Clinical Cupping: Laminar and Prelaminar Components

  • Claude F. Burgoyne
  • Hongli Yang
  • J. Crawford Downs


While glaucomatous damage to the visual system likely includes important pathophysiologies within the retinal ganglion cell (RGC) body, photoreceptors, lateral geniculate body, and visual cortex, strong evidence suggests that damage to the retinal ganglion cell axons within the lamina cribrosa of the optic nerve head (ONH) is the central pathophysiology underlying glaucomatous vision loss. Recent studies in the monkey and rat support the importance of the ONH, by describing profound alterations within the prelaminar, laminar, and peripapillary scleral tissues of the ONH at the earliest detectable stage of experimental glaucoma.


Retinal Nerve Fiber Layer Optic Neuropathy Optic Nerve Head Normal Tension Glaucoma Lamina Cribrosa 



Portions of this chapter have appeared previously in two publications.24,69

Supported in part by USPHS grant R01EY011610 (CFB) from the National Eye Institute, National Institutes of Health, Bethesda, Maryland; unrestricted research support from Heidelberg Engineering; a grant from the American Health Assistance Foundation, Rockville, Maryland (CFB); a grant from The Whitaker Foundation, Arlington, Virginia (CFB); a Career Development Award (CFB) from Research to Prevent Blindness, Inc., New York, New York and unrestricted support from The Sears Trust, Mexico MO.


  1. 1.
    Asai T, Katsumori N, Mizokami K. Retinal ganglion cell damage in human glaucoma. 2. Studies on damage pattern. Nippon Ganka Gakkai Zasshi. 1987;91:1204–1213.PubMedGoogle Scholar
  2. 2.
    Garcia-Valenzuela E, Shareef S, Walsh J, Sharma SC. Programmed cell death of retinal ganglion cells during experimental glaucoma. Exp Eye Res. 1995;61:33–44.PubMedCrossRefGoogle Scholar
  3. 3.
    Quigley HA, Nickells RW, Kerrigan LA, et al. Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis. Invest Ophthalmol Vis Sci. 1995;36:774–786.PubMedGoogle Scholar
  4. 4.
    Weber AJ, Kaufman PL, Hubbard WC. Morphology of single ganglion cells in the glaucomatous primate retina. Invest Ophthalmol Vis Sci. 1998;39:2304–2320.PubMedGoogle Scholar
  5. 5.
    Quigley HA, McKinnon SJ, Zack DJ, et al. Retrograde axonal transport of BDNF in retinal ganglion cells is blocked by acute IOP elevation in rats. Invest Ophthalmol Vis Sci. 2000;41:3460–3466.PubMedGoogle Scholar
  6. 6.
    Quigley HA. Ganglion cell death in glaucoma: pathology recapitulates ontogeny. Aust NZ J Ophthalmol. 1995;23:85–91.CrossRefGoogle Scholar
  7. 7.
    Wygnanski T, Desatnik H, Quigley HA, Glovinsky Y. Comparison of ganglion cell loss and cone loss in experimental glaucoma. Am J Ophthalmol. 1995;120:184–189.PubMedGoogle Scholar
  8. 8.
    Panda S, Jonas JB. Decreased photoreceptor count in human eyes with secondary angle-closure glaucoma. Invest Ophthalmol Vis Sci. 1992;33:2532–2536.PubMedGoogle Scholar
  9. 9.
    Kendell KR, Quigley HA, Kerrigan LA, Pease ME, Quigley EN. Primary open-angle glaucoma is not associated with photoreceptor loss. Invest Ophthalmol Vis Sci. 1995;36:200–205.PubMedGoogle Scholar
  10. 10.
    Nork TM, Ver Hoeve JN, Poulsen GL, et al. Swelling and loss of photoreceptors in chronic human and experimental glaucomas. Arch Ophthalmol. 2000;118:235–245.PubMedGoogle Scholar
  11. 11.
    Janssen P, Naskar R, Moore S, Thanos S, Thiel HJ. Evidence for glaucoma-induced horizontal cell alterations in the human retina. Ger J Ophthalmol. 1996;5:378–385.PubMedGoogle Scholar
  12. 12.
    Yucel YH, Zhang Q, Gupta N, Kaufman PL, Weinreb RN. Loss of neurons in magnocellular and parvocellular layers of the lateral geniculate nucleus in glaucoma. Arch Ophthalmol. 2000;118:378–384.PubMedGoogle Scholar
  13. 13.
    Yucel YH, Zhang Q, Weinreb RN, Kaufman PL, Gupta N. Atrophy of relay neurons in magno- and parvocellular layers in the lateral geniculate nucleus in experimental glaucoma. Invest Ophthalmol Vis Sci. 2001;42:3216–3222.PubMedGoogle Scholar
  14. 14.
    Yucel YH, Zhang Q, Weinreb RN, Kaufman PL, Gupta N. Effects of retinal ganglion cell loss on magno-, parvo-, koniocellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma. Prog Retin Eye Res. 2003;22:465–481.PubMedCrossRefGoogle Scholar
  15. 15.
    Gaasterland D, Tanishima T, Kuwabara T. Axoplasmic flow during chronic experimental glaucoma. 1. Light and electron microscopic studies of the monkey optic nervehead during development of glaucomatous cupping. Invest Ophthalmol Vis Sci. 1978;17:838–846.PubMedGoogle Scholar
  16. 16.
    Minckler DS, Bunt AH, Johanson GW. Orthograde and retrograde axoplasmic transport during acute ocular hypertension in the monkey. Invest Ophthalmol Vis Sci. 1977;16:426–441.PubMedGoogle Scholar
  17. 17.
    Quigley HA, Addicks EM, Green WR, Maumenee AE. Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. Arch Ophthalmol. 1981;99:635–649.PubMedGoogle Scholar
  18. 18.
    Quigley HA, Green WR. The histology of human glaucoma cupping and optic nerve damage: clinicopathologic correlation in 21 eyes. Ophthalmology. 1979;86:1803–1830.PubMedGoogle Scholar
  19. 19.
    Bellezza AJ, Rintalan CJ, Thompson HW, et al. Deformation of the lamina cribrosa and anterior scleral canal wall in early experimental glaucoma. Invest Ophthalmol Vis Sci. 2003;44:623–637.PubMedCrossRefGoogle Scholar
  20. 20.
    Burgoyne CF, Downs JC, Bellezza AJ, Hart RT. Three-dimensional reconstruction of normal and early glaucoma monkey optic nerve head connective tissues. Invest Ophthalmol Vis Sci. 2004;45:4388–4399.PubMedCrossRefGoogle Scholar
  21. 21.
    Downs JC, Suh JK, Thomas KA, et al. Viscoelastic material properties of the peripapillary sclera in normal and early-glaucoma monkey eyes. Invest Ophthalmol Vis Sci. 2005;46:540–546.PubMedCrossRefGoogle Scholar
  22. 22.
    Downs JC, Yang H, Girkin C, et al. Three dimensional histomorphometry of the normal and early glaucomatous monkey optic nerve head: neural canal and subarachnoid space architecture. Invest Ophthalmol Vis Sci. 2007;48:3195–3208.PubMedCrossRefGoogle Scholar
  23. 23.
    Yang H, Downs JC, Girkin C, et al. 3-D histomorphometry of the normal and early glaucomatous monkey optic nerve head: lamina cribrosa and peripapillary scleral position and thickness. Invest Ophthalmol Vis Sci. 2007;48(10):4597–4607.PubMedCrossRefGoogle Scholar
  24. 24.
    Yang H, Downs JC, Bellezza AJ, Thompson H, Burgoyne CF. 3-D histomorphometry of the normal and early glaucomatous monkey optic nerve head: prelaminar neural tissues and cupping. Invest Ophthalmol Vis Sci. 2007;48:5068–5084.PubMedCrossRefGoogle Scholar
  25. 25.
    Yang H, Downs JC, Burgoyne CF. Physiologic inter-eye differences in monkey optic nerve head architecture and their relation to changes in early experimental glaucoma. Invest Ophthalmol Vis Sci. 2009;50:224–234.PubMedCrossRefGoogle Scholar
  26. 26.
    Roberts MD, Grau V, Grimm J, et al. Remodeling of the connective tissue microarchitecture of the lamina cribrosa occurs early in experimental glaucoma in the monkey eye. Invest Ophthalmol Vis Sci. 2009;50:681–690.PubMedCrossRefGoogle Scholar
  27. 27.
    Johnson EC, Morrison JC, Farrell S, et al. The effect of chronically elevated intraocular pressure on the rat optic nerve head extracellular matrix. Exp Eye Res. 1996;62:663–674.PubMedCrossRefGoogle Scholar
  28. 28.
    Johnson EC, Deppmeier LM, Wentzien SK, Hsu I, Morrison JC. Chronology of optic nerve head and retinal responses to elevated intraocular pressure. Invest Ophthalmol Vis Sci. 2000;41:431–442.PubMedGoogle Scholar
  29. 29.
    Cepurna WO, Kayton RJ, Johnson EC, Morrison JC. Age related optic nerve axonal loss in adult Brown Norway rats. Exp Eye Res. 2005;80:877–884.PubMedCrossRefGoogle Scholar
  30. 30.
    Anderson DR. Ultrastructure of human and monkey lamina cribrosa and optic nerve head. Arch Ophthalmol. 1969;82:800–814.PubMedGoogle Scholar
  31. 31.
    Morrison JC, Jerdan JA, L’Hernault NL, Quigley HA. The extracellular matrix composition of the monkey optic nerve head. Invest Ophthalmol Vis Sci. 1988;29:1141–1150.PubMedGoogle Scholar
  32. 32.
    Quigley HA, Dorman-Pease ME, Brown AE. Quantitative study of collagen and elastin of the optic nerve head and sclera in human and experimental monkey glaucoma. Curr Eye Res. 1991;10:877–888.PubMedCrossRefGoogle Scholar
  33. 33.
    Hernandez MR. Ultrastructural immunocytochemical analysis of elastin in the human lamina cribrosa. Changes in elastic fibers in primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 1992;33:2891–2903.PubMedGoogle Scholar
  34. 34.
    Investigators A: The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration. Am J Ophthalmol. 2000;130:429–440.CrossRefGoogle Scholar
  35. 35.
    Kass MA, Heuer DK, Higginbotham EJM, et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120:701–713.PubMedGoogle Scholar
  36. 36.
    Leske MC, Heijl A, Hussein M, et al. Factors for glaucoma progression and the effect of treatment: the early manifest glaucoma trial. Arch Ophthalmol. 2003;121:48–56.PubMedGoogle Scholar
  37. 37.
    Anderson DR, Drance SM, Schulzer M. Factors that predict the benefit of lowering intraocular pressure in normal tension glaucoma. Am J Ophthalmol. 2003;136:820–829.PubMedCrossRefGoogle Scholar
  38. 38.
    Nicolela MT, Drance SM. Various glaucomatous optic nerve appearances: clinical correlations. Ophthalmology. 1996;103:640–649.PubMedGoogle Scholar
  39. 39.
    Pederson JE, Anderson DR. The mode of progressive disc cupping in ocular hypertension and glaucoma. Arch Ophthalmol. 1980;98:490–495.PubMedGoogle Scholar
  40. 40.
    Pederson JE, Gaasterland DE. Laser-induced primate glaucoma. I. Progression of cupping. Arch Ophthalmol. 1984;102:1689–1692.PubMedGoogle Scholar
  41. 41.
    Johns KJ, Leonard-Martin T, Feman SS. The effect of panretinal photocoagulation on optic nerve cupping. Ophthalmology. 1989;96:211–216.PubMedGoogle Scholar
  42. 42.
    Klein BE, Klein R, Lee KE, Hoyer CJ. Does the intraocular pressure effect on optic disc cupping differ by age? Trans Am Ophthalmol Soc. 2006;104:143–148.PubMedGoogle Scholar
  43. 43.
    Sponsel WE, Shoemaker J, Trigo Y, et al. Frequency of sustained glaucomatous-type visual field loss and associated optic nerve cupping in Beaver Dam, Wisconsin. Clin Exp Ophthalmol. 2001;29:352–358.CrossRefGoogle Scholar
  44. 44.
    Greenfield DS, Siatkowski RM, Glaser JS, Schatz NJ, Parrish RK II. The cupped disc. Who needs neuroimaging? Ophthalmology. 1998;105:1866–1874.PubMedCrossRefGoogle Scholar
  45. 45.
    Bianchi-Marzoli S, Rizzo JF III, Brancato R, Lessell S. Quantitative analysis of optic disc cupping in compressive optic neuropathy. Ophthalmology. 1995;102:436–440.PubMedGoogle Scholar
  46. 46.
    Schwartz JT, Reuling FH, Garrison RJ. Acquired cupping of the optic nerve head in normotensive eyes. Br J Ophthalmol. 1975;59:216–222.PubMedCrossRefGoogle Scholar
  47. 47.
    Kalvin NH, Hamasaki DI, Gass JD. Experimental glaucoma in monkeys. I. Relationship between intraocular pressure and cupping of the optic disc and cavernous atrophy of the optic nerve. Arch Ophthalmol. 1966;76:82–93.PubMedGoogle Scholar
  48. 48.
    Vrabec F. Glaucomatous cupping of the human optic disk: a neuro-histologic study. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1976;198:223–234.PubMedCrossRefGoogle Scholar
  49. 49.
    Anderson DR, Cynader MS. Glaucomatous optic nerve cupping as an optic neuropathy. Clin Neurosci. 1997;4:274–278.PubMedGoogle Scholar
  50. 50.
    Quigley H, Anderson DR. Cupping of the optic disc in ischemic optic neuropathy. Trans Am Acad Ophthalmol Otolaryngol. 1977;83:755–762.Google Scholar
  51. 51.
    Trobe JD, Glaser JS, Cassady J, Herschler J, Anderson DR. Nonglaucomatous excavation of the optic disc. Arch Ophthalmol. 1980;98:1046–1050.PubMedGoogle Scholar
  52. 52.
    Hayreh SS, Jonas JB. Optic disc morphology after arteritic anterior ischemic optic neuropathy. Ophthalmology. 2001;108:1586–1594.PubMedCrossRefGoogle Scholar
  53. 53.
    Jonas JB, Grundler A. Optic disc morphology in “age-related atrophic glaucoma”. Graefes Arch Clin Exp Ophthalmol. 1996;234:744–749.PubMedCrossRefGoogle Scholar
  54. 54.
    Hall ER, Klein BE, Knudtson MD, Meuer SM, Klein R. Age-related macular degeneration and optic disk cupping: the Beaver Dam Eye Study. Am J Ophthalmol. 2006;141:494–497.PubMedCrossRefGoogle Scholar
  55. 55.
    Piette SD, Sergott RC. Pathological optic-disc cupping. Curr Opin Ophthalmol. 2006;17:1–6.PubMedCrossRefGoogle Scholar
  56. 56.
    Alward WL. Macular degeneration and glaucoma-like optic nerve head cupping. Am J Ophthalmol. 2004;138:135–136.PubMedCrossRefGoogle Scholar
  57. 57.
    Danesh-Meyer HV, Savino PJ, Sergott RC. The prevalence of cupping in end-stage arteritic and nonarteritic anterior ischemic optic neuropathy. Ophthalmology. 2001;108:593–598.PubMedCrossRefGoogle Scholar
  58. 58.
    Ambati BK, Rizzo JF III. Nonglaucomatous cupping of the optic disc. Int Ophthalmol Clin. 2001;41:139–149.PubMedCrossRefGoogle Scholar
  59. 59.
    Greenfield DS. Glaucomatous versus nonglaucomatous optic disc cupping: clinical differentiation. Semin Ophthalmol. 1999;14:95–108.PubMedCrossRefGoogle Scholar
  60. 60.
    Sharma M, Volpe NJ, Dreyer EB. Methanol-induced optic nerve cupping. Arch Ophthalmol. 1999;117:286.PubMedGoogle Scholar
  61. 61.
    Manor RS. Documented optic disc cupping in compressive optic neuropathy. Ophthalmology. 1995;102:1577–1578.PubMedGoogle Scholar
  62. 62.
    Orgul S, Gass A, Flammer J. Optic disc cupping in arteritic anterior ischemic optic neuropathy. Ophthalmologica. 1994;208:336–338.PubMedCrossRefGoogle Scholar
  63. 63.
    Sonty S, Schwartz B. Development of cupping and pallor in posterior ischemic optic neuropathy. Int Ophthalmol. 1983;6:213–220.PubMedCrossRefGoogle Scholar
  64. 64.
    Votruba M, Thiselton D, Bhattacharya SS. Optic disc morphology of patients with OPA1 autosomal dominant optic atrophy. Br J Ophthalmol. 2003;87:48–53.PubMedCrossRefGoogle Scholar
  65. 65.
    Fechtner RD, Weinreb RN. Mechanisms of optic nerve damage in primary open angle glaucoma. Surv Ophthalmol. 1994;39:23–42.PubMedCrossRefGoogle Scholar
  66. 66.
    Burgoyne CF, Morrison JC. The anatomy and pathophysiology of the optic nerve head in glaucoma. J Glaucoma. 2001;10:S16-S18.PubMedCrossRefGoogle Scholar
  67. 67.
    Burgoyne CF, Downs JC, Bellezza AJ, Suh JK, Hart RT. The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res. 2005;24:39–73.PubMedCrossRefGoogle Scholar
  68. 68.
    Downs JC, Burgoyne CF. Mechanical strain and restructuring of the optic nerve head. In: Shaarawy T, Sherwood MB, Hitchings RA, et al., eds. Glaucoma. 1st ed. London: W. B. Saunders; 2009.Google Scholar
  69. 69.
    Burgoyne CF, Downs JC. Premise and prediction - how optic nerve head biomechanics underlies the susceptibility and clinical behavior of the aged optic nerve head. J Glaucoma. 2008;17:318–328.PubMedCrossRefGoogle Scholar
  70. 70.
    Sigal IA, Roberts MD, Girard M, Burgoyne CF, Downs JC. Biomechanical changes of the optic disc. In: Levin LA, Albert DM, ed. Ocular Disease: Mechanisms and Management. New York: Elsevier; 2009.Google Scholar
  71. 71.
    Downs JC, Roberts MD, Burgoyne CF. Mechanical environment of the optic nerve head in glaucoma. Optom Vis Sci. 2008;85:425–435.PubMedCrossRefGoogle Scholar
  72. 72.
    Quigley HA, Addicks EM. Chronic experimental glaucoma in primates. II. Effect of extended intraocular pressure elevation on optic nerve head and axonal transport. Invest Ophthalmol Vis Sci. 1980;19:137–152.PubMedGoogle Scholar
  73. 73.
    Hernandez MR. The optic nerve head in glaucoma: role of astrocytes in tissue remodeling. Prog Retin Eye Res. 2000;19:297–321.PubMedCrossRefGoogle Scholar
  74. 74.
    Agapova OA, Kaufman PL, Lucarelli MJ, Gabelt BT, Hernandez MR. Differential expression of matrix metalloproteinases in monkey eyes with experimental glaucoma or optic nerve transection. Brain Res. 2003;967:132–143.PubMedCrossRefGoogle Scholar
  75. 75.
    Johnson EC, Jia L, Cepurna WO, Doser TA, Morrison JC. Global changes in optic nerve head gene expression after exposure to elevated intraocular pressure in a rat glaucoma model. Invest Ophthalmol Vis Sci. 2007;48:3161–3177.PubMedCrossRefGoogle Scholar
  76. 76.
    Jonas JB, Dichtl A. Optic disc morphology in myopic primary open-angle glaucoma. Graefes Arch Clin Exp Ophthalmol. 1997;235:627–633.PubMedCrossRefGoogle Scholar
  77. 77.
    Fernandez MC, Jonas JB, Naumann GO. Para-papillary chorioretinal atrophy in eyes with shallow glaucomatous optic disk cupping. Fortschr Ophthalmol. 1990;87:457–460.PubMedGoogle Scholar
  78. 78.
    Hayreh SS. Pathogenesis of cupping of the optic disc. Br J Ophthalmol. 1974;58:863–876.PubMedCrossRefGoogle Scholar
  79. 79.
    Hayreh SS, Pe’er J, Zimmerman MB. Morphologic changes in chronic high-pressure experimental glaucoma in rhesus monkeys. J Glaucoma. 1999;8:56–71.PubMedCrossRefGoogle Scholar
  80. 80.
    Emery JM, Landis D, Paton D, Boniuk M, Craig JM. The lamina cribrosa in normal and glaucomatous human eyes. Trans Am Acad Ophthalmol Otolaryngol. 1974;78:OP290-OP297.Google Scholar
  81. 81.
    Quigley HA, Hohman RM, Addicks EM, Massof RW, Green WR. Morphologic changes in the lamina cribrosa correlated with neural loss in open-angle glaucoma. Am J Ophthalmol. 1983;95:673–691.PubMedGoogle Scholar
  82. 82.
    Jonas JB, Grundler A. Optic disc morphology in juvenile primary open-angle glaucoma. Graefes Arch Clin Exp Ophthalmol. 1996;234:750–754.PubMedCrossRefGoogle Scholar
  83. 83.
    Albon J, Purslow PP, Karwatowski WS, Easty DL. Age related compliance of the lamina cribrosa in human eyes. Br J Ophthalmol. 2000;84:318–323.PubMedCrossRefGoogle Scholar
  84. 84.
    Morrison JC, Jerdan JA, Dorman ME, Quigley HA. Structural proteins of the neonatal and adult lamina cribrosa. Arch Ophthalmol. 1989;107:1220–1224.PubMedGoogle Scholar
  85. 85.
    Pena JD, Roy S, Hernandez MR. Tropoelastin gene expression in optic nerve heads of normal and glaucomatous subjects. Matrix Biol. 1996;15:323–330.PubMedCrossRefGoogle Scholar
  86. 86.
    Quigley HA. Childhood glaucoma: results with trabeculotomy and study of reversible cupping. Ophthalmology. 1982;89:219–226.PubMedGoogle Scholar
  87. 87.
    Hernandez MR, Luo XX, Andrzejewska W, Neufeld AH. Age-related changes in the extracellular matrix of the human optic nerve head. Am J Ophthalmol. 1989;107:476–484.PubMedGoogle Scholar
  88. 88.
    Jeffery G, Evans A, Albon J, et al. The human optic nerve: fascicular organisation and connective tissue types along the extra-fascicular matrix. Anat Embryol (Berl). 1995;191:491–502.Google Scholar
  89. 89.
    Albon J, Karwatowski WS, Easty DL, Sims TJ, Duance VC. Age related changes in the non-collagenous components of the extracellular matrix of the human lamina cribrosa. Br J Ophthalmol. 2000;84:311–317.PubMedCrossRefGoogle Scholar
  90. 90.
    Bailey AJ, Paul RG, Knott L. Mechanisms of maturation and ageing of collagen. Mech Ageing Dev. 1998;106:1–56.PubMedCrossRefGoogle Scholar
  91. 91.
    Brown CT, Vural M, Johnson M, Trinkaus-Randall V. Age-related changes of scleral hydration and sulfated glycosaminoglycans. Mech Ageing Dev. 1994;77:97–107.PubMedCrossRefGoogle Scholar
  92. 92.
    Albon J, Karwatowski WS, Avery N, Easty DL, Duance VC. Changes in the collagenous matrix of the aging human lamina cribrosa. Br J Ophthalmol. 1995;79:368–375.PubMedCrossRefGoogle Scholar
  93. 93.
    Friedenwald J. Contribution to the theory and practice of tonometry. Am J Ophthalmol. 1937;20:985–1024.Google Scholar
  94. 94.
    Kotecha A, Izadi S, Jeffrey G. Age related changes in the thickness of the human lamina cribrosa. Br J Ophthalmol. 2006;90:1531–1534.PubMedCrossRefGoogle Scholar
  95. 95.
    Albon J, Farrant S, Akhtar S, et al. Connective tissue structure of the tree shrew optic nerve and associated ageing changes. Invest Ophthalmol Vis Sci. 2007;48:2134–2144.PubMedCrossRefGoogle Scholar
  96. 96.
    Rochtchina E, Mitchell P, Wang JJ. Relationship between age and intraocular pressure: the Blue Mountains Eye Study. Clin Exp Ophthalmol. 2002;30:173–175.CrossRefGoogle Scholar
  97. 97.
    Nomura H, Ando F, Niino N, Shimokata H, Miyake Y. The relationship between age and intraocular pressure in a Japanese population: the influence of central corneal thickness. Curr Eye Res. 2002;24:81–85.PubMedCrossRefGoogle Scholar
  98. 98.
    Nomura H, Shimokata H, Ando F, Miyake Y, Kuzuya F. Age-related changes in intraocular pressure in a large Japanese population: a cross-sectional and longitudinal study. Ophthalmology. 1999;106:2016–2022.PubMedCrossRefGoogle Scholar
  99. 99.
    Klein BE, Klein R, Linton KL. Intraocular pressure in an American community. The Beaver Dam Eye Study. Invest Ophthalmol Vis Sci. 1992;33:2224–2228.PubMedGoogle Scholar
  100. 100.
    Weih LM, Mukesh BN, McCarty CA, Taylor HR. Association of demographic, familial, medical, and ocular factors with intraocular pressure. Arch Ophthalmol. 2001;119:875–880.PubMedGoogle Scholar
  101. 101.
    Leske MC, Connell AM, Wu SY, Hyman L, Schachat AP. Distribution of intraocular pressure. The Barbados Eye Study. Arch Ophthalmol. 1997;115:1051–1057.PubMedGoogle Scholar
  102. 102.
    Wu SY, Leske MC. Associations with intraocular pressure in the Barbados Eye Study. Arch Ophthalmol. 1997;115:1572–1576.PubMedGoogle Scholar
  103. 103.
    Suzuki Y, Iwase A, Araie M, et al. Risk factors for open-angle glaucoma in a Japanese population: the Tajimi Study. Ophthalmology. 2006;113:1613–1617.PubMedCrossRefGoogle Scholar
  104. 104.
    Geijssen HC. Studies on Normal Pressure Glaucoma. Kugler: Amstelveen; 1991.Google Scholar
  105. 105.
    Drance SM, Sweeney VP, Morgan RW, Feldman F. Studies of factors involved in the production of low tension glaucoma. Arch Ophthalmol. 1973;89:457–465.PubMedGoogle Scholar
  106. 106.
    Levene RZ. Low tension glaucoma: a critical review and new material. Surv Ophthalmol. 1980;24:621–664.PubMedCrossRefGoogle Scholar
  107. 107.
    Chumbley LC, Brubaker RF. Low-tension glaucoma. Am J Ophthalmol. 1976;81:761–767.PubMedGoogle Scholar
  108. 108.
    Goldberg I, Hollows FC, Kass MA, Becker B. Systemic factors in patients with low-tension glaucoma. Br J Ophthalmol. 1981;65:56–62.PubMedCrossRefGoogle Scholar
  109. 109.
    Klein BE, Klein R, Sponsel WE, et al. Prevalence of glaucoma. The Beaver Dam Eye Study. Ophthalmology. 1992;99:1499–1504.PubMedGoogle Scholar
  110. 110.
    Shiose Y. Prevalence and clinical aspects of low-tension glaucoma. In: Henkind P, ed. Acta 24th International Congress of Opthalmology. Philadelphia: Lippincott; 1983.Google Scholar
  111. 111.
    Tielsch JM, Sommer A, Katz J, et al. Racial variations in the prevalence of primary open-angle glaucoma. The Baltimore Eye Survey [see comments]. JAMA. 1991;266:369–374.PubMedCrossRefGoogle Scholar
  112. 112.
    Gordon MO, Beiser JA, Brandt JD, et al. The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120:714-720. discussion 829–830.PubMedGoogle Scholar
  113. 113.
    Nouri-Mahdavi K, Hoffman D, Coleman AL, et al. Predictive factors for glaucomatous visual field progression in the Advanced Glaucoma Intervention Study. Ophthalmology. 2004;111:1627–1635.PubMedCrossRefGoogle Scholar
  114. 114.
    Heijl A, Leske MC, Bengtsson B, Hussein M. Measuring visual field progression in the Early Manifest Glaucoma Trial. Acta Ophthalmol Scand. 2003;81:286–293.PubMedCrossRefGoogle Scholar
  115. 115.
    Broadway DC, Nicolela MT, Drance SM. Optic disk appearances in primary open-angle glaucoma. Surv Ophthalmol. 1999;43(Suppl 1):S223-S243.PubMedCrossRefGoogle Scholar
  116. 116.
    Nicolela MT, Drance SM, Broadway DC, et al. Agreement among clinicians in the recognition of patterns of optic disk damage in glaucoma. Am J Ophthalmol. 2001;132:836–844.PubMedCrossRefGoogle Scholar
  117. 117.
    Nicolela MT, McCormick TA, Drance SM, et al. Visual field and optic disc progression in patients with different types of optic disc damage: a longitudinal prospective study. Ophthalmology. 2003;110:2178–2184.PubMedCrossRefGoogle Scholar
  118. 118.
    May CA. The optic nerve head region of the aged rat: an immunohistochemical investigation. Curr Eye Res. 2003;26:347–354.PubMedCrossRefGoogle Scholar
  119. 119.
    Nicolela MT, Walman BE, Buckley AR, Drance SM. Various glaucomatous optic nerve appearances. A color Doppler imaging study of retrobulbar circulation. Ophthalmology. 1996;103:1670–1679.PubMedGoogle Scholar
  120. 120.
    Burgoyne CF, Yang H, Reynaud J, et al. New optical coherence tomography (OCT) targets for optic nerve head imaging in glaucoma. In: Green A, ed. US Ophthalmic Review. vol 3. London: Touch Briefings; 2008.Google Scholar
  121. 121.
    Guo L, Tsatourian V, Luong V, et al. En face optical coherence tomography: a new method to analyse structural changes of the optic nerve head in rat glaucoma. Br J Ophthalmol. 2005;89:1210–1216.PubMedCrossRefGoogle Scholar
  122. 122.
    Van Velthoven ME, Faber DJ, Verbraak FD, van Leeuwen TG, de Smet MD. Recent developments in optical coherence tomography for imaging the retina. Prog Retin Eye Res. 2007;26:57–77.PubMedCrossRefGoogle Scholar
  123. 123.
    Srinivasan VJ, Adler DC, Chen Y, et al. Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head. Invest Ophthalmol Vis Sci. 2008;49(11):5103–5110.PubMedCrossRefGoogle Scholar
  124. 124.
    Strouthidis NG, Yang H, Fortune B, Downs JC, Burgoyne CF. Detection of the optic nerve head neural canal opening within three-dimensional histomorphometric and spectral domain optical coherence tomography data sets. Invest Ophthalmol Vis Sci. 2009;50(1):214–223.PubMedCrossRefGoogle Scholar
  125. 125.
    Langham M. The temporal relation between intraocular pressure and loss of vision in chronic simple glaucoma. Glaucoma. 1980;2:427–435.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Claude F. Burgoyne
    • 1
  • Hongli Yang
    • 2
  • J. Crawford Downs
    • 3
  1. 1.Optic Nerve Head Research Laboratory, Discoveries in Sight Research LaboratoriesDevers Eye Institute, Legacy Health SystemPortlandUSA
  2. 2.Department of Biomedical EngineeringTulane UniversityNew OrleansUSA
  3. 3.Ocular Biomechanics Laboratory, Discoveries in Sight Research Laboratories, Devers Eye Institute, Legacy Health SystemPortlandUSA

Personalised recommendations