    Demailly P, Lehrer M, Kretz G. [Argon laser trabeculoretraction in chronic open-angle glaucoma with normal pressure. A prospective study on the tonometric and perimetric effect]. J Fr Ophtalmol. 1989;12:183–189.PubMedGoogle Scholar
  165. 164.
    Nakayama T. An analysis of progressive LTG at our clinic. Folia Ophthalmol Jpn. 1987;38:1895–1901.Google Scholar
  166. 165.
    de Jong N, Greve EL, Hoyng PFJ, et al. Results of a filtering procedure in low tension glaucoma. Int Ophthalmol. 1989;13:131–138.PubMedGoogle Scholar
  167. 166.
    Schwartz AL, Perman KI, Whitten M. Argon laser trabeculoplasty in progressive low-tension glaucoma. Ann Ophthalmol. 1984;16:560–562.PubMedGoogle Scholar
  168. 167.
    Lee AC, Mosaed S, Weinreb RN, et al. Effect of laser trabeculoplasty on nocturnal intraocular pressure in medically treated glaucoma patients. Ophthalmology. 2007;114:666–670.PubMedGoogle Scholar
  169. 168.
    Johnson PB, Katz LJ, Rhee DJ. Selective laser trabeculoplasty: predictive value of early intraocular pressure measurements for success at 3 months. Br J Ophthalmol. 2006;90:741–743.PubMedGoogle Scholar
  170. 168a.
    Schulzer MD. The Normal Tension Glaucoma Study Group. Intraocular pressure reduction in normal-tension glaucoma patients. Opthalmology. 1992;99:1468–1470.Google Scholar
  171. 169.
    Ehrnrooth P, Lehto I, Puska P, et al. Phacoemulsification in trabeculectomized eyes. Acta Ophthalmol Scand. 2005;83:561–566.PubMedGoogle Scholar
  172. 170.
    Inal A, Bayraktar S, Inal B, et al. Intraocular pressure control after clear corneal phacoemulsification in eyes with previous trabeculectomy: a controlled study. Acta Ophthalmol Scand. 2005;83:554–560.PubMedGoogle Scholar
  173. 171.
    Rebolleda G, Muñoz-Negrete FJ. Phacoemulsification in eyes with functioning filtering blebs: a prospective study. Ophthalmology. 2002;109:2248–2255.PubMedGoogle Scholar
  174. 172.
    Abedin S, Simmons RJ, Grant WM. Progressive low-tension glaucoma: treatment to stop glaucomatous cupping and field loss when these progress despite normal intraocular pressure. Ophthalmology. 1982;89:1–6.PubMedGoogle Scholar
  175. 173.
    de Jong N, Greve EL, Hoyng PF, et al. Results of a filtering procedure in low tension glaucoma. Int Ophthalmol. 1989;13:131–138.PubMedGoogle Scholar
  176. 174.
    Hitchings RA, Wu J, Poinoosawmy D, et al. Surgery for normal tension glaucoma. Br J Ophthalmol. 1995;79:402–406.PubMedGoogle Scholar
  177. 175.
    Yamamoto T, Ichien M, Suemori-Matushita H, et al. [Trabeculectomy for normal-tension glaucoma]. Nippon Ganka Gakkai Zasshi. 1994;98:579–583.PubMedGoogle Scholar
  178. 176.
    Koseki N, Araie M, Shirato S, et al. Effect of trabeculectomy on visual field performance in central 30 degrees field in progressive normal-tension glaucoma. Ophthalmology. 1997;104:197–201.PubMedGoogle Scholar
  179. 177.
    Bhandari A, Crabb DP, Poinoosawmy D, et al. Effect of surgery on visual field progression in normal-tension glaucoma. Ophthalmology. 1997;104:1131–1137.PubMedGoogle Scholar
  180. 178.
    Hagiwara Y, Yamamoto T, Kitazawa Y. The effect of mitomycin C trabeculectomy on the progression of visual field defect in normal-tension glaucoma. Graefes Arch Clin Exp Ophthalmol. 2000;238:232–236.PubMedGoogle Scholar
  181. 179.
    Membrey WL, Bunce C, Poinoosawmy DP, et al. Glaucoma surgery with or without adjunctive antiproliferaties in normal tension glaucoma: 2 Visual field progression. Br J Ophthalmol. 2001;85:696–701.PubMedGoogle Scholar
  182. 180.
    Shigeeda T, Tomidokoro A, Araie M, et al. Long-term follow-up of visual field progression after trabeculectomy in progressive normal-tension glaucoma. Ophthalmology. 2002;109:766–770.PubMedGoogle Scholar
  183. 181.
    Jongsareejit B, Tomidokoro A, Mimura T, et al. Efficacy and complications after trabeculectomy with mitomycin C in normal-tension glaucoma. Jpn J Ophthalmol. 2005;49:223–227.PubMedGoogle Scholar
  184. 182.
    Miyake T, Sawada A, Yamamoto T, et al. Incidence of disc hemorrhages in open-angle glaucoma before and after trabeculectomy. J Glaucoma. 2006;15:164–171.PubMedGoogle Scholar
  185. 183.
    Law SK, Nguyen AM, Coleman AL, et al. Severe loss of central vision in patients with advanced glaucoma undergoing trabeculectomy. Arch Ophthalmol. 2007;125:1044–1050.PubMedGoogle Scholar
  186. 184.
    Kitazawa Y, Shirai H, Go FJ. The effect of Ca2(+)-antagonist on visual field in low-tension glaucoma. Graefes Arch Clin Exp Ophthalmol. 1989;227:408–412.PubMedGoogle Scholar
  187. 185.
    Lumme P, Tuulonen A. Neuroretinal rim area in low tension glaucoma: effect of nifedipine and acetazolamide compared to no treatment. Acta Ophthalmol. 1991;69:293–298.Google Scholar
  188. 186.
    Netland PA, Chaturvedi N, Dreyer EB. Calcium channel blockers in the management of low-tension and open-angle glaucoma. Am J Ophthalmol. 1993;115:608–613.PubMedGoogle Scholar
  189. 187.
    Liu S, Araujo SV, Spaeth GL, et al. Lack of effect of calcium channel blockers on open-angle glaucoma. J Glaucoma. 1996;5:187–190.PubMedGoogle Scholar
  190. 188.
    Gaspar AZ, Flammer J, Hendrickson P. Influence of nifedipine on the visual fields of patients with optic-nerve-head disease. Eur J Ophthalmol. 1994;4:24–28.PubMedGoogle Scholar
  191. 189.
    Harris A, Evans DW, Cantor LB, et al. Hemodynamic and visual function effects of oral nifedipine in patients with normal-tension glaucoma. Am J Ophthalmol. 1997;124:296–302.PubMedGoogle Scholar
  192. 190.
    Sawada A, Kitazawa Y, Yamamoto T, et al. Prevention of visual field defect progression with brovincamine in eyes normal-tension. Ophthalmology. 1996;103:283–288.PubMedGoogle Scholar
  193. 191.
    Koseki N, Araie M, Yamagami J, et al. Effects of brovincamine on visual field damage in patients with normal-tension glaucoma with low-normal intraocular pressure. J Glaucoma. 1999;8:117–123.PubMedGoogle Scholar
  194. 192.
    Yamamoto T, Niwa Y, Kawakami H, et al. The effect of nilvadipine, a calcium-channel blocker, on the hemodynamics of retrobulbar vessels in normal-tension glaucoma. J Glaucoma. 1998;7:301–305.PubMedGoogle Scholar
  195. 193.
    Tomita G, Niwa Y, Shinohara H, et al. Changes in optic nerve head blood flow and retrobulbar hemodynamics following calcium-channel blocker treatment normal-tension glaucoma. Int Ophthalmol. 1999;23:3–10.PubMedGoogle Scholar
  196. 194.
    Tomita K, Araie M, Tamaki Y, et al. Effects of nilvadipine, a calcium antagonist, on rabbit ocular circulation and optic nerve head circulation in NTG subjects. Invest Ophthalmol Vis Sci. 1999;40:1144–1151.PubMedGoogle Scholar
  197. 195.
    Niwa Y, Yamamoto T, Harris A, et al. Relationship between the effect of carbon dioxide inhalation or nilvadipine on orbital blood flow in normal-tension glaucoma. J Glaucoma. 2000;9:262–267.PubMedGoogle Scholar
  198. 196.
    Bose S, Piltz J, Breton ME. Nimodipine, a centrally active calcium channel antagonist, exerts a beneficial effect on contrast sensitivity in patients with normal-tension glaucoma and in control subjects. Ophthalmology. 1995;102:1236–1241.PubMedGoogle Scholar
  199. 197.
    Piltz J, Bose S, Lanchoney D. The effect of nimodipine, a centrally active calcium channel antagonist, on visual function and macular blood flow in patients with normal-tension glaucoma and control subjects. J Glaucoma. 1998;7:336–340.PubMedGoogle Scholar
  200. 198.
    Boehm AG, Breidenbach KA, Pillunat LE, et al. Visual function and perfusion of the optic nerve head after application of centrally acting calcium-channel blockers. Graefes Arch Clin Exp Ophthalmol. 2003;241:34–38.PubMedGoogle Scholar
  201. 199.
    Michalk F, Michelson G, Harazny J, et al. Single-dose nimodipine normalizes impaired retinal circulation in normal tension glaucoma. J Glaucoma. 2004;13:158–162.PubMedGoogle Scholar
  202. 200.
    Luksch A, Rainer G, Koyuncu D, et al. Effect of nimodipine on ocular blood flow and colour contrast sensitivity in patients with normal tension glaucoma. Br J Ophthalmol. 2005;89:21–25.PubMedGoogle Scholar
  203. 201.
    Müskens RPHM, de Voogd S, Wolfs RCW, et al. Systemic antihypertensive medication and incident open-angle glaucoma. Ophthalmology. 2007;114:2221–2226.PubMedGoogle Scholar
  204. 202.
    Lipton SA. Pathologically-activated therapeutics for neuroprotection: mechanism of NMDA receptor block by memantine and S-nitrosylation. Curr Drug Targets. 2007;8:621–632.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Bruce E. PrumJr.
    • 1
  1. 1.Department of OphthalmologyUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations