Glaucoma Risk Factors: Intraocular Pressure

  • Nils A. Loewen
  • Angelo P. Tanna


For the first time, glaucoma was described as a blinding disease associated with high intraocular pressure (IOP) by the Persian physician Ali ibn Rabban at-Tabari (810-861 C.E.) in the writings Firdaws al hikma (Paradise of Wisdom).1 This association was later pointed out by Richard Banister of England in his 1622 A treatise of one hundred and thirteen diseases of eye: “If one feele the Eye by rubbing upon the Eie-lids, that the Eye be growne more solid and hard than naturally it should be… the humour settled in the hollow nerves be growne to any solid or hard substance, it is not possible to be cured.”2 In the 1800s, the Dutch ophthalmologist Franciscus C. Donders coined the expression “simple glaucoma” for increased IOP occurring without any inflammatory symptoms.


Central Corneal Thickness Primary Open Angle Glaucoma Glaucoma Progression Argon Laser Trabeculoplasty Ocular Pulse Amplitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Meyerhof M. Ali at-Tabari's “Paradise of Wisdom,” One of the Oldest Arabic Compendiums of Medicine. Cambridge: Cambridge University Press; 1921:37–40.Google Scholar
  2. 2.
    Sorsby A. Modern Ophthalmology. Washington, DC: Butterworth; 1963.Google Scholar
  3. 3.
    Sommer A, Tielsch JM, Katz J, et al. Relationship between intraocular pressure and primary open angle glaucoma among white and black Americans. The Baltimore Eye Survey. Arch Ophthalmol. 1991;109:1090–1095.PubMedGoogle Scholar
  4. 4.
    Leske MC, Connell AM, Wu SY, Hyman LG, Schachat AP. Risk factors for open-angle glaucoma. The Barbados Eye Study. Arch Ophthalmol. 1995;113:918–924.PubMedGoogle Scholar
  5. 5.
    Armaly MF, Krueger DE, Maunder L, et al. Biostatistical analysis of the collaborative glaucoma study. I. Summary report of the risk factors for glaucomatous visual-field defects. Arch Ophthalmol. 1980;98:2163–2171.PubMedGoogle Scholar
  6. 6.
    Eddy DM, Sanders LE, Eddy JF. The value of screening for glaucoma with tonometry. Surv Ophthalmol. 1983;28:194–205.PubMedCrossRefGoogle Scholar
  7. 7.
    Nemesure B, Honkanen R, Hennis A, Wu SY, Leske MC. Incident open-angle glaucoma and intraocular pressure. Ophthalmology. 2007;114:1810–1815.PubMedCrossRefGoogle Scholar
  8. 8.
    Gordon MO, Kass MA. The Ocular Hypertension Treatment Study: design and baseline description of the participants. Arch Ophthalmol. 1999;117:573–583.PubMedGoogle Scholar
  9. 9.
    Leske MC, Heijl A, Hyman L, Bengtsson B. Early Manifest Glaucoma Trial: design and baseline data. Ophthalmology. 1999;106:2144–2153.PubMedCrossRefGoogle Scholar
  10. 10.
    Ritch R. Complementary therapy for the treatment of glaucoma: a perspective. Ophthalmol Clin North Am. 2005;18:597–609.PubMedGoogle Scholar
  11. 11.
    Liu S, Araujo SV, Spaeth GL, Katz LJ, Smith M. Lack of effect of calcium channel blockers on open-angle glaucoma. J Glaucoma. 1996;5:187–190.PubMedCrossRefGoogle Scholar
  12. 12.
    Yucel YH, Gupta N, Zhang Q, Mizisin AP, Kalichman MW, Weinreb RN. Memantine protects neurons from shrinkage in the lateral geniculate nucleus in experimental glaucoma. Arch Ophthalmol. 2006;124:217–225.PubMedCrossRefGoogle Scholar
  13. 13.
    Hare WA, WoldeMussie E, Lai RK, et al. Efficacy and safety of memantine treatment for reduction of changes associated with experimental glaucoma in monkey, I: Functional measures. Invest Ophthalmol Vis Sci. 2004;45:2625–2639.PubMedCrossRefGoogle Scholar
  14. 14.
    Hare WA, WoldeMussie E, Weinreb RN, et al. Efficacy and safety of memantine treatment for reduction of changes associated with experimental glaucoma in monkey. II. Structural measures. Invest Ophthalmol Vis Sci. 2004;45:2640–2651.PubMedCrossRefGoogle Scholar
  15. 15.
    Sheldon WG, Warbritton AR, Bucci TJ, Turturro A. Glaucoma in food-restricted and ad libitum-fed DBA/2NNia mice. Lab Anim Sci. 1995;45:508–518.PubMedGoogle Scholar
  16. 16.
    Rhee DJ, Katz LJ, Spaeth GL, Myers JS. Complementary and alternative medicine for glaucoma. Surv Ophthalmol. 2001;46:43–55.PubMedCrossRefGoogle Scholar
  17. 17.
    Goldmann H. Out-flow pressure, minute volume and resistance of the anterior chamber flow in man. Docu Ophthalmol. 1951;5-6:278–356.CrossRefGoogle Scholar
  18. 18.
    Haddad A, De Almeida JC, Laicine EM, Fife RS, Pelletier G. The origin of the intrinsic glycoproteins of the rabbit vitreous body: an immunohistochemical and autoradiographic study. Exp Eye Res. 1990;50:555–561.PubMedCrossRefGoogle Scholar
  19. 19.
    Morrison JC, Van Buskirk EM. Anterior collateral circulation in the primate eye. Ophthalmology. 1983;90:707–715.PubMedGoogle Scholar
  20. 20.
    Morrison JC, Van Buskirk EM. Ciliary process microvasculature of the primate eye. Am J Ophthalmol. 1984;97:372–383.PubMedGoogle Scholar
  21. 21.
    Funk R, Rohen JW. SEM studies of the functional morphology of the ciliary process vasculature in the cynomolgus monkey: reactions after application of epinephrine. Exp Eye Res. 1988;47:653–663.PubMedCrossRefGoogle Scholar
  22. 22.
    Funk R, Rohen JW. Scanning electron microscopic study on the vasculature of the human anterior eye segment, especially with respect to the ciliary processes. Exp Eye Res. 1990;51:651–661.PubMedCrossRefGoogle Scholar
  23. 23.
    Raviola G, Raviola E. Intercellular junctions in the ciliary epithelium. Invest Ophthalmol Vis Sci. 1978;17:958–981.PubMedGoogle Scholar
  24. 24.
    Hirsch M, Montcourrier P, Arguillere P, Keller N. The structure of tight junctions in the ciliary epithelium. Curr Eye Res. 1985;4:493–501.PubMedCrossRefGoogle Scholar
  25. 25.
    Freddo TF. Shifting the paradigm of the blood-aqueous barrier. Exp Eye Res. 2001;73:581–592.PubMedCrossRefGoogle Scholar
  26. 26.
    Bill A, Phillips CI. Uveoscleral drainage of aqueous humour in human eyes. Exp Eye Res. 1971;12:275–281.PubMedCrossRefGoogle Scholar
  27. 27.
    Weinreb RN. Uveoscleral outflow: the other outflow pathway. J Glaucoma. 2000;9:343–345.PubMedGoogle Scholar
  28. 28.
    Maepea O, Bill A. Pressures in the juxtacanalicular tissue and Schlemm’s canal in monkeys. Exp Eye Res. 1992;54:879–883.PubMedCrossRefGoogle Scholar
  29. 29.
    Knepper PA, Farbman AI, Telser AG. Aqueous outflow pathway glycosaminoglycans. Exp Eye Res. 1981;32:265–277.PubMedCrossRefGoogle Scholar
  30. 30.
    Knepper PA, Goossens W, Hvizd M, Palmberg PF. Glycosaminoglycans of the human trabecular meshwork in primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 1996;37:1360–1367.PubMedGoogle Scholar
  31. 31.
    Grierson I, Lee WR. Pressure-induced changes in the ultrastructure of the endothelium lining Schlemm's canal. Am J Ophthalmol. 1975;80:863–884.PubMedGoogle Scholar
  32. 32.
    Ethier CR, Coloma FM, Sit AJ, Johnson M. Two pore types in the inner-wall endothelium of Schlemm’s canal. Invest Ophthalmol Vis Sci. 1998;39:2041–2048.PubMedGoogle Scholar
  33. 33.
    de Kater AW, Spurr-Michaud SJ, Gipson IK. Localization of smooth muscle myosin-containing cells in the aqueous outflow pathway. Invest Ophthalmol Vis Sci. 1990;31:347–353.PubMedGoogle Scholar
  34. 34.
    Ascher KW. Aqueous veins and their significance for pathogenesis of glaucoma. Arch Ophthal. 1949;42:66–76.PubMedGoogle Scholar
  35. 35.
    Bill A. Uveoscleral drainage of aqueous humor: physiology and pharmacology. Prog Clin Biol Res. 1989;312:417–427.PubMedGoogle Scholar
  36. 36.
    Bill A. Some aspects of aqueous humour drainage. Eye. 1993;7(Pt 1):14–19.PubMedGoogle Scholar
  37. 37.
    Jocson VL, Sears ML. Experimental aqueous perfusion in enucleated human eyes. Results after obstruction of Schlemm’s canal. Arch Ophthalmol. 1971;86:65–71.PubMedGoogle Scholar
  38. 38.
    Toris CB, Koepsell SA, Yablonski ME, Camras CB. Aqueous humor dynamics in ocular hypertensive patients. J Glaucoma. 2002;11:253–258.PubMedCrossRefGoogle Scholar
  39. 39.
    Toris CB, Camras CB, Yablonski ME. Effects of PhXA41, a new prostaglandin F2 alpha analog, on aqueous humor dynamics in human eyes. Ophthalmology. 1993;100:1297–1304.PubMedGoogle Scholar
  40. 40.
    Brubaker RF, Schoff EO, Nau CB, Carpenter SP, Chen K, Vandenburgh AM. Effects of AGN 192024, a new ocular hypotensive agent, on aqueous dynamics. Am J Ophthalmol. 2001;131:19–24.PubMedCrossRefGoogle Scholar
  41. 41.
    Green K, Bountra C, Georgiou P, House CR. An electrophysiologic study of rabbit ciliary epithelium. Invest Ophthalmol Vis Sci. 1985;26:371–381.PubMedGoogle Scholar
  42. 42.
    Edelman JL, Sachs G, Adorante JS. Ion transport asymmetry and functional coupling in bovine pigmented and nonpigmented ciliary epithelial cells. Am J Physiol. 1994;266:C1210-C1221.PubMedGoogle Scholar
  43. 43.
    Grant WM, Trotter RR. Diamox (acetazoleamide) in treatment of glaucoma. AMA Arch Ophthalmol. 1954;51:735–739.PubMedGoogle Scholar
  44. 44.
    Yablonski ME, Zimmerman TJ, Waltman SR, Becker B. A fluorophotometric study of the effect of topical timolol on aqueous humor dynamics. Exp Eye Res. 1978;27:135–142.PubMedCrossRefGoogle Scholar
  45. 45.
    Lee DA, Brubaker RF. Effect of phenylephrine on aqueous humor flow. Curr Eye Res. 1982;2:89–92.PubMedCrossRefGoogle Scholar
  46. 46.
    Grierson I, Lee WR, Abraham S. The effects of topical pilocarpine on the morphology of the outflow apparatus of the baboon (Papio cynocephalus). Invest Ophthalmol Vis Sci. 1979;18:346–355.PubMedGoogle Scholar
  47. 47.
    Rolim de Moura C, Paranhos A Jr, Wormald R. Laser trabeculoplasty for open angle glaucoma. Cochrane Database Syst Rev 2007;CD003919Google Scholar
  48. 48.
    Francis BA, See RF, Rao NA, Minckler DS, Baerveldt G. Ab interno trabeculectomy: development of a novel device (Trabectome) and surgery for open-angle glaucoma. J Glaucoma. 2006;15:68–73.PubMedCrossRefGoogle Scholar
  49. 49.
    Gedde SJ, Schiffman JC, Feuer WJ, Herndon LW, Brandt JD, Budenz DL. Treatment outcomes in the tube versus trabeculectomy study after one year of follow-up. Am J Ophthalmol. 2007;143:9–22.PubMedCrossRefGoogle Scholar
  50. 50.
    Edmunds B, Thompson JR, Salmon JF, Wormald RP. The National Survey of Trabeculectomy. III. Early and late complications. Eye. 2002;16:297–303.PubMedCrossRefGoogle Scholar
  51. 51.
    Anderson DR. Collaborative normal tension glaucoma study. Curr Opin Ophthalmol. 2003;14:86–90.PubMedCrossRefGoogle Scholar
  52. 52.
    Anderson DR, Drance SM, Schulzer M. Factors that predict the benefit of lowering intraocular pressure in normal tension glaucoma. Am J Ophthalmol. 2003;136:820–829.PubMedCrossRefGoogle Scholar
  53. 53.
    Anderson DR, Drance SM, Schulzer M. Natural history of normal-tension glaucoma. Ophthalmology. 2001;108:247–253.PubMedCrossRefGoogle Scholar
  54. 54.
    The Advanced Glaucoma Intervention Study (AGIS): 1. Study design and methods and baseline characteristics of study patients. Control Clin Trials 1994;15:299–325CrossRefGoogle Scholar
  55. 55.
    The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration. The AGIS Investigators. Am J Ophthalmol 2000;130:429–440.CrossRefGoogle Scholar
  56. 56.
    Musch DC, Lichter PR, Guire KE, Standardi CL. The Collaborative Initial Glaucoma Treatment Study: study design, methods, and baseline characteristics of enrolled patients. Ophthalmology. 1999;106:653–662.PubMedCrossRefGoogle Scholar
  57. 57.
    Lichter PR, Musch DC, Gillespie BW, et al. Interim clinical outcomes in the Collaborative Initial Glaucoma Treatment Study comparing initial treatment randomized to medications or surgery. Ophthalmology. 2001;108:1943–1953.PubMedCrossRefGoogle Scholar
  58. 58.
    Musch DC, Gillespie BW, Niziol LM, et al. Cataract extraction in the collaborative initial glaucoma treatment study: incidence, risk factors, and the effect of cataract progression and extraction on clinical and quality-of-life outcomes. Arch Ophthalmol. 2006;124:1694–1700.PubMedCrossRefGoogle Scholar
  59. 59.
    Feiner L, Piltz-Seymour JR. Collaborative Initial Glaucoma Treat­ment Study: a summary of results to date. Curr Opin Ophthalmol. 2003;14:106–111.PubMedCrossRefGoogle Scholar
  60. 60.
    Kass MA, Heuer DK, Higginbotham EJ, et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120:701-713. discussion 829–730.PubMedGoogle Scholar
  61. 61.
    Kymes SM, Kass MA, Anderson DR, Miller JP, Gordon MO. Management of ocular hypertension: a cost-effectiveness approach from the Ocular Hypertension Treatment Study. Am J Ophthalmol. 2006;141:997–1008.PubMedCrossRefGoogle Scholar
  62. 62.
    Gordon MO, Beiser JA, Brandt JD, et al. The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120:714-720. discussion 829–730.PubMedGoogle Scholar
  63. 63.
    Higginbotham EJ, Gordon MO, Beiser JA, et al. The Ocular Hypertension Treatment Study: topical medication delays or prevents primary open-angle glaucoma in African American individuals. Arch Ophthalmol. 2004;122:813–820.PubMedCrossRefGoogle Scholar
  64. 64.
    Budenz DL, Anderson DR, Feuer WJ, et al. Detection and prognostic significance of optic disc hemorrhages during the Ocular Hypertension Treatment Study. Ophthalmology. 2006;113:2137–2143.PubMedCrossRefGoogle Scholar
  65. 65.
    Miglior S, Zeyen T, Pfeiffer N, Cunha-Vaz J, Torri V, Adamsons I. The European glaucoma prevention study design and baseline description of the participants. Ophthalmology. 2002;109:1612–1621.PubMedCrossRefGoogle Scholar
  66. 66.
    Gordon MO, Torri V, Miglior S, et al. Validated prediction model for the development of primary open-angle glaucoma in individuals with ocular hypertension. Ophthalmology. 2007;114:10–19.PubMedCrossRefGoogle Scholar
  67. 67.
    Herman DC, Gordon MO, Beiser JA, et al. Topical ocular hypotensive medication and lens opacification: evidence from the ocular hypertension treatment study. Am J Ophthalmol. 2006;142:800–810.PubMedCrossRefGoogle Scholar
  68. 68.
    Quigley HA. European glaucoma prevention study. Ophthalmology. 2005;112:1642–1643.PubMedCrossRefGoogle Scholar
  69. 69.
    Leske MC, Heijl A, Hussein M, Bengtsson B, Hyman L, Komaroff E. Factors for glaucoma progression and the effect of treatment: the early manifest glaucoma trial. Arch Ophthalmol. 2003;121:48–56.PubMedGoogle Scholar
  70. 70.
    Bengtsson B, Leske MC, Hyman L, Heijl A. Fluctuation of intraocular pressure and glaucoma progression in the early manifest glaucoma trial. Ophthalmology. 2007;114:205–209.PubMedCrossRefGoogle Scholar
  71. 71.
    Leske MC, Heijl A, Hyman L, Bengtsson B, Dong L, Yang Z. Predictors of long-term progression in the early manifest glaucoma trial. Ophthalmology. 2007;114:1965–1972.PubMedCrossRefGoogle Scholar
  72. 72.
    Oliver JE, Hattenhauer MG, Herman D, et al. Blindness and glaucoma: a comparison of patients progressing to blindness from glaucoma with patients maintaining vision. Am J Ophthalmol. 2002;133:764–772.PubMedCrossRefGoogle Scholar
  73. 73.
    Hattenhauer MG, Johnson DH, Ing HH, et al. The probability of blindness from open-angle glaucoma. Ophthalmology. 1998;105:2099–2104.PubMedCrossRefGoogle Scholar
  74. 74.
    Jonas JB, Holbach L. Central corneal thickness and thickness of the lamina cribrosa in human eyes. Invest Ophthalmol Vis Sci. 2005;46:1275–1279.PubMedCrossRefGoogle Scholar
  75. 75.
    Pakravan M, Parsa A, Sanagou M, Parsa CF. Central corneal thickness and correlation to optic disc size: a potential link for susceptibility to glaucoma. Br J Ophthalmol. 2007;91:26–28.PubMedCrossRefGoogle Scholar
  76. 76.
    Mansberger SL, Cioffi GA. The probability of glaucoma from ocular hypertension determined by ophthalmologists in comparison to a risk calculator. J Glaucoma. 2006;15:426–431.PubMedCrossRefGoogle Scholar
  77. 77.
    Wessels IF, Oh Y. Tonometer utilization, accuracy, and calibration under field conditions. Arch Ophthalmol. 1990;108:1709–1712.PubMedGoogle Scholar
  78. 78.
    van der Jagt LH, Jansonius NM. Three portable tonometers, the TGDc-01, the ICARE and the Tonopen XL, compared with each other and with Goldmann applanation tonometry*. Ophthalmic Physiol Opt. 2005;25:429–435.PubMedCrossRefGoogle Scholar
  79. 79.
    Moses RA. The Goldmann applanation tonometer. Am J Ophthalmol. 1958;46:865–869.PubMedGoogle Scholar
  80. 80.
    Goldmann H. Schmidt T [Applanation tonometry]. Ophthalmologica. 1957;134:221–242.PubMedCrossRefGoogle Scholar
  81. 81.
    Dielemans I, Vingerling JR, Hofman A, Grobbee DE, de Jong PT. Reliability of intraocular pressure measurement with the Goldmann applanation tonometer in epidemiological studies. Graefes Arch Clin Exp Ophthalmol. 1994;232:141–144.PubMedCrossRefGoogle Scholar
  82. 82.
    Whitacre MM, Stein R. Sources of error with use of Goldmann-type tonometers. Surv Ophthalmol. 1993;38:1–30.PubMedCrossRefGoogle Scholar
  83. 83.
    Ehlers N, Bramsen T, Sperling S. Applanation tonometry and central corneal thickness. Acta Ophthalmol. 1975;53:34–43.Google Scholar
  84. 84.
    Doughty MJ, Zaman ML. Human corneal thickness and its impact on intraocular pressure measures: a review and meta-analysis approach. Surv Ophthalmol. 2000;44:367–408.PubMedCrossRefGoogle Scholar
  85. 85.
    Shimmyo M, Ross AJ, Moy A, Mostafavi R. Intraocular pressure, Goldmann applanation tension, corneal thickness, and corneal curvature in Caucasians, Asians, Hispanics, and African Americans. Am J Ophthalmol. 2003;136:603–613.PubMedCrossRefGoogle Scholar
  86. 86.
    Feltgen N, Leifert D, Funk J. Correlation between central corneal thickness, applanation tonometry, and direct intracameral IOP readings. Br J Ophthalmol. 2001;85:85–87.PubMedCrossRefGoogle Scholar
  87. 87.
    Iliev ME, Meyenberg A, Buerki E, Shafranov G, Shields MB. Novel pressure-to-cornea index in glaucoma. Br J Ophthalmol. 2007;91:1364–1368.PubMedCrossRefGoogle Scholar
  88. 88.
    Mackay RS, Marg E. Fast, automatic, electronic tonometers based on an exact theory. Acta Ophthalmol. 1959;37:495–507.Google Scholar
  89. 89.
    Mackay RS, Marg E, Oechsli R. Automatic tonometer with exact theory: various biological applications. Science. 1960;131:1668–1669.PubMedCrossRefGoogle Scholar
  90. 90.
    Eisenberg DL, Sherman BG, McKeown CA, Schuman JS. Tonometry in adults and children. A manometric evaluation of pneumatonometry, applanation, and TonoPen in vitro and in vivo. Ophthalmology. 1998;105:1173–1181.PubMedCrossRefGoogle Scholar
  91. 91.
    Li J, Herndon LW, Asrani SG, Stinnett S, Allingham RR. Clinical comparison of the Proview eye pressure monitor with the Goldmann applanation tonometer and the Tonopen. Arch Ophthalmol. 2004;122:1117–1121.PubMedCrossRefGoogle Scholar
  92. 92.
    Orssengo GJ, Pye DC. Determination of the true intraocular pressure and modulus of elasticity of the human cornea in vivo. Bull Math Biol. 1999;61:551–572.PubMedCrossRefGoogle Scholar
  93. 93.
    Rootman DS, Insler MS, Thompson HW, Parelman J, Poland D, Unterman SR. Accuracy and precision of the Tono-Pen in measuring intraocular pressure after keratoplasty and epikeratophakia and in scarred corneas. Arch Ophthalmol. 1988;106:1697–1700.PubMedGoogle Scholar
  94. 94.
    Panek WC, Boothe WA, Lee DA, Zemplenyi E, Pettit TH. Intraocular pressure measurement with the Tono-Pen through soft contact lenses. Am J Ophthalmol. 1990;109:62–65.PubMedGoogle Scholar
  95. 95.
    Scibilia GD, Ehlers WH, Donshik PC. The effects of therapeutic contact lenses on intraocular pressure measurement. CLAO J. 1996;22:262–265.PubMedGoogle Scholar
  96. 96.
    Kaufmann C, Bachmann LM, Thiel MA. Comparison of dynamic contour tonometry with goldmann applanation tonometry. Invest Ophthalmol Vis Sci. 2004;45:3118–3121.PubMedCrossRefGoogle Scholar
  97. 97.
    Kaufmann C, Bachmann LM, Thiel MA. Intraocular pressure measurements using dynamic contour tonometry after laser in situ keratomileusis. Invest Ophthalmol Vis Sci. 2003;44:3790–3794.PubMedCrossRefGoogle Scholar
  98. 98.
    Doyle A, Lachkar Y. Comparison of dynamic contour tonometry with goldman applanation tonometry over a wide range of central corneal thickness. J Glaucoma. 2005;14:288–292.PubMedCrossRefGoogle Scholar
  99. 99.
    Troost A, Yun SH, Specht K, Krummenauer F, Schwenn O. Transpalpebral tonometry: reliability and comparison with Goldmann applanation tonometry and palpation in healthy volunteers. Br J Ophthalmol. 2005;89:280–283.PubMedCrossRefGoogle Scholar
  100. 100.
    Rubinfeld RS, Cohen EJ, Laibson PR, Arentsen JJ, Lugo M, Genvert GI. The accuracy of finger tension for estimating intraocular pressure after penetrating keratoplasty. Ophthalmic Surg Lasers. 1998;29:213–215.PubMedGoogle Scholar
  101. 101.
    Baum J, Chaturvedi N, Netland PA, Dreyer EB. Assessment of intraocular pressure by palpation. Am J Ophthalmol. 1995;119:650–651.PubMedGoogle Scholar
  102. 102.
    Britt JM, Clifton BC, Barnebey HS, Mills RP. Microaerosol formation in noncontact ‘air-puff’ tonometry. Arch Ophthalmol. 1991;109:225–228.PubMedGoogle Scholar
  103. 103.
    Regine F, Scuderi GL, Cesareo M, Ricci F, Cedrone C, Nucci C. Validity and limitations of the Nidek NT-4000 non-contact tonometer: a clinical study. Ophthalmic Physiol Opt. 2006;26:33–39.PubMedCrossRefGoogle Scholar
  104. 104.
    Ogbuehi KC. Assessment of the accuracy and reliability of the Topcon CT80 non-contact tonometer. Clin Exp Optom. 2006;89:310–314.PubMedCrossRefGoogle Scholar
  105. 105.
    Gupta V, Sony P, Agarwal HC, Sihota R, Sharma A. Inter-instrument agreement and influence of central corneal thickness on measurements with Goldmann, pneumotonometer and noncontact tonometer in glaucomatous eyes. Indian J Ophthalmol. 2006;54:261–265.PubMedCrossRefGoogle Scholar
  106. 106.
    Tonnu PA, Ho T, Newson T, et al. The influence of central corneal thickness and age on intraocular pressure measured by pneumotonometry, non-contact tonometry, the Tono-Pen XL, and Goldmann applanation tonometry. Br J Ophthalmol. 2005;89:851–854.PubMedCrossRefGoogle Scholar
  107. 107.
    Patel S, Illahi W. Non-contact tonometry over soft contact lenses: effect of contact lens power on the measurement of intra-ocular pressure. Cont Lens Anterior Eye. 2004;27:33–37.PubMedCrossRefGoogle Scholar
  108. 108.
    Brubaker RF. Tonometry. In: Tasman W, Jaeger EA, eds. Duane’s Clinical Ophthalmology. Philadelphia, PA: Lippincott Williams & Wilkins; 1993.Google Scholar
  109. 109.
    Feghali JG, Azar DT, Kaufman PL. Comparative aqueous outflow facility measurements by pneumatonography and Schiotz tonography. Invest Ophthalmol Vis Sci. 1986;27:1776–1780.PubMedGoogle Scholar
  110. 110.
    Quigley HA, Langham ME. Comparative intraocular pressure measurements with the pneumatonograph and Goldmann tonometer. Am J Ophthalmol. 1975;80:266–273.PubMedGoogle Scholar
  111. 111.
    Gudmundson LE. The pneumatonograph and Perkins' tonometer. A clinical study of the reproducibility in glaucomatous eyes. Acta Ophthalmol. 1984;62:731–738.Google Scholar
  112. 112.
    Wheeler NC, Lee DA, Cheng Q, Ross WF, Hadjiaghai L. Reproducibility of intraocular pressure and outflow facility measured by pneumatic tonography and Schiotz tonography. J Ocul Pharmacol Ther. 1998;14:5–13.PubMedCrossRefGoogle Scholar
  113. 113.
    Gelatt KN, Peiffer RL Jr, Gum GG, Gwin RM, Erickson JL. Evaluation of applanation tonometers for the dog eye. Invest Ophthalmol Vis Sci. 1977;16:963–968.PubMedGoogle Scholar
  114. 114.
    Bayraktar S, Bayraktar Z. Central corneal thickness and intraocular pressure relationship in eyes with and without previous LASIK: comparison of Goldmann applanation tonometer with pneumatonometer. Eur J Ophthalmol. 2005;15:81–88.PubMedGoogle Scholar
  115. 115.
    Rubenstein JB, Deutsch TA. Pneumatonometry through bandage contact lenses. Arch Ophthalmol. 1985;103:1660–1661.PubMedGoogle Scholar
  116. 116.
    Schiotz H. Ein neues Tonometer. Arch Augenheilkd. 1905;52:401–424.Google Scholar
  117. 117.
    Colton T, Ederer F. The distribution of intraocular pressures in the general population. Surv Ophthalmol. 1980;25:123–129.PubMedCrossRefGoogle Scholar
  118. 118.
    Qureshi IA. Intraocular pressure: a comparative analysis in two sexes. Clinical Physiol. 1997;17:247–255.CrossRefGoogle Scholar
  119. 119.
    Leske MC, Connell AM, Wu SY, Hyman L, Schachat AP. Distribution of intraocular pressure. The Barbados Eye Study. Arch Ophthalmol. 1997;115:1051–1057.PubMedGoogle Scholar
  120. 120.
    Hashemi H, Kashi AH, Fotouhi A, Mohammad K. Distribution of intraocular pressure in healthy Iranian individuals: the Tehran Eye Study. Br J Ophthalmol. 2005;89:652–657.PubMedCrossRefGoogle Scholar
  121. 121.
    Xu L, Li J, Zheng Y, et al. Intraocular pressure in Northern China in an urban and rural population: the Beijing eye study. Am J Ophthalmol. 2005;140:913–915.PubMedCrossRefGoogle Scholar
  122. 122.
    Nomura H, Shimokata H, Ando F, Miyake Y, Kuzuya F. Age-related changes in intraocular pressure in a large Japanese population: a cross-sectional and longitudinal study. Ophthalmology. 1999;106:2016–2022.PubMedCrossRefGoogle Scholar
  123. 123.
    Ntim-Amponsah CT. Mean intraocular pressure in Ghanaians. East Afr Med J. 1996;73:516–518.PubMedGoogle Scholar
  124. 124.
    Iwase A, Suzuki Y, Araie M, et al. The prevalence of primary open-angle glaucoma in Japanese: the Tajimi Study. Ophthalmology. 2004;111:1641–1648.PubMedGoogle Scholar
  125. 125.
    Drance SM. The significance of the diurnal tension variations in normal and glaucomatous eyes. Arch Ophthalmol. 1960;64:494–501.PubMedGoogle Scholar
  126. 126.
    Zeimer RC, Wilensky JT, Gieser DK, Viana MA. Association between intraocular pressure peaks and progression of visual field loss. Ophthalmology. 1991;98:64–69.PubMedGoogle Scholar
  127. 127.
    Reiss GR, Lee DA, Topper JE, Brubaker RF. Aqueous humor flow during sleep. Invest Ophthalmol Vis Sci. 1984;25:776–778.PubMedGoogle Scholar
  128. 128.
    Maus TL, McLaren JW, Shepard JW Jr, Brubaker RF. The effects of sleep on circulating catecholamines and aqueous flow in human subjects. Exp Eye Res. 1996;62:351–358.PubMedCrossRefGoogle Scholar
  129. 129.
    Topper JE, Brubaker RF. Effects of timolol, epinephrine, and acetazolamide on aqueous flow during sleep. Invest Ophthalmol Vis Sci. 1985;26:1315–1319.PubMedGoogle Scholar
  130. 130.
    Medeiros FA, Weinreb RN, Zangwill LM, et al. Long-term intraocular pressure fluctuations and risk of conversion from ocular hypertension to glaucoma. Ophthalmology. 2008;115(6):934–940.PubMedCrossRefGoogle Scholar
  131. 131.
    Lee PP, Walt JW, Rosenblatt LC, Siegartel LR, Stern LS. Association between intraocular pressure variation and glaucoma progression: data from a united states chart review. Am J Ophthalmol. 2007;144(6):901–907.PubMedCrossRefGoogle Scholar
  132. 132.
    Liu JH, Sit AJ, Weinreb RN. Variation of 24-hour intraocular pressure in healthy individuals: right eye versus left eye. Ophthalmology. 2005;112:1670–1675.PubMedCrossRefGoogle Scholar
  133. 133.
    Qureshi IA, Xiao RX, Yang BH, Zhang J, Xiang DW, Hui JL. Seasonal and diurnal variations of ocular pressure in ocular hypertensive subjects in Pakistan. Singapore Med J. 1999;40:345–348.PubMedGoogle Scholar
  134. 134.
    Tutaj M, Brown CM, Brys M, et al. Dynamic cerebral autoregulation is impaired in glaucoma. J Neurol Sci. 2004;220:49–54.PubMedCrossRefGoogle Scholar
  135. 135.
    Lovasik JV, Kergoat H. Consequences of an increase in the ocular perfusion pressure on the pulsatile ocular blood flow. Optom Vis Sci. 2004;81:692–698.PubMedCrossRefGoogle Scholar
  136. 136.
    Cooper RL, Beale DG, Constable IJ, Grose GC. Continual monitoring of intraocular pressure: effect of central venous pressure, respiration, and eye movements on continual recordings of intraocular pressure in the rabbit, dog, and man. Br J Ophthalmol. 1979;63:799–804.PubMedCrossRefGoogle Scholar
  137. 137.
    Schuman JS, Massicotte EC, Connolly S, Hertzmark E, Mukherji B, Kunen MZ. Increased intraocular pressure and visual field defects in high resistance wind instrument players. Ophthalmology. 2000;107:127–133.PubMedCrossRefGoogle Scholar
  138. 138.
    Bertschinger DR, Mendrinos E, Dosso A. Yoga can be dangerous-glaucomatous visual field defect worsening due to postural yoga. Br J Ophthalmol. 2007;91:1413–1414.PubMedCrossRefGoogle Scholar
  139. 139.
    Rosen DA, Johnston VC. Ocular pressure patterns in the Valsalva maneuver. Arch Ophthalmol. 1959;62:810–816.PubMedGoogle Scholar
  140. 140.
    Krieglstein GK, Waller WK, Leydhecker W. The vascular basis of the positional influence of the intraocular pressure. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1978;206:99–106.PubMedCrossRefGoogle Scholar
  141. 141.
    Kaskel D, Muller-Breitenkamp R, Wilmans I, Rudolf H, Jessen K. The influence of changes in body position on intraocular pressure, episcleral venous pressure, and blood pressure (author's transl). Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1978;208:217–228.PubMedCrossRefGoogle Scholar
  142. 142.
    Chiquet C, Custaud MA, Le Traon AP, Millet C, Gharib C, Denis P. Changes in intraocular pressure during prolonged (7-day) head-down tilt bedrest. J Glaucoma. 2003;12:204–208.PubMedCrossRefGoogle Scholar
  143. 143.
    Linder BJ, Trick GL. Simulation of spaceflight with whole-body head-down tilt: influence on intraocular pressure and retinocortical processing. Aviat Space Environ Med. 1987;58:A139-A142.PubMedGoogle Scholar
  144. 144.
    Linder BJ, Trick GL, Wolf ML. Altering body position affects intraocular pressure and visual function. Invest Ophthalmol Vis Sci. 1988;29:1492–1497.PubMedGoogle Scholar
  145. 145.
    Mosaed S, Liu JH, Weinreb RN. Correlation between office and peak nocturnal intraocular pressures in healthy subjects and glaucoma patients. Am J Ophthalmol. 2005;139:320–324.PubMedCrossRefGoogle Scholar
  146. 146.
    Baskaran M, Raman K, Ramani KK, Roy J, Vijaya L, Badrinath SS. Intraocular pressure changes and ocular biometry during Sirsasana (headstand posture) in yoga practitioners. Ophthalmology. 2006;113:1327–1332.PubMedCrossRefGoogle Scholar
  147. 147.
    Iester M, Torre PG, Bricola G, Bagnis A, Calabria G. Retinal blood flow autoregulation after dynamic exercise in healthy young subjects. Ophthalmologica. 2007;221:180–185.PubMedCrossRefGoogle Scholar
  148. 148.
    Vieira GM, Oliveira HB, de Andrade DT, Bottaro M, Ritch R. Intraocular pressure variation during weight lifting. Arch Ophthalmol. 2006;124:1251–1254.PubMedCrossRefGoogle Scholar
  149. 149.
    Dane S, Kocer I, Demirel H, Ucok K, Tan U. Long-term effects of mild exercise on intraocular pressure in athletes and sedentary subjects. Int J Neurosci. 2006;116:1207–1214.PubMedCrossRefGoogle Scholar
  150. 150.
    Hao-Hui C. Dehydration therapy and hypotension in post-resuscitation cerebral oedema, and application of intra-ocular pressure measurement - a review of resuscitation work, part I. Resuscitation. 1980;8:195–209.PubMedCrossRefGoogle Scholar
  151. 151.
    Schmidt K. Untersuchungen über Kapillarendothelstörungen bei Glaukoma simplex. Arch Augenheilkd. 1928;98:569–581.Google Scholar
  152. 152.
    Susanna R Jr, Hatanaka M, Vessani RM, Pinheiro A, Morita C. Correlation of asymmetric glaucomatous visual field damage and water-drinking test response. Invest Ophthalmol Vis Sci. 2006;47:641–644.PubMedCrossRefGoogle Scholar
  153. 153.
    Susanna R Jr, Vessani RM, Sakata L, Zacarias LC, Hatanaka M. The relation between intraocular pressure peak in the water drinking test and visual field progression in glaucoma. Br J Ophthalmol. 2005;89:1298–1301.PubMedCrossRefGoogle Scholar
  154. 154.
    Yoshikawa K, Inoue T, Inoue Y. Normal tension glaucoma: the value of predictive tests. Acta Ophthalmol. 1993;71:463–470.Google Scholar
  155. 155.
    Cartwright MJ, Anderson DR. Correlation of asymmetric damage with asymmetric intraocular pressure in normal-tension glaucoma (low-tension glaucoma). Arch Ophthalmol. 1988;106:898–900.PubMedGoogle Scholar
  156. 156.
    Chandrasekaran S, Rochtchina E, Mitchell P. Effects of caffeine on intraocular pressure: the Blue Mountains Eye Study. J Glaucoma. 2005;14:504–507.PubMedCrossRefGoogle Scholar
  157. 157.
    Lee AJ, Rochtchina E, Wang JJ, Healey PR, Mitchell P. Does smoking affect intraocular pressure? Findings from the Blue Mountains Eye Study. J Glaucoma. 2003;12:209–212.PubMedCrossRefGoogle Scholar
  158. 158.
    Houle RE, Grant WM. Alcohol, vasopressin, and intraocular pressure. Invest Ophthalmol. 1967;6:145–154.PubMedGoogle Scholar
  159. 159.
    Kolker AE. Hyperosmotic agents in glaucoma. Invest Ophthalmol. 1970;9:418–423.PubMedGoogle Scholar
  160. 160.
    Tomida I, Azuara-Blanco A, House H, Flint M, Pertwee RG, Robson PJ. Effect of sublingual application of cannabinoids on intraocular pressure: a pilot study. J Glaucoma. 2006;15:349–353.PubMedCrossRefGoogle Scholar
  161. 161.
    Beilin M, Neumann R, Belkin M, Green K, Bar-Ilan A. Pharmacology of the intraocular pressure (IOP) lowering effect of systemic dexanabinol (HU-211), a non-psychotropic cannabinoid. J Ocul Pharmacol Ther. 2000;16:217–230.PubMedCrossRefGoogle Scholar
  162. 162.
    Naveh N, Weissman C, Muchtar S, Benita S, Mechoulam R. A submicron emulsion of HU-211, a synthetic cannabinoid, reduces intraocular pressure in rabbits. Graefes Arch Clin Exp Ophthalmol. 2000;238:334–338.PubMedCrossRefGoogle Scholar
  163. 163.
    Kersey JP, Broadway DC. Corticosteroid-induced glaucoma: a review of the literature. Eye. 2006;20:407–416.PubMedCrossRefGoogle Scholar
  164. 164.
    Cubey RB. Glaucoma following the application of corticosteroid to the skin of the eyelids. Br J Dermatol. 1976;95:207–208.PubMedCrossRefGoogle Scholar
  165. 165.
    Garbe E, LeLorier J, Boivin JF, Suissa S. Inhaled and nasal glucocorticoids and the risks of ocular hypertension or open-angle glaucoma. JAMA. 1997;277:722–727.PubMedCrossRefGoogle Scholar
  166. 166.
    Kalina RE. Increased intraocular pressure following subconjunctival corticosteroid administration. Arch Ophthalmol. 1969;81:788–790.PubMedGoogle Scholar
  167. 167.
    Huang SY, Tsai YY, Lin JM, Hung PT. Intractable glaucoma following posterior sub-tenon's triamcinolone acetonide for central retinal vein occlusion in a young adult. Eye. 2006;20:1458–1459.PubMedCrossRefGoogle Scholar
  168. 168.
    Hanson RJ, Downes S. Conservative management of refractory steroid-induced glaucoma following anterior subtenon steroid injection. Clin Experiment Ophthalmol. 2007;35:197-198. author reply 198.PubMedCrossRefGoogle Scholar
  169. 169.
    Jea SY, Byon IS, Oum BS. Triamcinolone-induced intraocular pressure elevation: intravitreal injection for macular edema and posterior subtenon injection for uveitis. Korean J Ophthalmol. 2006;20:99–103.PubMedCrossRefGoogle Scholar
  170. 170.
    Bayer JM, Neuner HP. Cushing’s syndrome and increased intraocular pressure. Dtsch Med Wochenschr. 1967;92:1791–1799.PubMedCrossRefGoogle Scholar
  171. 171.
    Goldmann H. Cortisone glaucoma. Arch Ophthalmol. 1962;68:621–626.PubMedGoogle Scholar
  172. 172.
    Tripathi RC, Parapuram SK, Tripathi BJ, Zhong Y, Chalam KV. Corticosteroids and glaucoma risk. Drugs Aging. 1999;15:439–450.PubMedCrossRefGoogle Scholar
  173. 173.
    Francois J, Victoria-Troncoso V. Corticosteroid glaucoma. Ophthalmologica. 1977;174:195–209.PubMedCrossRefGoogle Scholar
  174. 174.
    Hayasaka S. Lysosomal enzymes in ocular tissues and diseases. Surv Ophthalmol. 1983;27:245–258.PubMedCrossRefGoogle Scholar
  175. 175.
    Joe MK, Sohn S, Hur W, Moon Y, Choi YR, Kee C. Accumulation of mutant myocilins in ER leads to ER stress and potential cytotoxicity in human trabecular meshwork cells. Biochem Biophys Res Commun. 2003;312:592–600.PubMedCrossRefGoogle Scholar
  176. 176.
    Yam GH, Gaplovska-Kysela K, Zuber C, Roth J. Aggregated myocilin induces russell bodies and causes apoptosis: implications for the pathogenesis of myocilin-caused primary open-angle glaucoma. Am J Pathol. 2007;170:100–109.PubMedCrossRefGoogle Scholar
  177. 177.
    Putney LK, Brandt JD, O’Donnell ME. Effects of dexamethasone on sodium-potassium-chloride cotransport in trabecular meshwork cells. Invest Ophthalmol Vis Sci. 1997;38:1229–1240.PubMedGoogle Scholar
  178. 178.
    Yun AJ, Murphy CG, Polansky JR, Newsome DA, Alvarado JA. Proteins secreted by human trabecular cells. Glucocorticoid and other effects. Invest Ophthalmol Vis Sci. 1989;30:2012–2022.PubMedGoogle Scholar
  179. 179.
    Steely HT, Browder SL, Julian MB, Miggans ST, Wilson KL, Clark AF. The effects of dexamethasone on fibronectin expression in cultured human trabecular meshwork cells. Invest Ophthalmol Vis Sci. 1992;33:2242–2250.PubMedGoogle Scholar
  180. 180.
    Dickerson JE Jr, Steely HT Jr, English-Wright SL, Clark AF. The effect of dexamethasone on integrin and laminin expression in cultured human trabecular meshwork cells. Exp Eye Res. 1998;66:731–738.PubMedCrossRefGoogle Scholar
  181. 181.
    Snyder RW, Stamer WD, Kramer TR, Seftor RE. Corticosteroid treatment and trabecular meshwork proteases in cell and organ culture supernatants. Exp Eye Res. 1993;57:461–468.PubMedCrossRefGoogle Scholar
  182. 182.
    Samples JR, Alexander JP, Acott TS. Regulation of the levels of human trabecular matrix metalloproteinases and inhibitor by interleukin-1 and dexamethasone. Invest Ophthalmol Vis Sci. 1993;34:3386–3395.PubMedGoogle Scholar
  183. 183.
    Malani JT, Robinson GM, Seneviratne EL. Ipratropium bromide induced angle closure glaucoma. N Z Med J. 1982;95:749.PubMedGoogle Scholar
  184. 184.
    Kupfer C. Selective block of synaptic transmission in ciliary ganglion by type A botulinus toxin in rabbits. Proc Soc Exp Biol Med. 1958;99:474–476.PubMedGoogle Scholar
  185. 185.
    Leibowitz HM, Krueger DE, Maunder LR, et al. The Framingham Eye Study monograph: an ophthalmological and epidemiological study of cataract, glaucoma, diabetic retinopathy, macular degeneration, and visual acuity in a general population of 2631 adults, 1973-1975. Surv Ophthalmol. 1980;24:335–610.PubMedCrossRefGoogle Scholar
  186. 186.
    Nguyen N, Mora JS, Gaffney MM, et al. A high prevalence of occludable angles in a Vietnamese population. Ophthalmology. 1996;103:1426–1431.PubMedGoogle Scholar
  187. 187.
    Bard LA. Transient myopia associated with promethazine (phenegan) therapy: report of a case. Am J Ophthalmol. 1964;58:682–686.PubMedGoogle Scholar
  188. 188.
    Miichi H, Nagataki S. Effects of pilocarpine, salbutamol, and timolol on aqueous humor formation in cynomolgus monkeys. Invest Ophthalmol Vis Sci. 1983;24:1269–1275.PubMedGoogle Scholar
  189. 189.
    Kristensen P. Mydriasis-induced pigment liberation in the anterior chamber associated with acute rise in intraocular pressure in open-angle glaucoma. Acta Ophthalmol. 1965;43:714–724.Google Scholar
  190. 190.
    Hook SR, Holladay JT, Prager TC, Goosey JD. Transient myopia induced by sulfonamides. Am J Ophthalmol. 1986;101:495–496.PubMedGoogle Scholar
  191. 191.
    Bovino JA, Marcus DF. The mechanism of transient myopia induced by sulfonamide therapy. Am J Ophthalmol. 1982;94:99–102.PubMedGoogle Scholar
  192. 192.
    Krieg PH, Schipper I. Drug-induced ciliary body oedema: a new theory. Eye. 1996;10(Pt 1):121–126.PubMedGoogle Scholar
  193. 193.
    Sankar PS, Pasquale LR, Grosskreutz CL. Uveal effusion and secondary angle-closure glaucoma associated with topiramate use. Arch Ophthalmol. 2001;119:1210–1211.PubMedGoogle Scholar
  194. 194.
    Rhee DJ, Goldberg MJ, Parrish RK. Bilateral angle-closure glaucoma and ciliary body swelling from topiramate. Arch Ophthalmol. 2001;119:1721–1723.PubMedGoogle Scholar
  195. 195.
    Banta JT, Hoffman K, Budenz DL, Ceballos E, Greenfield DS. Presumed topiramate-induced bilateral acute angle-closure glaucoma. Am J Ophthalmol. 2001;132:112–114.PubMedCrossRefGoogle Scholar
  196. 196.
    Fraunfelder FW, Fraunfelder FT, Keates EU. Topiramate-associated acute, bilateral, secondary angle-closure glaucoma. Ophthalmology. 2004;111:109–111.PubMedCrossRefGoogle Scholar
  197. 197.
    Katz RL, Eakins KE. Mode of action of succinylcholine on intraocular pressure. J Pharmacol Exp Ther. 1968;162:1–9.PubMedGoogle Scholar
  198. 198.
    Chandler PA. Long-term results in glaucoma therapy. Am J Ophthalmol. 1960;49:221–246.PubMedGoogle Scholar
  199. 199.
    Odberg T, Riise D. Early diagnosis of glaucoma. II. The value of the initial examination in ocular hypertension. Acta Ophthalmol. 1987;65:58–62.Google Scholar
  200. 200.
    Grant WM, Burke JF Jr. Why do some people go blind from glaucoma? Ophthalmology. 1982;89:991–998.PubMedGoogle Scholar
  201. 201.
    Miller KM, Quigley HA. The clinical appearance of the lamina cribrosa as a function of the extent of glaucomatous optic nerve damage. Ophthalmology. 1988;95:135–138.PubMedGoogle Scholar
  202. 202.
    Quigley HA, Hohman RM, Addicks EM, Massof RW, Green WR. Morphologic changes in the lamina cribrosa correlated with neural loss in open-angle glaucoma. Am J Ophthalmol. 1983;95:673–691.PubMedGoogle Scholar
  203. 203.
    Quigley HA, Addicks EM. Regional differences in the structure of the lamina cribrosa and their relation to glaucomatous optic nerve damage. Arch Ophthalmol. 1981;99:137–143.PubMedGoogle Scholar
  204. 204.
    Danias J, Lee KC, Zamora MF, et al. Quantitative analysis of retinal ganglion cell (RGC) loss in aging DBA/2NNia glaucomatous mice: comparison with RGC loss in aging C57/BL6 mice. Invest Ophthalmol Vis Sci. 2003;44:5151–5162.PubMedCrossRefGoogle Scholar
  205. 205.
    Jampel HD. Target pressure in glaucoma therapy. J Glaucoma. 1997;6:133–138.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Nils A. Loewen
    • 1
  • Angelo P. Tanna
    • 1
  1. 1.Department of OphthalmologyNorthwestern University, Feinberg School of MedicineChicagoUSA

Personalised recommendations