Detecting Functional Changes in the Patient’s Vision: Visual Field Analysis

  • Chris A. Johnson


The ability to evaluate visual function is one of several important clinical components for the detection, management, and treatment of glaucoma. The structural integrity of the optic nerve head and retinal nerve fiber layer, risk factors for development and progression of glaucoma, intraocular pressure (IOP), and other factors are key elements in the clinical assessment of glaucoma. The status of visual function is vital for examining the efficacy of therapy and disease progression as well as for determining the impact of visual damage on a patient’s quality of life and activities of daily living.1–8 Although contrast sensitivity, vernier acuity, and many other visual functions have been studied in glaucoma patients, perimetry and visual field testing are the primary visual function tests that are useful for glaucoma.9–14 This chapter provides an overview of perimetry and visual field testing with regard to its use in the clinical assessment of glaucoma.


Visual Field Retinal Nerve Fiber Layer Optic Nerve Head Visual Field Loss Visual Field Testing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Acknowledgments I am indebted to Patricia Duffel and Tuyet Dorau for their invaluable assistance in the preparation of figures for this book chapter.


  1. 1.
    Guitierrez P, Wilson MR, Johnson C, et al. Influence of glaucomatous visual field loss on health-related quality of life. Arch Ophthalmol. 1997;115:777–784.Google Scholar
  2. 2.
    Parrish RK, Gedde SJ, Scott IU, et al. Visual function and quality of life among patients with glaucoma. Arch Ophthalmol. 1997;115:1447–1455.PubMedGoogle Scholar
  3. 3.
    Mills RP, Janz NK, Wren PA, Guire KE. Correlation of visual field with quality-of-life measures at diagnosis in the Collaborative Initial Glaucoma Treatment Study (CIGTS). J Glaucoma. 2001;10:192–198.PubMedCrossRefGoogle Scholar
  4. 4.
    Iester M, Zingirian M. Quality of life in patients with early, moderate and advanced glaucoma. Eye. 2002;16:44–49.PubMedCrossRefGoogle Scholar
  5. 5.
    Nelson P, Aspinall P, Papasouliotis O, Worton B, O’Brien C. Quality of life in glaucoma and its relationship with visual function. J Glaucoma. 2003;12:139–150.PubMedCrossRefGoogle Scholar
  6. 6.
    Ringsdorf L, McGwin G, Owlsey C. Visual field defects and vision-specific health-related quality of life in African Americans and whites with glaucoma. J Glaucoma. 2006;15:414–418.PubMedCrossRefGoogle Scholar
  7. 7.
    Freeman EE, Munoz B, West SK, Jampel HD, Friedman DS. Glaucoma and quality of life: the Salisbury Eye evaluation. Ophthalmology. 2008;115:233–238.PubMedCrossRefGoogle Scholar
  8. 8.
    McKean-Cowdin R, Wang Y, Wu J, Azen SP, Varma R, Los Angeles Latino Eye Study Group. Impact of visual field loss on health-related quality of life in glaucoma: the Los Angeles Latino Eye Study. Ophthalmology. 2008;115:941–948.PubMedCrossRefGoogle Scholar
  9. 9.
    Piltz JR, Swindale NV, Drance SM. Vernier thresholds and alignment bias in control, suspect and glaucomatous eyes. J GAlaucoma. 1993;2:87–95.Google Scholar
  10. 10.
    McKendrick AM, Johnson CA, Anderson AJ, Fortune B. Elevated vernier acuity thresholds in glaucoma. Invest Ophthalmol Vis Sci. 2002;43:1393–1399.PubMedGoogle Scholar
  11. 11.
    Sponsel WE, DePaul KL, Martone JF, Shields MB, Ollie AR, Stewart WC. Association of Vistech contrast sensitivity and visual field findings in glaucoma. Br J Ophthalmol. 1991;75:558–560.PubMedCrossRefGoogle Scholar
  12. 12.
    McKendrick AM, Sampson GP, Walland MJ, Badcock DR. Contrast sensitivity changes due to glaucoma and normal aging: low-spatial-frequency losses in both magnocellular and parvocellular pathways. Invest Ophthalmol Vis Sci. 2007;48:2115–2122.PubMedCrossRefGoogle Scholar
  13. 13.
    Hot A, Dul MW, Swanson WH. Development and evaluation of a contrast sensitivity perimetry test for patients with glaucoma. Invest Ophthalmol Vis Sci. 2008;49:3049–3057.PubMedCrossRefGoogle Scholar
  14. 14.
    Sun H, Swanson WH, Arvidson B, Dul M. Assessment of contrast gain signature in inferred magnocellular and parvocellular pathways in patients with glaucoma. Vision Res. 2008;48(26):2633–2641.PubMedCrossRefGoogle Scholar
  15. 15.
    Caprioli J. Correlation of visual function with optic nerve and nerve fiber layer structure in glaucoma. Surv Ophthalmol. 1989;33(suppl):319–330.Google Scholar
  16. 16.
    Johnson CA, Cioffi GA, Liebmann JR, Sample PA, Zangwill L, Weinreb RN. The relationship between structural and functional alterations in glaucoma: a review. Semin Ophthalmol. 2000;15:221–233.PubMedCrossRefGoogle Scholar
  17. 17.
    Garway-Heath D, Poinoosawmy D, Fitzke F, Hitchings R. Mapping the visual field to the optic disc in normal tension glaucoma eyes. Ophthalmology. 2000;107:1809–1815.PubMedCrossRefGoogle Scholar
  18. 18.
    Gardiner SK, Johnson CA, Cioffi GA. Evaluation of the structure-function relationship in glaucoma. Invest Ophthalmol Vis Sci. 2005;46:3712–3717.PubMedCrossRefGoogle Scholar
  19. 19.
    Strouthidis NG, Vinciotti V, Tucker AJ, Gardiner SK, Crabb DP, Garway-Heath DF. Structure and function in glaucoma: the relationship between a functional visual field map and an anatomic retinal map. Invest Ophthalmol Vis Sci. 2006;47:5356–5362.PubMedCrossRefGoogle Scholar
  20. 20.
    Racette L, Medieros FA, Bowd C, Zangwill LM, Weinreb RN, Sample PA. The impact of the perimetric measurement scale, sample composition, and statistical method on the structure-function relationship in glaucoma. J Glaucoma. 2007;16:676–684.PubMedCrossRefGoogle Scholar
  21. 21.
    Harwerth RS. Charles F. Prentice Award Lecture 2006: a neuron doctrine for glaucoma. Optom Vis Sci. 2008;85:436–444.PubMedCrossRefGoogle Scholar
  22. 22.
    Hood DC, Kardon RH. A framework for comparing functional and structural measures of glaucomatous damage. Prog Retin Eye Res. 2007;26:688–710.PubMedCrossRefGoogle Scholar
  23. 23.
    Greve EL. Single and multiple stimulus static perimetry in glaucoma; the two phases of perimetry. Doc Ophthalmol. 1973;36:1–355.PubMedGoogle Scholar
  24. 24.
    Anderson DR, Patella VM. Automated static perimetry. St Louis: CV Mosby; 1990.Google Scholar
  25. 25.
    Harrington DO, Drake MV. The visual fields - text and atlas of clinical perimetry. St Louis: CV Mosby; 1990.Google Scholar
  26. 26.
    Wall M, Johnson CA. Principals and techniques of the examination of the visual sensory system. In: Miller NR, Newman NJ, eds. Walsh and Hoyt’s Textbook of Neuro-Ophthalmology. Vol 1. Philadelphia: Lippincott, Williams and Wilkins; 2005:83–149.Google Scholar
  27. 27.
    Dolderer J, Vonthein R, Johnson CA, Schiefer U, Hart W. Scotoma mapping by semi-automated kinetic perimetry - The effects of stimulus properties and the speed of subjects’responses. Acta Ophthalmol Scand. 2006;84:338–344.PubMedCrossRefGoogle Scholar
  28. 28.
    Keltner JL, Johnson CA, Cello KE, et al. Classification of visual field abnormalities in the ocular hypertension treatment study. Arch Ophthalmol. 2003;121:643–650.PubMedCrossRefGoogle Scholar
  29. 29.
    Katz J, Sommer A. Reliability indexes of automated perimetric tests. Arch Ophthalmol. 1988;106:1252–1254.PubMedGoogle Scholar
  30. 30.
    Keltner JL, Johnson CA, Beck RW, Cleary PA, Spurr JO, Optic Neuritis Study Group. Quality control functions of the Visual Field Reading Center (VFRC) for the Optic Neuritis Treatment Trial (ONTT). Control Clin Trials. 1993;14:143–159.PubMedCrossRefGoogle Scholar
  31. 31.
    Keltner JL, Johnson CA, Cello KE, et al. Visual field quality control in the Ocular Hypertension Treatment Study (OHTS). J Glaucoma. 2007;16:665–669.PubMedCrossRefGoogle Scholar
  32. 32.
    Anderson DR. Perimetry with and without automation. St Louis: CV Mosby; 1987.Google Scholar
  33. 33.
    Artes PH, Henson DB, Marper R, McLeod D. Multisampling Suprathreshold perimetry: a comparison with conventional suprathreshold and full-threshold strategies by computer simulation. Invest Ophthalmol Vis Sci. 2003;44:2582–2587.PubMedCrossRefGoogle Scholar
  34. 34.
    Henson DB, Artes PH. New developments in Suprathreshold perimetry. Ophthalmic Physiol Opt. 2002;22:462–468.CrossRefGoogle Scholar
  35. 35.
    Henson DB. Visual field screening and the development of a new screening program. J Am Optom Assoc. 1989;60:893–898.PubMedGoogle Scholar
  36. 36.
    Langerhorst CT, Bakker D, Raakman MA. Usefulness of the Henson Central Field Screener for the detection of visual field defects, especially in glaucoma. Doc Ophthalmol. 1989;72:279–285.PubMedCrossRefGoogle Scholar
  37. 37.
    Johnson CA, Keltner JL. Automated suprathreshold static perimetry. Am J Ophthalmol. 1980;89:731–741.PubMedGoogle Scholar
  38. 38.
    Johnson CA, Keltner JL, Balestrery FG. Suprathreshold static perimetry in glaucoma and other optic nerve disease. Ophthalmology. 1979;86:1278–1286.PubMedGoogle Scholar
  39. 39.
    Araujo ML, Feuer WJ, Anderson DR. Evaluation of baseline-related suprathreshold testing for quick determination of visual field nonprogression. Arch Ophthalmol. 1993;111:365–369.PubMedGoogle Scholar
  40. 40.
    Hernandez R, Rabindranath K, Fraser C, et al. Screening for open angle glaucoma: systematic review of cost-effectiveness studies. J Glaucoma. 2008;17:159–168.PubMedCrossRefGoogle Scholar
  41. 41.
    Javitt J, Lee P, Lum F. The value of regular examinations to detect glaucoma and other chronic conditions among older Americans. Ophthalmology. 2007;114:833–834.PubMedCrossRefGoogle Scholar
  42. 42.
    Nelson-Quigg JM, Cello KE, Johnson CA. Predicting binocular visual field sensitivity from monocular visual field results. Invest Ophthalmol Vis Sci. 2000;41:2212–2221.PubMedGoogle Scholar
  43. 43.
    Crabb DP, Viswanathan AC. Integrated visual fields: a new approach to measuring the binocular field of view and visual disability. Graefes Arch Clin Exp Ophthalmol. 2005;243:210–216.PubMedCrossRefGoogle Scholar
  44. 44.
    Owen VM, Crabb DP, White ET, Viswanathan AC, Garway-Heath DF, Hitchings RA. Glaucoma and fitness to drive: using binocular visual fields to predict a milestone to blindness. Invest Ophthalmol Vis Sci. 2008;49:2449–2455.PubMedCrossRefGoogle Scholar
  45. 45.
    Kotecha A, O’Leary N, Melmoth D, Grant S, Crabb D. The functional consequences of glaucoma for eye-hand coordination. Invest Ophthalmol Vis Sci. 2009;50(1):203–213.PubMedCrossRefGoogle Scholar
  46. 46.
    Jampel HD, Friedman DS, Quigley H, Miller R. Correlation of the binocular visual field with patient assessment of vision. Invest Ophthalmol Vis Sci. 2002;43:1059–1067.PubMedGoogle Scholar
  47. 47.
    Stiles WS. Increment thresholds and the mechanisms of colour vision. Doc Ophthalmol. 1949;3:138–165.PubMedCrossRefGoogle Scholar
  48. 48.
    Kitahara K, Tamaki R, Noji J, Kandatsu A, Matsuzaki H. Extrafoveal Stiles π mechanisms. Doc Ophthalmol Proc Ser. 1982;35:397–404.Google Scholar
  49. 49.
    Kranda K, King-Smith PE. What can color thresholds tell us about the nature of underlying detection mechanisms? Ophthalmic Physiol Opt. 1984;4:83–87.PubMedGoogle Scholar
  50. 50.
    Sample PA, Weinreb RN, Boynton RM. Isolating color vision loss of primary open angle glaucoma. Am J Ophthalmol. 1988;106:686–691.PubMedGoogle Scholar
  51. 51.
    Sample PA, Weinreb RN. Color perimetry for assessment of primary open angle glaucoma. Invest Ophthalmol Vis Sci. 1990;31:1869–1875.PubMedGoogle Scholar
  52. 52.
    Sample RA, Weinreb RN. Progressive color visual field loss in glaucoma. Invest Ophthalmol Vis Sci. 1992;33:2068–2071.PubMedGoogle Scholar
  53. 53.
    Sample PA, Martinezz GA, Weinreb RN. Short-wavelength automated perimetry without lens density testing. Am J Ophthalmol. 1994;118:632–641.PubMedGoogle Scholar
  54. 54.
    Sample PA, Johnson CA, Haegerstrom-Portnoy G, Adams AJ. Optimum parameters for short-wavelength automated perimetry. J Glaucoma. 1996;5:375–383.PubMedCrossRefGoogle Scholar
  55. 55.
    Sample PA, Martinez GA, Weinreb RN. Color visual fields: a 5 year prospective study in eyes with rimary open angle glaucoma. In: Mills RP, ed. Perimetry Update 1992/93. New York: Kugler Publications; 1993:473–476.Google Scholar
  56. 56.
    Sample PA, Taylor JD, Martinez GA, Lusky M, Weinreb RN. Short wavelength color visual fields in glaucoma suspects at risk. Am J Ophthalmol. 1993;115:225–233.PubMedGoogle Scholar
  57. 57.
    Sample PA, Medieros FA, Racette L, et al. Identifying glaucomatous vision loss with visual-function-specific perimetry in the diagnostic innovations in glaucoma study. Invest Ophthalmol Vis Sci. 2006;47:3381–3389.PubMedCrossRefGoogle Scholar
  58. 58.
    Racette L, Sample PA. Short-wavelength automated perimetry. Ophthalmol Clin North Am. 2003;16:227–236.PubMedCrossRefGoogle Scholar
  59. 59.
    Sample PA. Short-wavelength automated perimetry: its role in the clinic and for understanding ganglion cell function. Prog Retin Eye Res. 2000;19:369–383.PubMedCrossRefGoogle Scholar
  60. 60.
    Johnson CA, Adams AJ, Casson EJ, Brandt JD. Blue-on-Yellow perimetry can predict the development of glaucomatous visual field loss. Arch Ophthalmol. 1993;111:645–650.PubMedGoogle Scholar
  61. 61.
    Johnson CA, Adams AJ, Casson EJ, Brandt JD. Progression of early glaucomatous visual field loss for Blue-on-Yellow and standard White-on-White automated perimetry. Arch Ophthalmol. 1993;111:651–656.PubMedGoogle Scholar
  62. 62.
    Johnson CA, Brandt JD, Khong AM, Adams AJ. Short wavelength automated perimetry (SWAP) in low, medium and high risk ocular hypertensives: initial baseline findings. Arch Ophthalmol. 1995;113:70–76.PubMedGoogle Scholar
  63. 63.
    Johnson CA, Adams AJ, Casson EJ. Blue-on-yellow perimetry: a five year overview. In: Mills RP, ed. Perimetry Update 1992/93. New York: Kugler Publications; 1993:459–466.Google Scholar
  64. 64.
    Johnson CA. Selective vs nonselective losses in glaucoma. J Glaucoma. 1994;3:S32-S44. Feature Issue - Journal Supplement.PubMedGoogle Scholar
  65. 65.
    Demirel S, Johnson CA. Incidence and prevalence of Short Wavelength Automated Perimetry (SWAP) deficits in ocular hypertensive patients. Am J Ophthalmol. 2001;131:709–715.PubMedCrossRefGoogle Scholar
  66. 66.
    Demirel S, Johnson CA. Isolation of short wavelength sensitive mechanisms in normal and glaucomatous visual field regions. J Glaucoma. 2000;9:63–73.PubMedGoogle Scholar
  67. 67.
    Demirel S, Johnson CA. Short Wavelength Automated Perimetry (SWAP) in ophthalmic practice. J Am Optom Assoc. 1996;67:451–456.PubMedGoogle Scholar
  68. 68.
    Casson EJ, Johnson CA, Shapiro LR. A longitudinal comparison of Temporal Modulation Perimetry to White-on-White and Blue-on-Yellow Perimetry in ocular hypertension and early glaucoma. J Opt Soc Am. 1993;10:1792–1806.CrossRefGoogle Scholar
  69. 69.
    Lewis RA, Johnson CA, Adams AJ. Automated static visual field testing and perimetry of short-wavelength-sensitive (SWS) mechanisms in patients with asymmetric intraocular pressures. Graefes Arch Clin Exp Ophthalmol. 1993;231:274–278.PubMedCrossRefGoogle Scholar
  70. 70.
    Sit AJ, Medieros FA, Weinreb RN. Short-wavelength automated perimetry can predict glaucomatous visual field loss by ten years. Semin Ophthalmol. 2004;19:122–124.PubMedCrossRefGoogle Scholar
  71. 71.
    Turpin A, Johnson CA, Spry PGD. Development of a maximum likelihood procedure for Short Wavelength Automated Perimetry (SWAP). In: Wall M, Mills RP, eds. Perimetry Update 2000/2001. The Hague: Kugler Publications; 2001:139–147.Google Scholar
  72. 72.
    Bengtsson B. A new rapid threshold algorithm for short-wavelength automated perimetry. Invest Ophthalmol Vis Sci. 2003;44:1388–1394.PubMedCrossRefGoogle Scholar
  73. 73.
    Bengtsson B, Heijl A. Normal intersubject threshold variability and normal limits of the SITA SWAP and full threshold SWAP perimetric programs. Invest Ophthalmol Vis Sci. 2003;44:5029–5034.PubMedCrossRefGoogle Scholar
  74. 74.
    Bengtsson B, Heijl A. Diagnostic sensitivity of fast blue-yellow and standard automated perimetry in early glaucoma: a comparison between different test programs. Ophthalmology. 2006;113:1092–1097.PubMedCrossRefGoogle Scholar
  75. 75.
    Keltner JL, Johnson CA. Short Wavelength Automated Perimetry (SWAP) in neuro-ophthalmologic disorders. Arch Ophthalmol. 1995;113:475–481.PubMedGoogle Scholar
  76. 76.
    Kelly DH. Frequency doubling in visual responses. J Opt Soc Am A. 1966;56:1628–1633.CrossRefGoogle Scholar
  77. 77.
    Kelly DH. Nonlinear visual responses to flickering sinusoidal gratings. J Opt Soc Am. 1981;71:1051–1055.PubMedCrossRefGoogle Scholar
  78. 78.
    Richards W, Felton DB. Spatial frequency doubling: retinal or central? Vision Res. 1973;13:2129–2137.PubMedCrossRefGoogle Scholar
  79. 79.
    Tyler CW. Observations on spatial frequency doubling. Perception. 1974;3:81–86.PubMedCrossRefGoogle Scholar
  80. 80.
    Virsu V, Nyman G, Lehtio PK. Diphasic and polyphasic temporal modulations multiply apparent spatial frequency. Perception. 1974;3:323–336.PubMedCrossRefGoogle Scholar
  81. 81.
    Tolhurst DJ. Illusory shifts in spatial frequency caused by temporal modulation. Perception. 1975;4:331–335.CrossRefGoogle Scholar
  82. 82.
    Virsu V, Laurinen P. Long-lasting afterimages caused by neural adaptation. Vision Res. 1977;17:853–860.PubMedCrossRefGoogle Scholar
  83. 83.
    Maddess T, Henry H. Performance of nonlinear visual units in ocular hypertension and glaucoma. Clin Vis Sci. 1992;7:371–383.Google Scholar
  84. 84.
    Johnson CA, Samuels SJ. Screening for glaucomatous visual field loss using the frequency-doubling contrast test. Invest Ophthalmol Vis Sci. 1997;38:413–425.PubMedGoogle Scholar
  85. 85.
    Fujimoto N, Adachi-Usami E. Frequency doubling perimetry in resolved optic neuritis. Invest Ophthalmol Vis Sci. 2000;41:2558–2560.PubMedGoogle Scholar
  86. 86.
    Wall M, Neahring RK, Woodward KR. Sensitivity and specificity of frequency doubling perimetry in neuro-ophthalmic disorders: a comparison with conventional automated perimetry. Invest Ophthalmol Vis Sci. 2002;43:1277–1283.PubMedGoogle Scholar
  87. 87.
    Girkin CA, McGwin G, DeLeon-Ortega J. Frequency doubling technology perimetry in non-arteritic ischaemic optic neuropathy with altitudinal defects. Br J Ophthalmol. 2004;88:1274–1279.PubMedCrossRefGoogle Scholar
  88. 88.
    Sheu SJ, Chen YY, Lin HC, Chen HL, Lee IY, Wu TT. Frequency doubling technology perimetry in retinal disease - preliminary report. Kaohsiung J Med Sci. 2001;17:25–28.PubMedGoogle Scholar
  89. 89.
    Parikh R, Naik M, Mathai A, Kuriakose T, Muliyil J, Thomas R. Role of frequency doubling technology perimetry in screening of diabetic retinopathy. Indian J Ophthalmol. 2006;54:17–22.PubMedCrossRefGoogle Scholar
  90. 90.
    White AJ, Sun H, Swanson WH, Lee BB. An examination of physiological mechanisms underlying the frequency-doubling illusion. Invest Ophthalmol Vis Sci. 2002;43:3590–3599.PubMedGoogle Scholar
  91. 91.
    Zeppieri M, Demirel S, Kent K, Johnson CA. Perceived spatial frequency of sinusoidal gratings. Optom Vis Sci. 2008;85:318–329.PubMedCrossRefGoogle Scholar
  92. 92.
    Anderson AJ, Johnson CA. Frequency doubling technology perimetry. Ophthalmol Clin North Am. 2003;16:213–225.PubMedCrossRefGoogle Scholar
  93. 93.
    Anderson AJ, Johnson CA, Fingeret M, et al. Characteristics of the normative database for the Humphrey Matrix perimeter. Invest Ophthalmol Vis Sci. 2005;46:1540–1548.PubMedCrossRefGoogle Scholar
  94. 94.
    Clement CI, Goldberg I, Graham S, Healey PR. Humphrey matrix frequency doubling perimetry for detection of visual field defects in open-angle glaucoma. Br J Ophthalmol. 2009;93(5):582–588.PubMedCrossRefGoogle Scholar
  95. 95.
    Brusini P, Salvatet ML, Zeppieri M, Parisi L. Frequency doubling technology perimetry with the Humphrey Matrix 30-2 test. J Glaucoma. 2006;15:77–83.PubMedCrossRefGoogle Scholar
  96. 96.
    Spry PG, Hussin HM, Sparrow JM. Clinical evaluation of frequency doubling perimetry using the Humphrey Matrix 24-2 threshold strategy. Br J Ophthalmol. 2005;89:1031–1035.PubMedCrossRefGoogle Scholar
  97. 97.
    Taravati P, Woodward KR, Keltner JL, et al. Sensitivity and specificity of the Humphrey Matrix to detect homonymous hemianopias. Invest Ophthalmol Vis Sci. 2008;49:924–928.PubMedCrossRefGoogle Scholar
  98. 98.
    Huang CQ, Carolan J, Redline D, et al. Humphrey Matrix perimetry in optic nerve and chiasmal disorders: comparison with Humphrey SITA standard 24-2. Invest Ophthalmol Vis Sci. 2008;49:917–923.PubMedCrossRefGoogle Scholar
  99. 99.
    Johnson CA, Wall M, Fingeret M, Lalle P. A Primer for Frequency Doubling Technology Perimetry. Skaneateles, NY: Welch Allyn; 1998.Google Scholar
  100. 100.
    Spry PGD, Johnson CA, Anderson AJ, et al. A Primer for Frequency Doubling Technology (FDT) Perimetry Using the Humphrey Matrix. Skaneateles, NY: Welch Allyn; 2008.Google Scholar
  101. 101.
    Artes PH, Hutchison DM, Nicolela MT, LeBlanc RP, Chauhan BC. Threshold and variability properties of matrix frequency-doubling technology and standard automated perimetry in glaucoma. Invest Ophthalmol Vis Sci. 2005;46:2451–2457.PubMedCrossRefGoogle Scholar
  102. 102.
    Johnson CA, Cioffi GA, Van Buskirk EM. Evaluation of two screening tests for frequency doubling technology perimetry. In: Wall M, Wild JM, eds. Perimetry Update 1998/1999. Amsterdam: Kugler Publications; 1999:103–109.Google Scholar
  103. 103.
    Spry PG, Hussin HM, Sparrow JM. Performance of the 24-2-5 frequency doubling technology screening test: a prospective case study. Br J Ophthalmol. 2007;91:1345–1349.PubMedCrossRefGoogle Scholar
  104. 104.
    Ruben S, Fitzke F. Correlation of peripheral displacement thresholds and optic disc parameters in ocular hypertension. Br J Ophthalmol. 1994;78:291–294.PubMedCrossRefGoogle Scholar
  105. 105.
    Johnson CA, Marshall D, Eng K. Displacement threshold perimetry in glaucoma using a Macintosh computer system and a 21 inch monitor. In: Wall M, Mills RP, eds. Perimetry Update 1994/95. Amsterdam: Kugler Publications; 2001:103–110.Google Scholar
  106. 106.
    Westcott MC, Fitzke FW, Hitchings RA. Abnormal motion displacement thresholds are associated with fine scale luminance sensitivity loss in glaucoma. Vision Res. 1998;38:3171–3180.PubMedCrossRefGoogle Scholar
  107. 107.
    Wall M, Ketoff KM. Random dot motion perimetry in patients with glaucoma and in normal subjects. Am J Ophthalmol. 1995;120:587–596.PubMedGoogle Scholar
  108. 108.
    Wall M, Jennisch CS, Munden PM. Motion perimetry identifies nerve fiber bundlelike defects in ocular hypertension. Arch Ophthalmol. 1997;115:26–33.PubMedGoogle Scholar
  109. 109.
    Wall M, Jennisch CS. Random dot motion stimuli are more sensitive than light stimuli for detection of visual field loss in ocular hypertension patients. Optom Vis Scci. 1999;76:550–557.CrossRefGoogle Scholar
  110. 110.
    Joffe KM, Raymond JE, Chrichton A. Motion coherence perimetry in glaucoma and suspected glaucoma. Vision Res. 1997;37:955–964.PubMedCrossRefGoogle Scholar
  111. 111.
    Bosworth CF, Sample PA, Weinreb RN. Perimetric motion thresholds are elevated in glaucoma suspects and glaucoma patients. Vision Res. 1997;37:1989–1997.PubMedCrossRefGoogle Scholar
  112. 112.
    Bosworth CF, Sample PA, Gupta N, Bathija R, Weinreb RN. Motion automated perimetry identifies early glaucomatous field defects. Arch Ophthalmol. 1998;116:1153–1158.PubMedGoogle Scholar
  113. 113.
    Silverman SE, Trick GL, Hart WM. Motion perception is abnormal in ptimary open angle glaucoma and ocular hypertension. Invest Ophthalmol Vis Sci. 1990;31:722–729.PubMedGoogle Scholar
  114. 114.
    Bullimore MA, Wood JA, Swenson K. Motion perception in glaucoma. Invest Ophthalmol Vis Sci. 1993;34:3526–3533.PubMedGoogle Scholar
  115. 115.
    Bosworth CF, Sample PA, Williams JM, Zangwill L, Kee B, Weinreb RN. Spatial relationships of motion automated perimetry and optic disc topography in patients with glaucomatous optic neuropathy. J Glaucoma. 1999;8:281–289.PubMedCrossRefGoogle Scholar
  116. 116.
    Sample PA, Bosworth CF, Blumenthal EZ, Girkin C, Weinreb RN. Visual function-specific perimetry for indirect comparison of different ganglion cell populations in glaucoma. Invest Ophthalmmol Vis Sci. 2000;41:1783–1790.Google Scholar
  117. 117.
    Shabana N, Cornilleau PV, Carkeet A, Chew PT. Motion pereption in glaucoma patients: a review. Surv Ophthalmol. 2003;48:92–106.PubMedCrossRefGoogle Scholar
  118. 118.
    Johnson CA, Scobey RP. Foveal and peripheral displacement thresholds as a function of stimulus luminance, line length and duration of movement. Vision Res. 1980;20:709–715.PubMedCrossRefGoogle Scholar
  119. 119.
    Yoshiyama KK, Johnson CA. Which method of flicker perimetry is most effective for detection of glaucomatous visual field loss? Invest Ophthalmol Vis Sci. 1997;38:2270–2277.PubMedGoogle Scholar
  120. 120.
    McKendrick AM, Johnson CA. Temporal properties of vision. In: Alm A, Kaufmann P, eds. Adler’s Physiology of the Eye. 10th ed. St. Louis: C.V. Mosby; 2002:511-530 [Section 9: Visual perception].Google Scholar
  121. 121.
    Tyler CW. Specific deficits of flicker sensitivity in glaucoma and ocular hypertension. Invest Ophthalmol Vis Sci. 1981;100:135–146.Google Scholar
  122. 122.
    Lachenmayr BJ, Drance SM, Douglas GR, Mikelberg FS. Light-sense, flicker and resolution perimetry in glaucoma: a comparative study. Graefes Arch Clin Exp Ophthalmol. 1991;229:246–251.PubMedCrossRefGoogle Scholar
  123. 123.
    Lachenmayr BJ, Drance SM, Chauhan BC, House PH, Lalani S. Diffuse and localized glaucomatous field loss in light-sense, flicker and resolution perimetry. Graefes Arch Clin Exp Ophthalmol. 1991;229:267–273.PubMedCrossRefGoogle Scholar
  124. 124.
    Casson EJ, Johnson CA. Temporal modulation perimetry in glaucoma and ocular hypertension. In: Mills RP, ed. Perimetry Update 1992/93. New York: Kugler Publications; 1993:443–450.Google Scholar
  125. 125.
    Matsumoto C, Takada S, Okuyama S, Arimura E, Hashimoto S, Shimomura Y. Automated flicker perimetry in glaucoma using Octopus 311: a comparative study with the Humphrey Matrix. Acta Ophthalmol Scand. 2006;84:866–872.CrossRefGoogle Scholar
  126. 126.
    Swanson WH, Ueno T, Smith VC, Pokorny J. Temporal modulation sensitivity and pulse-detection thresholds for chromatic and luminance perturbations. J Opt Soc Am A. 1987;4:1992–2005.PubMedCrossRefGoogle Scholar
  127. 127.
    Anderson AJ, Vingrys AJ. Interactions between flicker thresholds and luminance pedestals. Vision Res. 2000;40:2579–2588.PubMedCrossRefGoogle Scholar
  128. 128.
    Anderson AJ, Vingrys AJ. Effect of eccentricity on luminance-pedestal flicker thresholds. Vision Res. 2002;42:1149–1156.PubMedCrossRefGoogle Scholar
  129. 129.
    Anderson AJ, Vingrys AJ. Multiple processes mediate flicker sensitivity. Vision Res. 2001;41:2449–2455.PubMedCrossRefGoogle Scholar
  130. 130.
    Quaid PT, Flanagan JG. Defining the limits of flicker defined form: effect of stimulus size, eccentricity and number of random dots. Vision Res. 2005;45:1075–1084.PubMedCrossRefGoogle Scholar
  131. 131.
    Goren D, Flanagan JG. Is flicker-defined form (FDF) dependent on the contour? J Vis. 2008;8:15.1-15.11.CrossRefGoogle Scholar
  132. 132.
    Frisen L. Acuity perimetry: estimation of neural channels. Int Ophthalmol. 1988;12:169–174.PubMedCrossRefGoogle Scholar
  133. 133.
    Wall M, Lefante J, Conway M. Variability of high-pass resolution perimetry in normals and patients with idiopathic intracranial hypertension. Invest Ophthalmol Vis Sci. 1991;32:3091–3095.PubMedGoogle Scholar
  134. 134.
    Wall M, Conway MD, House PH, Allely R. Evaluation of sensitivity and specificity of spatial resolution and Humphrey automated perimetry in pseudotumor cerebri patients and normal subjects. Invest Ophthalmol Vis Sci. 1991;32:3306–3312.PubMedGoogle Scholar
  135. 135.
    Sample PA, Ahn DS, Lee PC, Weinreb RN. High-pass resolution perimetry in eyes with ocular hypertension and primary open-angle glaucoma. Am J Ophthalmol. 1992;113:309–316.PubMedGoogle Scholar
  136. 136.
    Frisen L. High-pass resolution perimetry: a clinical review. Doc Ophthalmol. 1993;83:1–25.PubMedCrossRefGoogle Scholar
  137. 137.
    Chauhan BC, LeBlanc RP, McCormick TA, Mohandas RN, Wijsman K. Correlation between the optic disc and results obtained with conventional, high-pass resolution and pattern discrimination perimetry in glaucoma. Can J Ophthalmol. 1993;28:312–316.PubMedGoogle Scholar
  138. 138.
    Chauhan BC, House PH, McCormick TA, LeBlanc RP. Comparison of conventional and high-pass resolution perimetry in a prospective study of patients with glaucoma and healthy controls. Arch Ophthalmol. 1999;117:24–33.PubMedGoogle Scholar
  139. 139.
    Chauhan BC. The value of high-pass resolution perimetry in glaucoma. Curr Opin Ophthalmol. 2000;11:85–89.PubMedCrossRefGoogle Scholar
  140. 140.
    Ennis FA, Johnson CA. Are high-pass resolution perimetry thresholds sampling limited or optically limited? Optom Vis Sci. 2002;79:506–511.PubMedCrossRefGoogle Scholar
  141. 141.
    Wall M, Chauhan B, Frisen L, House PH, Brito C. Visual field of high-pass resolution perimetry in normal subjects. J Glaucoma. 2004;13:15–21.PubMedCrossRefGoogle Scholar
  142. 142.
    Frisen L. New, sensitive window on abnormal spatial vision: rarebit probing. Vision Res. 2002;42:1931–1939.PubMedCrossRefGoogle Scholar
  143. 143.
    Martin L, Wanger P. New perimetric techniques: a comparison between rarebit and frequency doubling technology perimetry in normal subjects and glaucoma patients. J Glaucoma. 2004;13:268–272.PubMedCrossRefGoogle Scholar
  144. 144.
    Brusini P, Salvatet ML, Parisi L, Zeppieri M. Probing glaucoma visual damage by rarebit perimetry. Br J Ophthalmol. 2005;89:180–184.PubMedCrossRefGoogle Scholar
  145. 145.
    Salvatet ML, Zeppieri M, Parisi L, Brusini P. Rarebit perimetry in normal subjects: test-retest variability, learning effect, normative range, influence of optical defocus, and cataract extraction. Invest Ophthalmol Vis Sci. 2007;48:5320–5331.CrossRefGoogle Scholar
  146. 146.
    Yavas GF, Kusbeci T, Eser O, Ermis SS, Cosar M, Ozturk F. A new visual field test in empty sella syndrome: rarebit perimetry. Eur J Ophthalmol. 2008;18:628–632.PubMedGoogle Scholar
  147. 147.
    Bearse MA Jr, Sutter EE. Imaging localized retinal dysfunction with the multifocal electroretinogram. J Opt Soc Am A. 1996;13:634–640.CrossRefGoogle Scholar
  148. 148.
    Chan HL, Brown B. Multifocal ERG changes in glaucoma. Ophthalmic Physiol Opt. 1999;19:306–316.PubMedCrossRefGoogle Scholar
  149. 149.
    Hood DC, Zhang X. Multifocal ERG and VEP responses and visual fields: comparing disease-related changes. Doc Ophthalmol. 2000;100:115–137.CrossRefGoogle Scholar
  150. 150.
    Fortune B, Bearse MA, Cioffi GA, Johnson CA. Selective loss of an oscillatory component from temporal retinal multifocal ERG responses in glaucoma. Invest Ophthalmol Vis Sci. 2002;43: 2638–2647.PubMedGoogle Scholar
  151. 151.
    Chan HH. Detection of glaucomatous damage using multifocal ERG. Clin Exp Optom. 2005;88:410–414.PubMedCrossRefGoogle Scholar
  152. 152.
    Graham SL, Klistorner AL, Grigg JR, Billson FA. Objective VEP perimetry in glaucoma: asymmetry analysis to identify early deficits. J Glaucoma. 2000;9:10–19.PubMedGoogle Scholar
  153. 153.
    Klistorner A, Graham SL. Objective perimetry in glaucoma. Ophthalmology. 2000;107:2283–2299.PubMedCrossRefGoogle Scholar
  154. 154.
    Hood DC, Greenstein VC. Multifocal VEP and ganglion cell damage: applications and limitations for the study of glaucoma. Prog Retin Eye Res. 2003;22:201–251.PubMedCrossRefGoogle Scholar
  155. 155.
    Graham SL, Klistorner AL. Goldberg. Clinical application of objective perimetry using multifocal visual evoked potentials in glaucoma practice. Arch Ophthalmol. 2005;123:729–739.PubMedCrossRefGoogle Scholar
  156. 156.
    Grippo TM, Hood DC, Kandani FN, Greenstein VC, Liebmann JM, Ritch R. A comparison between multifocal and conventional VEP latency changes secondary to glaucomatous damage. Invest Ophthalmol Vis Sci. 2006;47:5331–5336.PubMedCrossRefGoogle Scholar
  157. 157.
    Fortune B, Demirel S, Zhang X, et al. Comparing multifocal VEP and standard automated perimetry in high-risk ocular hypertensives and early glaucoma. Invest Ophthalmol Vis Sci. 2007;48:1173–1180.PubMedCrossRefGoogle Scholar
  158. 158.
    Klistorner A, Graham SL, Martins A, et al. Multifocal blue-on-yellow visual evoked potentials in arly glaucoma. Ophthalmology. 2007;114:1613–1621.PubMedCrossRefGoogle Scholar
  159. 159.
    Johnson CA, Keltner JL. Principals and techniques of the examination of the visual sensory system. In: Miller NR, Newman NJ, eds. Walsh and Hoyt’s Textbook of Neuro-Ophthalmology. Baltimore: Williams and Wilkens; 1998:153–235.Google Scholar
  160. 160.
    Frisen L. Clinical tests of vision. New York: Raven Press; 1990.Google Scholar
  161. 161.
    Lachenmayr BJ, Vivell PMO. Perimetry and its clinical correlations. New York: Thieme; 1993.Google Scholar
  162. 162.
    Gardiner SK, Crabb DP. Frequency of testing for detecting visual field progression. Br J Ophthalmol. 2002;86:560–564.PubMedCrossRefGoogle Scholar
  163. 163.
    Spry PGD, Johnson CA. Identification of progressive glaucomatous visual field loss. Surv Ophthalmol. 2002;47:158–173.PubMedCrossRefGoogle Scholar
  164. 164.
    Vesti E, Johnson CA, Chauhan BC. Comparison of different methods for detecting glaucomatous visual field progression. Invest Ophthalmol Vis Sci. 2003;44:3873–3879.PubMedCrossRefGoogle Scholar
  165. 165.
    Smith SD, Katz J, Quigley HA. Analysis of progressive change in automated visual fields in glaucoma. Invest Ophthalmol Vis Sci. 1996;37:1419–1428.PubMedGoogle Scholar
  166. 166.
    Åsman P, Heijl A. Glaucoma Hemifield Test: automated visual field evaluation. Arch Ophthalmol. 1992;110:812–819.PubMedGoogle Scholar
  167. 167.
    Heijl A, Lindgren G, Lindgren A, et al. Extended empirical statistical package for evaluation of single and multiple fields in glaucoma. Statpak 2. In: Mills RP, Heijl A, eds. Perimetry Update 1990/91. Amsterdam: Kugler and Ghedini; 1991:303–315.Google Scholar
  168. 168.
    Mayama C, Araie M, Suzuki Y, et al. Statistical evaluation of the diagnostic accuracy of methods used to determine the progression of visual field defects in glaucoma. Ophthalmology. 2004;111:2117–2125.PubMedCrossRefGoogle Scholar
  169. 169.
    Katz J, Congdon N, Friedman DS. Methodological variations in estimating apparent progressive visual field loss in clinical trials of glaucoma treatment. Arch Ophthalmol. 1999;117:1137–1142.PubMedGoogle Scholar
  170. 170.
    Nouri-Mahdavi K, Hoffman D, Ralli M, Caprioli J. Comparison of methods to predict visual field progression in glaucoma. Arch Ophthalmol. 2007;125:1176–1181.PubMedCrossRefGoogle Scholar
  171. 171.
    Boden C, Blumenthal EZ, Pascual J, et al. Patterns of glaucomatous visual field progression identified by three progression criteria. Am J Ophthalmol. 2004;138:1029–1036.PubMedCrossRefGoogle Scholar
  172. 172.
    AGIS Investigators. The Advanced Glaucoma Intervention Study (AGIS): 14. Distinguishing progression of glaucoma from visual field fluctuations. Ophthalmology. 2004;111:2109–2116.CrossRefGoogle Scholar
  173. 173.
    Schulzer M. Errors in the diagnosis of visual field progression in normal-tension glaucoma. Ophthalmology. 1994;101:1589–1594.PubMedGoogle Scholar
  174. 174.
    Heijl A, Bengtsson B, Chauhan BC, et al. A comparison of visual field progression criteria of 3 major glaucoma trials in Early Manifest Glaucoma Trial patients. Ophthalmology. 2008;115:1557–1565.PubMedCrossRefGoogle Scholar
  175. 175.
    Broman AT, Quigley HA, West SK, et al. Estimating the rate of progressive visual field damage in those with open-angle glaucoma, from cross-sectional data. Invest Ophthalmol Vis Sci. 2008;49:66–76.PubMedCrossRefGoogle Scholar
  176. 176.
    Bengtsson B, Heijl A. A visual field index for calculation of glaucoma rate of progression. Am J Ophthalmol. 2008;145:343–353.PubMedCrossRefGoogle Scholar
  177. 177.
    Keltner JL, Johnson CA, Spurr JO, Kass MA, Ocular Hypertension Study Group. Confirmation of visual field abnormalities in the Ocular Hypertension Treatment Study (OHTS). Arch Ophthalmol. 2000;118:1187–1194.PubMedGoogle Scholar
  178. 178.
    Hattenhauer MG, Johnson DH, Ing HH, et al. The probability of blindness from open-angle glaucoma. Ophthalmology. 1998;105:2099–2104.PubMedCrossRefGoogle Scholar
  179. 179.
    Friedman DS, Hahn SR, Gelb L, et al. Doctor-patient communication, health-related beliefs, and adherence in glaucoma results from the Glaucoma Adherence and Persistency Study. Ophthalmology. 2008;115:1320–1327.PubMedCrossRefGoogle Scholar
  180. 180.
    Friedman DS, Quigley HA, Gelb L, et al. Using pharmacy claims data to study adherence to glaucoma medications: methodology and findings of the Glaucoma Adherence and Persistency Study (GAPS). Invest Ophthalmol Vis Sci. 2007;48:5052–5257.PubMedCrossRefGoogle Scholar
  181. 181.
    The Advanced Glaucoma Intervention Study Group. The Advanced Glaucoma Intervention Study (AGIS): 4. Comparison of treatment outcomes within race. Seven-year results. Ophthalmology. 1998;105:1146–1164.CrossRefGoogle Scholar
  182. 182.
    Feiner L, Piltz-Seymour JR, Collaborative Initial Glaucoma Treatment Study. Collaborative Initial Glaucoma Treatment Study: a summary of results to date. Curr Opin Ophthalmol. 2003;14:106–111.PubMedCrossRefGoogle Scholar
  183. 183.
    Leske MC, Heijl A, Hussein M, et al. Factors for glaucoma progression and the effect of treatment: the early manifest glaucoma trial. Arch Ophthalmol. 2003;121:48–56.PubMedGoogle Scholar
  184. 184.
    Kass MA, Heuer DK, Higginbotham EJ, et al. The Ocular Hypertension Treatment Study: safety and efficacy of topical ocular hypotensive medication in preventing or delaying the onset of primary open angle glaucoma. Arch Ophthalmol. 2002;120:701–713.PubMedGoogle Scholar
  185. 185.
    Anderson DR, Drance SM, Schulzer M, Collaborative Normal-Tension Glaucoma Study Group. Factors that predict the benefit of lowering intraocular pressure in normal tension glaucoma. Am J Ophthalmol. 2003;136:820–829.PubMedCrossRefGoogle Scholar
  186. 186.
    Hyman LG, Komaroff E, Heijl A, Bengtsson B, Leske MC, Early Manifest Glaucoma Trial Group. Treatment and vision-related quality of life in the early manifest glaucoma trial. Ophthalmology. 2005;112:1505–1513.PubMedCrossRefGoogle Scholar
  187. 187.
    Jampel HD, Schwartz A, Pollack I, Abrams D, Weiss H, Miller R. Glaucoma patients’ assessment of their visual function and quality of life. J Glaucoma. 2002;11:154–163.PubMedCrossRefGoogle Scholar
  188. 188.
    Coleman AL. Glaucoma. Lancet. 1999;354:1803–1810.PubMedCrossRefGoogle Scholar
  189. 189.
    Girkin CA. Primary open-angle glaucoma in African Americans. Int Ophthalmol Clin. 2004;44:43-60. Review.Google Scholar
  190. 190.
    Varma R, Ying-Lai M, Francis BA, et al. Prevalence of open-angle glaucoma and ocular hypertension in Latinos: the Los Angeles Latino Eye Study. Ophthalmology. 2004;111:1439–1448.PubMedCrossRefGoogle Scholar


  1. Cassin B. Fundamentals for Ophthalmic Technical Personnel. Philadelphia: Saunders; 1995:148.Google Scholar
  2. Cassin B. Fundamentals for Ophthalmic Technical Personnel. Philadelphia: Saunders; 1995:342.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Chris A. Johnson
    • 1
  1. 1.Department of Ophthalmology and Visual SciencesUniversity of Iowa Hospitals and ClinicsIowa CityUSA

Personalised recommendations