Advertisement

Using Electroretinography for Glaucoma Diagnosis

  • Kevin C. Leonard
  • Cindy M. L. Hutnik
Chapter

Abstract

It has been suggested that up to 35% of retinal ganglion cells (RGCs) are lost before visual field defects become apparent.1 Automated perimetric testing is the current gold standard for diagnosis.1 This concept led to the theory of an “RGC reserve” with structural damage preceding functional loss in early glaucoma. However, as more advanced techniques for assessing both RGC structure and function have been developed, evidence has arisen indicating that RGC dysfunction may precede the structural loss of these cells. This suggests the potential for more effective early detection techniques. Digital imaging techniques (e.g., retinal tomography, scanning polarimetry, and optical coherence tomography) that attempt to detect structural changes in the optic nerve and RGC nerve fiber layer have become very popular as complimentary to functional perimetric testing for early glaucoma. In this chapter, however, we will discuss developments regarding electrophysiological measures of RGC loss or dysfunction to detect and monitor glaucoma. Glaucoma is a disease in which such early detection and early therapeutic intervention are critical for preventing progression and loss of vision.

Keywords

Visual Field Defect Visual Evoke Potential Retinal Nerve Fiber Layer Thickness Ocular Hypertension Retinal Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Kerrigan-Baumrind LA, Quigley HA, Pease ME, Kerrigan DF, Mitchell RS. Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Invest Ophthalmol Vis Sci. 2000;41(3):741–748.PubMedGoogle Scholar
  2. 2.
    Kass MA, Heuer DK, Higginbotham EJ, et al. The ocular hypertension treatment study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120(6):701-713; discussion 829–730.Google Scholar
  3. 3.
    Viswanathan S, Frishman LJ, Robson JG, Walters JW. The photopic negative response of the flash electroretinogram in primary open angle glaucoma. Invest Ophthalmol Vis Sci. 2001;42(2):514–522.PubMedGoogle Scholar
  4. 4.
    Velten IM, Korth M, Horn FK. The a-wave of the dark adapted electroretinogram in glaucomas: are photoreceptors affected? Br J Ophthalmol. 2001;85(4):397–402.CrossRefPubMedGoogle Scholar
  5. 5.
    Velten IM, Horn FK, Korth M, Velten K. The b-wave of the dark adapted flash electroretinogram in patients with advanced asymmetrical glaucoma and normal subjects. Br J Ophthalmol. 2001;85(4):403–409.CrossRefPubMedGoogle Scholar
  6. 6.
    Viswanathan S, Frishman LJ, Robson JG, Harwerth RS, Smith EL 3rd. The photopic negative response of the macaque electroretinogram: reduction by experimental glaucoma. Invest Ophthalmol Vis Sci. 1999;40(6):1124–1136.PubMedGoogle Scholar
  7. 7.
    Machida S, Gotoh Y, Toba Y, Ohtaki A, Kaneko M, Kurosaka D. Correlation between photopic negative response and retinal nerve fiber layer thickness and optic disc topography in glaucomatous eyes. Invest Ophthalmol Vis Sci. 2008;49(5):2201–2207.CrossRefPubMedGoogle Scholar
  8. 8.
    Bach M, Unsoeld AS, Philippin H, et al. Pattern ERG as an early glaucoma indicator in ocular hypertension: a long-term, prospective study. Invest Ophthalmol Vis Sci. 2006;47(11):4881–4887.CrossRefPubMedGoogle Scholar
  9. 9.
    Falsini B, Marangoni D, Salgarello T, et al. Structure-function relationship in ocular hypertension and glaucoma: interindividual and interocular analysis by OCT and pattern ERG. Graefes Arch Clin Exp Ophthalmol. 2008;246(8):1153–1162.CrossRefPubMedGoogle Scholar
  10. 10.
    Palmowski AM, Ruprecht KW. Follow up in open angle glaucoma. A comparison of static perimetry and the fast stimulation mfERG. Multifocal ERG follow up in open angle glaucoma. Doc Ophthalmol. 2004;108(1):55–60.Google Scholar
  11. 11.
    Sutter EE, Bearse MA Jr. The optic nerve head component of the human ERG. Vision Res. 1999;39(3):419–436.CrossRefPubMedGoogle Scholar
  12. 12.
    Palmowski-Wolfe AM, Todorova MG, Orguel S, Flammer J, Brigell M. The “two global flash” mfERG in high and normal tension primary open-angle glaucoma. Doc Ophthalmol. 2007;114(1):9–19.CrossRefPubMedGoogle Scholar
  13. 13.
    Palmowski-Wolfe AM, Allgayer RJ, Vernaleken B, Schotzau A, Ruprecht KW. Slow-stimulated multifocal ERG in high- and normal-tension glaucoma. Doc Ophthalmol. 2006;112(3):157–168.CrossRefPubMedGoogle Scholar
  14. 14.
    Chu PH, Chan HH, Brown B. Glaucoma detection is facilitated by luminance modulation of the global flash multifocal electroretinogram. Invest Ophthalmol Vis Sci. 2006;47(3):929–937.CrossRefPubMedGoogle Scholar
  15. 15.
    Fortune B, Bearse MA Jr, Cioffi GA, Johnson CA. Selective loss of an oscillatory component from temporal retinal multifocal ERG responses in glaucoma. Invest Ophthalmol Vis Sci. 2002;43(8):2638–2647.PubMedGoogle Scholar
  16. 16.
    Stiefelmeyer S, Neubauer AS, Berninger T, Arden GB, Rudolph G. The multifocal pattern electroretinogram in glaucoma. Vision Res. 2004;44(1):103–112.CrossRefPubMedGoogle Scholar
  17. 17.
    Klistorner AI, Graham SL, Martins A. Multifocal pattern electroretinogram does not demonstrate localised field defects in glaucoma. Doc Ophthalmol. 2000;100(2-3):155–165.CrossRefGoogle Scholar
  18. 18.
    Hood DC, Thienprasiddhi P, Greenstein VC, et al. Detecting early to mild glaucomatous damage: a comparison of the multifocal VEP and automated perimetry. Invest Ophthalmol Vis Sci. 2004;45(2):492–498.CrossRefPubMedGoogle Scholar
  19. 19.
    Chauhan BC, Johnson CA. Test-retest variability of frequency-doubling perimetry and conventional perimetry in glaucoma patients and normal subjects. Invest Ophthalmol Vis Sci. 1999;40(3):648–656.PubMedGoogle Scholar
  20. 20.
    Wangsupadilok B, Greenstein VC, Kanadani FN, et al. A method to detect progression of glaucoma using the multifocal visual evoked potential technique. Doc Ophthalmol. 2009;118(2):139–150.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Kevin C. Leonard
    • 1
  • Cindy M. L. Hutnik
    • 1
  1. 1.Departments of Ophthalmology and PathologyIvey Eye Institute, St. Joseph’s Health Care, University of Western OntarioLondonCanada

Personalised recommendations