Glaucoma Risk Factors: Ocular Blood Flow

  • Brent Siesky
  • Alon Harris
  • Rita Ehrlich
  • Nisha Kheradiya
  • Carlos Rospigliosi Lopez


The prevalence of glaucoma is 0.7% among 40-49-year-olds and rises over subsequent decades to 7.7% amongst those over 80 years of age As the population of the United States ages, the number of patients with open angle glaucoma (OAG) is expected to increase by 50% to 3.36 million in the year 2020. OAG represents an emerging disease with increasing costs and negative impacts.


Optic Nerve Head Open Angle Glaucoma Glaucoma Patient Normal Tension Glaucoma Lamina Cribrosa 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    National Eye Institute. Statistics and Data. Prevalence of Blindness Data. Data Tables. Accessed on September 18, 2007.
  2. 2.
    Eye Diseases Prevalence Research Group. Prevalence of open-angle glaucoma among adults in the United States. Arch Ophthalmol. 2004;122(4):532–538.Google Scholar
  3. 3.
    Heijl A, Leske MC, Bengtsson B, Hyman L, Bengtsson B, Hussein M; Early Manifest Glaucoma Trial Group. Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol. 2002;120(10):1268–1279.PubMedGoogle Scholar
  4. 4.
    Lichter PR, Musch DC, Gillespie BW, et al. Interim clinical outcome in the collaborative initial glaucoma treatment study comparing initial treatment randomized to medications or surgery. Ophthalmology. 2001;108:1943–1953.PubMedGoogle Scholar
  5. 5.
    Collaborative Normal-Tension Glaucoma Study Group. The effectiveness of intraocular pressure reduction in the treatment of normal-tension glaucoma. Am J Ophthalmol. 1998;126:498–505.Google Scholar
  6. 6.
    Flammer J, Orgül S, Costa VP, et al. The impact of ocular blood flow in glaucoma. Prog Retin Eye Res. 2002;21:359–393.PubMedGoogle Scholar
  7. 7.
    Chung HS, Harris A, Kagemann L, Martin B. Peripapillary retinal blood flow in normal tension glaucoma. Br J Ophthalmol. 1999;83:466–469.PubMedGoogle Scholar
  8. 8.
    Yin ZQ, Vaegan, Millar TJ, et al. Widespread choroidal insufficiency in primary open-angle glaucoma. J Glaucoma. 1997;6:23–32.PubMedGoogle Scholar
  9. 9.
    Butt Z, McKillop G, O’Brien C, et al. Measurement of ocular blood flow velocity using colour Doppler imaging in low tension glaucoma. Eye. 1995;9:29–33.PubMedGoogle Scholar
  10. 10.
    Galassi F, Sodi A, Ucci F, et al. Ocular haemodynamics in glaucoma associated with high myopia. Int’l Ophthalmol. 1998;22:299–305.Google Scholar
  11. 11.
    Harris A, Sergott RC, Spaeth GL, et al. Color Doppler analysis of ocular vessel blood velocity in normal-tension glaucoma. Am J Ophthalmol. 1994;118:642–649.PubMedGoogle Scholar
  12. 12.
    Rojanapongpun P, Drance SM, Morrison BJ. Ophthalmic artery flow velocity in glaucomatous and normal subjects. Br J Ophthalmol. 1993;77:25–29.PubMedGoogle Scholar
  13. 13.
    Breil P, Krummenauer F, Schmitz S, Pfeiffer N. [The relationship between retrobulbar blood flow velocity and glaucoma damage] [German]. Ophthalmologe. 2002;99:613–616.PubMedGoogle Scholar
  14. 14.
    Bonomi L, Marchini G, Marraffa M, et al. Vascular risk factors for primary open-angle glaucoma: the Egna-Neumarkt Study. Ophthalmology. 2000;107:1287–1293.PubMedGoogle Scholar
  15. 15.
    Tielsch JM, Katz J, Sommer A, et al. Hypertension, perfusion pressure, and primary open-angle glaucoma. A population based assessment. Arch Ophthalmol. 1995;113:216–221.PubMedGoogle Scholar
  16. 16.
    Leighton DA, Phillips CI. Systemic blood pressure in open-angle glaucoma, low tension glaucoma, and the normal eye. Br J Ophthalmol. 1972;56:447–453.PubMedGoogle Scholar
  17. 17.
    Hayreh SS, Zimmerman MB, Podhajsky P, Alward WL. Nocturnal arterial hypotension and its role in optic nerve head and ocular ischemic disorders. Am J Ophthalmol. 1994;117:603–624.PubMedGoogle Scholar
  18. 18.
    Harris A, Harris M, Biller J, et al. Aging affects the retrobulbar circulation differently in females and males. Arch Ophthalmol. 2000;118:1076–1080.PubMedGoogle Scholar
  19. 19.
    Drance S, Anderson DR, Schulzer M. Risk factors for progression of visual field abnormalities in normal-tension glaucoma. Am J Ophthalmol. 2001;131:699–708.PubMedGoogle Scholar
  20. 20.
    Wagemann A, Salzmann P. Anatomische Untersuchungen uber einseitige Retinitis Haemorrhagica mit Secundar-Glaucom nebst Mittheilungen uber dabei beobachtete Hypopyon-Keratitis. Arch Ophthalmol. 1892;38:213.Google Scholar
  21. 21.
    Elschnig. Hendbuch der speziellen pathologiseher Anatomie und Histologie. Vol 1. Berlin: Julius Springs; 1928.Google Scholar
  22. 22.
    Lauber H. Treatment of atrophy of the optic nerve. Arch Ophthalmol. 1936;16:555–568.Google Scholar
  23. 23.
    Reese AB, McGavic JS. Relation of field contraction to blood pressure in chronic primary glaucoma. Arch Ophthalmol. 1942;27:845–850.Google Scholar
  24. 24.
    Duke-Elder WS. Textbook of Ophthalmology, vol. 3. St. Louis: CV Mosby Company; 1940:3354.Google Scholar
  25. 25.
    Loewenstein A. Cavernouos degeneration, necrosis and other regressive processes in optic nerve with vascular disease of eye. Arch Ophthalmol. 1945;34:220–225.Google Scholar
  26. 26.
    Cioffi GA, Wang L, Fortune B, et al. Chronic ischemia induces regional axonal damage in experimental primate optic neuropathy. Arch Ophthalmol. 2004;122:1517–1525.PubMedGoogle Scholar
  27. 27.
    Pease ME, McKinnon SJ, Quigley HA, Kerrigan-Baumrind LA, Zack DJ. Obstructed axonal transport of BDNF and its receptor TrkB in experimental glaucoma. Invest Ophthalmol Vis Sci. 2000;41:764–774.PubMedGoogle Scholar
  28. 28.
    Quigley HA, Nickells RW, Kerrigan LA, Pease ME, Thibault DJ, Zack DJ. Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis. Invest Ophthalmol Vis Sci. 1995;36:774–786.PubMedGoogle Scholar
  29. 29.
    Nickells RW. Retinal ganglion cell death in glaucoma: the how, the why, and the maybe. J Glaucoma. 1996;5:345–356.PubMedGoogle Scholar
  30. 30.
    Chen J, Graham SH, Nakayama M, et al. Apoptosis repressor genes Bcl-2 and Bcl-x-long are expressed in the rat brain following global ischemia. J Cereb Blood Flow Metab. 1997;17:2–10.PubMedGoogle Scholar
  31. 31.
    Gillardon F, Lenz C, Waschke KF, et al. Altered expression of Bcl-2, Bcl-x, Bax, and c-Fos colocalizes with DNA fragmentation and ischemic cell damage following middle cerebral artery occlusion in rats. Brain Res Mol Brain Res. 1996;40:254–260.PubMedGoogle Scholar
  32. 32.
    Macaya A. Apoptosis in the nervous system. Rev Neurol. 1996;24:1356–1360.PubMedGoogle Scholar
  33. 33.
    Romano C, Price MT, Almli T, Olney JW. Excitotoxic neurodegeneration induced by deprivation of oxygen and glucose in isolated retina. Invest Ophthalmol Vis Sci. 1998;39:416–423.PubMedGoogle Scholar
  34. 34.
    Katai N, Yoshimura N. Apoptotic retinal neuronal death by ischemia-reperfusion is executed by two distinct caspase family proteases. Invest Ophthalmol Vis Sci. 1999;40:2697–2705.PubMedGoogle Scholar
  35. 35.
    Ju WK, Kim KY, Hofmann HD, et al. Selective neuronal survival and upregulation of PCNA in the rat inner retina following transient ischemia. J Neuropathol Exp Neurol. 2000;59:241–250.PubMedGoogle Scholar
  36. 36.
    Sommer A, Tielsch JM, Katz J, et al. Relationship between intraocular pressure and primary open angle glaucoma among white and black Americans. The Baltimore Eye Survey. Arch Ophthalmol. 1991;109:1090–1095.PubMedGoogle Scholar
  37. 37.
    Collaborative Normal-Tension Glaucoma Study Group. Comparison of glaucomatous progression between untreated patients with normal-tension glaucoma and patients with therapeutically reduced intraocular pressures. Am J Ophthalmol. 1998;126:487–497.Google Scholar
  38. 38.
    Leske MC, Connell AM, Wu SY, et al. Incidence of open-angle glaucoma: the Barbados Eye Studies. Arch Ophthalmol. 2001;119:89–95.PubMedGoogle Scholar
  39. 39.
    Leske MC, Heijl A, Hyman L, Bengtsson B, Dong L, Yang Z. Predictors of long-term progression in the early manifest glaucoma trial. Ophthalmology. 2007;114(11):1965–1972.PubMedGoogle Scholar
  40. 40.
    Topouzis F, Coleman AL, Harris A, et al. Association of blood pressure status with the optic disk structure in non-glaucoma subjects: the Thessaloniki eye study. Am J Ophthalmol. 2006;142:60–67.PubMedGoogle Scholar
  41. 41.
    Hayreh SS, Dass R. The ophthalmic artery. II: intra-orbital course. Br J Ophthalmol. 1962;46:165–185.PubMedGoogle Scholar
  42. 42.
    Hayreh SS. The ophthalmic artery. III: branches. Br J Ophthalmol. 1962;46:212–247.PubMedGoogle Scholar
  43. 43.
    Bignell J. Investigations into the blood supply of the optic nerve with special reference to the lamina cribrosa region. Trans Ophthalmol Soc Aust. 1952;12:105.Google Scholar
  44. 44.
    Hayreh SS. Structure and blood supply of the optic nerve. In: Heilmann K, Richardson KT, eds. Glaucoma: Conceptions of a Disease: Pathogenesis, Diagnosis, Therapy. Stuttgart: Georg Thieme; 1978:78–96.Google Scholar
  45. 45.
    Olver JM, Spalton DJ, McCartney ACE. Microvascular study of the retrolaminar optic nerve head in man: the possible significance in anterior ischaemic optic neuropathy. Eye. 1990;4:7.PubMedGoogle Scholar
  46. 46.
    Onda E, Cioffi GA, Bacon DR, Van Buskirk EM. Microvasculature of the anterior human optic nerve. Am J Ophthalmol. 1996;121(4):452–453.Google Scholar
  47. 47.
    Anderson DR, Braverman S. Reevaluation of the optic disc vasculature. Am J Ophthalmol. 1976;82:165.PubMedGoogle Scholar
  48. 48.
    Haller A. Arteriarum oculi historia et tabulae arteriarum oculi. Gottigen, 1754. Cited by Francois et al. in Br J Ophthalmol. 1954;38:472.Google Scholar
  49. 49.
    Ko MK, Kim DS, Ahn YK. Morphological variations of the peripapillary circle of Zinn-Haller by flat section. Br J Ophthalmol. 1999;83(7):862–866.PubMedGoogle Scholar
  50. 50.
    Lieberman MF, Maumenee AE, Green WR. Histologic studies of the vasculature of the anterior optic nerve. Am J Ophthalmol. 1976;82:405.PubMedGoogle Scholar
  51. 51.
    Zinn IG. Descriptio Anatomica Oculi Humani. 1st ed. Gottingen: Abrami Vandenhoeck; 1755:216.Google Scholar
  52. 52.
    Anderson DR. Ultrastructure of human and monkey lamina cribrosa and optic nerve head. Arch Ophthalmol. 1969;82:800.PubMedGoogle Scholar
  53. 53.
    Anderson DR, Hoyt WF. Ultrastructure of the intraorbital portion of human and monkey optic nerve. Arch Ophthalmol. 1969;82:506.PubMedGoogle Scholar
  54. 54.
    Anderson DR. Vascular supply to the optic nerve of primates. Am J Ophthalmol. 1970;70:341.PubMedGoogle Scholar
  55. 55.
    Olver JM, Spalton DJ, McCartney ACE. Quantitative morphology of human retrolaminar optic nerve vasculature. Invest Ophthalmol Vis Sci. 1994;35(11):3858–3866.PubMedGoogle Scholar
  56. 56.
    Steele EJ, Blunt MJ. The blood supply of the optic nerve and chiasma in man. J Anat. 1956;90(4):486–493.PubMedGoogle Scholar
  57. 57.
    Alm A. Ocular circulation. In: Hart WM, ed. Alder’s Physiology of the Eye. 6th ed. St. Louis: C.V. Mosby; 1992:198.Google Scholar
  58. 58.
    Hayreh SS. The central artery of the retina - Its role in the blood supply of the optic nerve. Br J Ophthalmol. 1963;47:651–663.PubMedGoogle Scholar
  59. 59.
    Cioffi GA, Van Buskirk EM. Microvasculature of the anterior optic nerve. Surv Opthalmol. 1994; 38 suppl:S107-S116; discussion.Google Scholar
  60. 60.
    Ernest JT, Potts AM. Pathophysiology of the distal portion of the optic nerve. II. Vascular relationships. Am J Ophthalmol. 1968;66(3):380–387.PubMedGoogle Scholar
  61. 61.
    Rhodes R, Tanner G. Medical Physiology. New York, NY: Little Brown and Co; 1995.Google Scholar
  62. 62.
    Bill A, Sperber GO. Control of retinal and choroidal blood flow. Eye. 1990;4:319–325.PubMedGoogle Scholar
  63. 63.
    Hayreh S. Factors influencing blood flow in the optic nerve head. J Glaucoma. 1997;6:412–425.PubMedGoogle Scholar
  64. 64.
    Wetter JJ, Schachar RA, Ernest JT. Control of intraocular blood flow. II. Effects of sympathetic tone. Invest Ophthalmol. 1973;12:332–334.Google Scholar
  65. 65.
    Williamson T, Harris A. Ocular blood flow measurement. Br J Ophthalmol. 1994;78:939–945.PubMedGoogle Scholar
  66. 66.
    Lowenstein C, Dinerman J, Snyder S. Nitric oxide: a physiologic messenger. Ann Intern Med. 1994;120:227–237.PubMedGoogle Scholar
  67. 67.
    Buga GM, Gold ME, Fukuto JM, Ignarro LJ. Shear stress-induced release of nitric oxide from endothelial cells grown on beads. Hypertension. 1991;25:831–836.Google Scholar
  68. 68.
    Kadel KA, Heistad DD, Faraci FM. Effects of endothelium on blood vessels in the brain and choroids plexus. Brain Res. 1990;518:78–82.PubMedGoogle Scholar
  69. 69.
    Brian JE Jr, Faraci FM, Heistad DD. Recent insights into the regulation of cerebral circulation. Clin Exp Pharmacol Physiol. 1996;23:449–457.PubMedGoogle Scholar
  70. 70.
    Cioffi GA, Sullivan P. The effect of chronic ischemia on the primate optic nerve. Eur J Ophthalmol. 1999; 9 Suppl 1:S34-S36.PubMedGoogle Scholar
  71. 71.
    Wong T, Mitchell P. The eye in hypertension. Lancet. 2007;369:425–435.PubMedGoogle Scholar
  72. 72.
    Graham SL, Drance SM, Wijsman K, et al. Ambulatory blood pressure monitoring in glaucoma patients. The nocturnal dip. Ophthalmology. 1995;102:61–69.PubMedGoogle Scholar
  73. 73.
    Graham SL, Fraco MS, Drance SM. Nocturnal hypotension: role in glaucoma progression. Surv Ophthalmol. 1999;43(Suppl):S10-S16.PubMedGoogle Scholar
  74. 74.
    Grieshaber MC, Flammer J. Blood flow in glaucoma. Curr Opin Ophthalmol. 2005;16:79–83.PubMedGoogle Scholar
  75. 75.
    Mcleod SD, West SK, Quigley HA, Fozard JL. A longitudinal study of the relationship between intraocular and blood pressure. Invest Ophthalmol Vis Sci. 1990;31:2361–2366.PubMedGoogle Scholar
  76. 76.
    Dielemans I, Vingerling JR, Algra D, et al. Primary open-angle glaucoma, intraocular pressure, and systemic blood pressure in the general elderly population. The Rotterdam Study. Ophthalmology. 1995;102:54–60.PubMedGoogle Scholar
  77. 77.
    Flammer J. The vascular concept of glaucoma. Surv Ophthalmol. 1994; 38 Suppl:S3-S6.PubMedGoogle Scholar
  78. 78.
    Müskens RP, de Voogd S, Wolfs RC, et al. Systemic antihypertensive medication and incident open-angle glaucoma. Ophthalmology. 2007;114(12):2221–2226.PubMedGoogle Scholar
  79. 79.
    Miglior S, Torri V, Zeyen T, Pfeiffer N, Vaz JC, Adamsons I; EGPS Group. Intercurrent factors associated with the development of open-angle glaucoma in the European glaucoma prevention study. Am J Ophthalmol. 2007; 144(2):266–275.PubMedGoogle Scholar
  80. 80.
    Hulsman CAA, Vingerling JR, Hofman A, et al. Blood pressure, arterial stiffness and open angle glaucoma. The Rotterdam study. Arch Ophthalmol. 2007;125:805–812.PubMedGoogle Scholar
  81. 81.
    Gherghel D, Orgul S, Gugleta K, et al. Relationship between ocular perfusion pressure and retrobulbar blood flow in patients with glaucoma with progressive damage. Am J Ophthalmol. 2000;130:597–605.PubMedGoogle Scholar
  82. 82.
    O’Brien E, Murphy J, Tyndall A, et al. Twenty-four hour ambulatory blood pressure in men and women aged 17 to 80 years: The Allied Irish Bank Study. J Hypertens. 1991;9:355–360.PubMedGoogle Scholar
  83. 83.
    Staessen J, Pagard R, Lijnen P, Thija L, Van Hoof R, Amary A. Mean and range of the ambulatory pressure in normotensive subjects from a meta-analysis of 23 studies. Am J Cardiol. 1991;67:723–727.PubMedGoogle Scholar
  84. 84.
    Verdecchia P, Schillaci G, Porcellati C. Dippers versus nondippers. J Hypertens. 1991;9(Suppl):S42-S44.Google Scholar
  85. 85.
    Tokunaga T, Kashiwagi K, Tsumura T, et al. Association between nocturnal blood pressure reduction and progression of visual field defect in patients with primary open-angle glaucoma or normal-tension glaucoma. Jpn J Ophthalmol. 2004;48:380–385.PubMedGoogle Scholar
  86. 86.
    Harris A, Evans D, Martin B, et al. Nocturnal blood pressure reduction: effect on retrobulbar hemodynamics in glaucoma. Graefes Arch Clin Exp Ophthalmol. 2002;240(5):372–378.PubMedGoogle Scholar
  87. 87.
    Hayreh SS, Podhajsky P, Zimmerman MB. Beta-blocker eyedrops and nocturnal arterial hypotension. Am J Ophthalmol. 1999;128:301–309.PubMedGoogle Scholar
  88. 88.
    Hayreh SS, Podhajsky P, Zimmerman MB. Role of nocturnal arterial hypotension in optic nerve head ischemic disorders. Ophthalmologica. 1999;213:76–96.PubMedGoogle Scholar
  89. 89.
    Liu JH, Gokhale PA, Loving RT, et al. Laboratory assessment of diurnal and nocturnal ocular perfusion pressures in humans. J Ocul Pharmacol Ther. 2003;19:291–297.PubMedGoogle Scholar
  90. 90.
    Harris A, Jonescu-Cuypers C, Martin B, et al. Simultaneous management of blood flow and IOP in glaucoma. Acta Ophthalmol Scand. 2001;79:336–341.PubMedGoogle Scholar
  91. 91.
    Quigley HA, West SK, Rodriguez J, et al. The prevalence of glaucoma in a population based study of Hispanic Subjects. Proyecto VER. Arch Ophthalmol. 2001;119:1819–1826.PubMedGoogle Scholar
  92. 92.
    Choi J, Jeong J, Cho HS, Kook MS. Effect of nocturnal blood pressure reduction on circadian fluctuation of mean ocular perfusion pressure: a risk factor for normal tension glaucoma. Invest Ophthalmol Vis Sci. 2006;47:831–836.PubMedGoogle Scholar
  93. 93.
    Asrani S, Zeimer R, Wilensky J, et al. Large diurnal fluctuations in intraocular pressure are an independent risk factor in patients with glaucoma. J Glaucoma. 2000;9:134–142.PubMedGoogle Scholar
  94. 94.
    Nouri-Mahdavi K, Hoffman D, Coleman AL, et al. Predictive factors for glaucomatous visual field progression in the Advanced Glaucoma Intervention Study. Ophthalmology. 2004;111:1627–1635.PubMedGoogle Scholar
  95. 95.
    Hughes E, Spry P, Diamond J. 24-hour monitoring of intraocular pressure in glaucoma management: a retrospective review. J Glaucoma. 2003;12:232–236.PubMedGoogle Scholar
  96. 96.
    Choi J, Kim KH, Jeong J, et al. Circadian fluctuation of mean ocular perfusion pressure is a consistent risk factor for normal-tension glaucoma. Invest Ophthalmol Vis Sci. 2007;48:104–111.PubMedGoogle Scholar
  97. 97.
    Drance SM. Disc hemorrhages in the glaucomas. Surv Ophthalmol. 1989;33(5):331–337.PubMedGoogle Scholar
  98. 98.
    Rasker MT, van den Enden A, Bakker D, Hoyng PF. Deterioration of visual fields in patients with glaucoma with and without optic disc hemorrhages. Arch Ophthalmol. 1997;115:1257–1262.PubMedGoogle Scholar
  99. 99.
    Soares AS, Artes PH, Andreou P, et al. Factors associated with optic disc hemorrhages in glaucoma. Ophthalmology. 2004;111:1653–1657.PubMedGoogle Scholar
  100. 100.
    Leske MC, Heijl A, Hyman L, et al. Factors for progression and glaucoma treatment: the Early Manifest Glaucoma Trial. Curr Opin Ophthalmol. 2004;15:102–106.Google Scholar
  101. 101.
    Anderson DR, Drance SM, Schulzer M; Collaborative Normal-Tension Glaucoma Study Group. Factors that predict the benefit of lowering intraocular pressure in normal tension glaucoma. Am J Ophthalmol. 2003;136:820–829.PubMedGoogle Scholar
  102. 102.
    Bengtsson B, Leske MC, Yang A, et al. Disc hemorrhages and treatment in the Early Manifest Glaucoma Trial. Ophthalmology. 2008;115:2044–2048.PubMedGoogle Scholar
  103. 103.
    Cursiefen C, Wisse M, Cursiefen S, et al. Migraine and tension headache in high-pressure and normal pressure glaucoma. Ophthalmology. 1998;105:216–223.Google Scholar
  104. 104.
    Sines D, Harris A, Siesky B, et al. The response of retrobulbar vasculature to hypercapnia in primary open-angle glaucoma and ocular hypertension. Ophthalmic Res. 2007;39:76–80.PubMedGoogle Scholar
  105. 105.
    Nielsen NV. The prevalence of glaucoma and ocular hypertension in type 1 and type 2 diabetes mellitus. Arch Ophthalmol. 1983;61:662–672.Google Scholar
  106. 106.
    Chopra V, Varma R, Francis BA, Wu J, Torres M, Azen SP; Los Angeles Latino Eye Study Group. Type 2 Diabetes Mellitus and the Risk of Open-angle Glaucoma The Los Angeles Latino Eye Study. Ophthalmology. 2008;115(2):227–232.PubMedGoogle Scholar
  107. 107.
    Tielsch JM, Katz J, Quigley HA, et al. Diabetes, intraocular pressure and primary open angle glaucoma in the Baltimore eye survey. Ophthalmology. 1995;102:48–53.PubMedGoogle Scholar
  108. 108.
    Leske MC, Connell AMS, Wu SY. et al; the Barbados eye study group. Risk factors for open angle glaucoma. Arch Ophthalmol. 1995;113:918–924.PubMedGoogle Scholar
  109. 109.
    de Voogd S, Ikram MK, Wolfs RC, et al. Is diabetes mellitus a risk factor for open-angle glaucoma? The Rotterdam Study. Ophthalmology. 2006;113:1827–1831.PubMedGoogle Scholar
  110. 110.
    Harris A, Rechtman E, Siesky B, et al. The role of optic nerve blood flow in the pathogenesis of glaucoma. Ophthalmol Clin North Am. 2005;18:345–353.PubMedGoogle Scholar
  111. 111.
    Harris A, Jonescu-Cuypers CP, Kagemann L, Ciulla TA, Krieglstein G. Atlas of Ocular Blood Flow - Vascular Anatomy, Pathophysiology, and Metabolism. Philadelphia: Butterworth-Heinemann; 2003:19–70.Google Scholar
  112. 112.
    Harris A, Dinn RB, Kagemann L, Rechtman E. Review of methods for human retinal oximetry. Ophthalmic Surg Lasers Imaging. 2003;34:152–164.PubMedGoogle Scholar
  113. 113.
    Oksala A, Jaaslahti SL. Experimental observations on the acoustic shadow in B-scan examination of the eye. Acta Ophthalmol (Copenh). 1971;49:151–158.Google Scholar
  114. 114.
    Byrne SR, Glaser JS. Orbital tissue differentiation with standardized echography. Ophthalmology. 1983;90:1071–1090.PubMedGoogle Scholar
  115. 115.
    Guthoff R, Berger RW, Helmke K, Winckler B. Doppler sonographic findings in intraocular tumors. Fortschr Ophthalmol. 1989;86:239–241.PubMedGoogle Scholar
  116. 116.
    Guthoff RF, Berger RW, Winkler P, Helmke K, Chumbley LC. Doppler ultrasonography of the ophthalmic and central retinal vessels. Arch Ophthalmol. 1991;109:532–536.PubMedGoogle Scholar
  117. 117.
    Pourcelot L. Indications of Doppler’s ultrasonography in the study of peripheral vessels. Rev Prat. 1975;25:4671–4680.PubMedGoogle Scholar
  118. 118.
    von Bibra H, Stempfle HU, Poll A, et al. [Accuracy of various Doppler technics in recording blood flow velocity. Studies in vitro]. Z Kardiol. 1990;79:73–82.Google Scholar
  119. 119.
    Galassi F, Nuzzaci G, Sodi A, Casi P, Vielmo A. Color Doppler imaging in evaluation of optic nerve blood supply in normal and glaucomatous subjects. Int Ophthalmol. 1992;16:273–276.PubMedGoogle Scholar
  120. 120.
    Sergott RC, Aburn NS, Trible JR, Costa VP, Lieb WE Jr, Flaharty PM. Color Doppler imaging: methodology and preliminary results in glaucoma. Surv Ophthalmol. 1994;38 Suppl:S65-S70; discussion S70-S71, S65-S70.Google Scholar
  121. 121.
    Nicolela MT, Walman BE, Buckley AR, Drance SM. Various glaucomatous optic nerve appearances. A color Doppler imaging study of retrobulbar circulation. Ophthalmology. 1996;103:1670–1679.PubMedGoogle Scholar
  122. 122.
    Roff EJ, Harris A, Chung HS, et al. Comprehensive assessment of retinal, choroidal and retrobulbar haemodynamics during blood gas perturbation. Graefes Arch Clin Exp Ophthalmol. 1999;237:984–990.PubMedGoogle Scholar
  123. 123.
    Plange N, Kaup M, Arend O, Remky A. Asymmetric visual field loss and retrobulbar haemodynamics in primary open-angle glaucoma. Graefes Arch Clin Exp Ophthalmol. 2006;244:978–983.PubMedGoogle Scholar
  124. 124.
    Galassi F, Sodi A, Ucci F, Renieri G, Pieri B, Baccini M. Ocular hemodynamics and glaucoma prognosis: a color Doppler imaging study. Arch Ophthalmol. 2003;121:1711–1715.PubMedGoogle Scholar
  125. 125.
    Akarsu C, Unal B. Cerebral haemodynamics in patients with pseudoexfoliation glaucoma. Eye. 2005;19:1297–1300.PubMedGoogle Scholar
  126. 126.
    Atalar PT, Atalar E, Kilic H, et al. Impaired systemic endothelial function in patients with pseudoexfoliation syndrome. Int Heart J. 2006;47:77–84.PubMedGoogle Scholar
  127. 127.
    Harris A, Siesky B, Zarfati D, et al. Relationship of cerebral blood flow and central visual function in primary open-angle glaucoma. J Glaucoma. 2007;16:159–163.PubMedGoogle Scholar
  128. 128.
    Zeitz O, Galambos P, Wagenfeld L, et al. Glaucoma progression is associated with decreased blood flow velocities in the short posterior ciliary artery. Br J Ophthalmol. 2006;90:1245–1248.PubMedGoogle Scholar
  129. 129.
    Springer C, Volcker HE. Rohrschneider K [Static fundus perimetry in normals. Microperimeter 1 versus SLO]. Ophthalmologe. 2006;103:214–220.PubMedGoogle Scholar
  130. 130.
    Rohrschneider K, Springer C, Bultmann S, Volcker HE. Microperimetry - comparison between the micro perimeter 1 and scanning laser ophthalmoscope - fundus perimetry. Am J Ophthalmol. 2005;139:125–134.PubMedGoogle Scholar
  131. 131.
    Seth R, Gouras P. Assessing macular pigment from SLO images. Doc Ophthalmol. 2004;108:197–202.PubMedGoogle Scholar
  132. 132.
    Wolf S, Toonen H, Arend O, et al. Quantifying retinal capillary circulation using the scanning laser ophthalmoscope. Biomed Tech (Berl). 1990;35:131–134.Google Scholar
  133. 133.
    Arend O, Wolf S, Schulte K, Jung F, Bertram B, Reim M. Conjunctival microcirculation and hemorheology in patients with venous occlusions of the retina. Fortschr Ophthalmol. 1991;88:243–247.PubMedGoogle Scholar
  134. 134.
    Wolf S, Arend O, Toonen H, Bertram B, Jung F, Reim M. Retinal capillary blood flow measurement with a scanning laser ophthalmoscope. Preliminary results. Ophthalmology. 1991;98:996–1000.PubMedGoogle Scholar
  135. 135.
    Arend O, Remky A, Elsner AE, Wolf S, Rein M. Indocyanine green angiography in traumatic choroidal rupture: clinicoangiographic case reports. Ger J Ophthalmol. 1995;4:257–263.PubMedGoogle Scholar
  136. 136.
    Wolf S, Remky A, Elsner AE, Arend O, Reim M. Indocyanine green video angiography in patients with age-related maculopathy-related retinal pigment epithelial detachments. Ger J Ophthalmol. 1994;3:224–227.PubMedGoogle Scholar
  137. 137.
    Wolf S, Arend O, Reim M. Measurement of retinal hemodynamics with scanning laser ophthalmoscopy: reference values and variation. Surv Ophthalmol. 1994;38 Suppl:S95-S100.Google Scholar
  138. 138.
    Mainster MA, Timberlake GT, Webb RH, Hughes GW. Scanning laser ophthalmoscopy. Clinical applications. Ophthalmology. 1982;89:852–857.PubMedGoogle Scholar
  139. 139.
    Tanaka T, Muraoka K, Shimizu K. Fluorescein fundus angiography with scanning laser ophthalmoscope. Visibility of leukocytes and platelets in perifoveal capillaries. Ophthalmology. 1991;98:1824–1829.PubMedGoogle Scholar
  140. 140.
    Scheider A. [Indocyanine green angiography with an infrared scanning laser ophthalmoscope. Initial clinical experiences]. Ophthalmologe. 1992;89:27–33.PubMedGoogle Scholar
  141. 141.
    Sonty S, Schwartz B. Two-point fluorophotometry in the evaluation of glaucomatous optic disc. Arch Ophthalmol. 1980;98:1422–1426.PubMedGoogle Scholar
  142. 142.
    Wolf S, Arend O, Haase A, Schulte K, Remky A, Reim M. Retinal hemodynamics in patients with chronic open-angle glaucoma. Ger J Ophthalmol. 1995;4:279–282.PubMedGoogle Scholar
  143. 143.
    Schulte K, Wolf S, Arend O, Harris A, Henle C, Reim M. Retinal hemodynamics during increased intraocular pressure. Ger J Ophthalmol. 1996;5:1–5.PubMedGoogle Scholar
  144. 144.
    Bjarnhall G, Tomic L, Mishima HK, Tsukamoto H, Alm A. Retinal mean transit time in patients with primary open-angle glaucoma and normal-tension glaucoma. Acta Ophthalmol Scand. 2007;85:67–72.PubMedGoogle Scholar
  145. 145.
    Harris A, Arend O, Kopecky K, et al. Physiological perturbation of ocular and cerebral blood flow as measured by scanning laser ophthalmoscopy and color Doppler imaging. Surv Ophthalmol. 1994;38 Suppl:S81-S86.Google Scholar
  146. 146.
    Plange N, Kaup M, Huber K, Remky A, Arend O. Fluorescein filling defects of the optic nerve head in normal tension glaucoma, primary open-angle glaucoma, ocular hypertension and healthy controls. Ophthalmic Physiol Opt. 2006;26:26–32.PubMedGoogle Scholar
  147. 147.
    Pournaras CJ, Riva CE. Studies of the hemodynamics of the optic head nerve using laser Doppler flowmetry. J Fr Ophtalmol. 2001;24:199–205.PubMedGoogle Scholar
  148. 148.
    Takase S, Takada A, Matsuda Y. Studies on the pathogenesis of the constitutional excretory defect of indocyanine green. Gastroenterol Jpn. 1982;17:301–309.PubMedGoogle Scholar
  149. 149.
    Keiding S, Ott P, Bass L. Enhancement of unbound clearance of ICG by plasma proteins, demonstrated in human subjects and interpreted without assumption of facilitating structures. J Hepatol. 1993;19:327–344.PubMedGoogle Scholar
  150. 150.
    Harris A, Chung HS, Ciulla TA, Kagemann L. Progress in measurement of ocular blood flow and relevance to our understanding of glaucoma and age-related macular degeneration. Prog Retin Eye Res. 1999;18:669–687.PubMedGoogle Scholar
  151. 151.
    Harris A, Kagemann L, Chung HS, et al. The use of dye dilution curve analysis in the quantification of indocyanine green angiograms of the human choroid. Ophthamic Imaging Diagn. 1998;11:331–337.Google Scholar
  152. 152.
    Feke GT. Laser Doppler instrumentation for the measurement of retinal blood flow: theory and practice. Bull Soc Belge Ophtalmol. 2006;171–184.Google Scholar
  153. 153.
    Yoshida A, Feke GT, Mori F, et al. Reproducibility and clinical application of a newly developed stabilized retinal laser Doppler instrument. Am J Ophthalmol. 2003;135:356–361.PubMedGoogle Scholar
  154. 154.
    Feke GT, Pasquale LR. Retinal blood flow response to posture change in glaucoma patients compared with healthy subjects. Ophthalmology. 2008;115(2):246–252.PubMedGoogle Scholar
  155. 155.
    Guan K, Hudson C, Flanagan JG. Variability and repeatability of retinal blood flow measurements using the Canon Laser Blood Flowmeter. Microvasc Res. 2003;65(3):145–151.PubMedGoogle Scholar
  156. 156.
    Azizi B, Buehler H, Venkataraman ST, Hudson C. Impact of simulated light scatter on the quantitative, noninvasive assessment of retinal arteriolar hemodynamics. J Biomed Opt. 2007;12:034021.PubMedGoogle Scholar
  157. 157.
    Boehm AG, Pillunat LE, Koeller U, et al. Regional distribution of optic nerve head blood flow. Graefes Arch Clin Exp Ophthalmol. 1999;237:484–488.PubMedGoogle Scholar
  158. 158.
    Petrig BL, Riva CE, Hayreh SS. Laser Doppler flowmetry and optic nerve head blood flow. Am J Ophthalmol. 1999;127:413–425.PubMedGoogle Scholar
  159. 159.
    Riva CE, Cranstoun SD, Grunwald JE, Petrig BL. Choroidal blood flow in the foveal region of the human ocular fundus. Invest Ophthalmol Vis Sci. 1994;35:4273–4281.PubMedGoogle Scholar
  160. 160.
    Hollo G, Greve EL, van den Berg TJ, Vargha P. Evaluation of the peripapillary circulation in healthy and glaucoma eyes with scanning laser Doppler flowmetry. Int Ophthalmol. 1996;20:71–77.PubMedGoogle Scholar
  161. 161.
    Michelson G, Groh MJ, Langhans M. Perfusion of the juxtapapillary retina and optic nerve head in acute ocular hypertension. Ger J Ophthalmol. 1996;5:315–321.PubMedGoogle Scholar
  162. 162.
    Michelson G, Schmauss B, Langhans MJ, Harazny J, Groh MJ. Principle, validity, and reliability of scanning laser Doppler flowmetry. J Glaucoma. 1996;5:99–105.PubMedGoogle Scholar
  163. 163.
    Kagemann L, Harris A, Chung HS, Evans D, Buck S, Martin B. Heidelberg retinal flowmetry: factors affecting blood flow measurement. Br J Ophthalmol. 1998;82:131–136.PubMedGoogle Scholar
  164. 164.
    Chauhan BC, Smith FM. Confocal scanning laser Doppler flowmetry: experiments in a model flow system. J Glaucoma. 1997;6:237–245.PubMedGoogle Scholar
  165. 165.
    Tsang AC, Harris A, Kagemann L, Chung HS, Snook BM, Garzozi HJ. Brightness alters Heidelberg retinal flowmeter measurements in an in vitro model. Invest Ophthalmol Vis Sci. 1999;40:795–799.PubMedGoogle Scholar
  166. 166.
    Hafez AS, Bizzarro RL, Rivard M, Lesk MR. Changes in optic nerve head blood flow after therapeutic intraocular pressure reduction in glaucoma patients and ocular hypertensives. Ophthalmology. 2003;110:201–210.PubMedGoogle Scholar
  167. 167.
    Logan JF, Rankin SJ, Jackson AJ. Retinal blood flow measurements and neuroretinal rim damage in glaucoma. Br J Ophthalmol. 2004;88:1049–1054.PubMedGoogle Scholar
  168. 168.
    Sato EA, Ohtake Y, Shinoda K, Mashima Y, Kimura I. Decreased blood flow at neuroretinal rim of optic nerve head corresponds with visual field deficit in eyes with normal tension glaucoma. Graefes Arch Clin Exp Ophthalmol. 2006;244:795–801.PubMedGoogle Scholar
  169. 169.
    Friedenwald JS. Contribution to the theory and practice of tonometry. Am J Ophthalmol. 1937;20:985–1024.Google Scholar
  170. 170.
    Silver DM, Farrell RA, Langham ME, et al. Estimation of pulsatile ocular blood flow from intraocular pressure. Acta Ophthalmol. 1989;191(Suppl):25–29.Google Scholar
  171. 171.
    Walker RE, Litovitz TL, Langham ME. Pneumatic applanation tonometer studies. II. Rabbit corneal data. Exp Eye Res. 1972;13:187–193.PubMedGoogle Scholar
  172. 172.
    Harris A, Kagemann L, Cioffi GA. Assessment of human ocular hemodynamics. Surv Ophthalmol. 1998;42(6):509–533.PubMedGoogle Scholar
  173. 173.
    Mrugacz M, Sredzińska-Kita D, Bakunowicz-Lazarczyk A, Pawłowski P. Pulsatile ocular blood flow in patients with juvenile glaucoma. Klin Oczna. 2004;106(1-2 Suppl):209–210.PubMedGoogle Scholar
  174. 174.
    Zhang MZ, Fu ZF, Liu XR, Zheng C. [A comparison study of pulsitile ocular blood flow in normal eyes and primary open angle glaucoma]. Zhonghua Yan Ke Za Zhi. 2004;40(4):250–253.PubMedGoogle Scholar
  175. 175.
    Kerr J, Nelson P, O’Brien C. Pulsatile ocular blood flow in primary open-angle glaucoma and ocular hypertension. Am J Ophthalmol. 2003;136(6):1106–1113.PubMedGoogle Scholar
  176. 176.
    Blum M, Bachmann K, Wintzer D, Riemer T, Vilser W, Strobel J. Noninvasive measurement of the Bayliss effect in retinal autoregulation. Graefes Arch Clin Exp Ophthalmol. 1999;237:296–300.PubMedGoogle Scholar
  177. 177.
    Nagel E, Vilser W, Lanzl IM. Retinal vessel reaction to short-term IOP elevation in ocular hypertensive and glaucoma patients. Eur J Ophthalmol. 2001;11:338–344.PubMedGoogle Scholar
  178. 178.
    Garhofer G, Zawinka C, Resch H, Huemer KH, Schmetterer L, Dorner GT. Response of retinal vessel diameters to flicker stimulation in patients with early open angle glaucoma. J Glaucoma. 2004;13:340–344.PubMedGoogle Scholar
  179. 179.
    Michelson G, Scibor M. Intravascular oxygen saturation in retinal vessels in normal subjects and open-angle glaucoma subjects. Acta Ophthalmol Scand. 2006;84:289–295.PubMedGoogle Scholar
  180. 180.
    Hardarson SH, Harris A, Karlsson RA, et al. Automatic retinal oximetry. Invest Ophthalmol Vis Sci. 2006;47:5011–5016.PubMedGoogle Scholar
  181. 181.
    Kagemann L, Wollstein G, Wojtkowski M, et al. Spectral oximetry assessed with high-speed ultra-high-resolution optical coherence tomography. J Biomed Opt. 2007;12(4):041212.PubMedGoogle Scholar
  182. 182.
    Satilmis M, Orgul S, Doubler B, Flammer J. Rate of progression of glaucoma correlates with retrobulbar circulation and intraocular pressure. Am J Ophthalmol. 2003;135:664–669.PubMedGoogle Scholar
  183. 183.
    Yamazaki Y, Drance SM. The relationship between progression of visual field defects and retrobulbar circulation in patients with glaucoma. Am J Ophthalmol. 1997;124:287–295.PubMedGoogle Scholar
  184. 184.
    Spencer JA, Giussani DA, Moore PJ, Hanson MA. In vitro validation of Doppler indices using blood and water. J Ultrasound Med. 1991;10:305–308.PubMedGoogle Scholar
  185. 185.
    Martinez A, Sanchez M. Predictive value of colour Doppler imaging in a prospective study of visual field progression in primary open-angle glaucoma. Acta Ophthalmol Scand. 2005;83:716–722.PubMedGoogle Scholar
  186. 186.
    Zink JM, Grunwald JE, Piltz-Seymour J, Staii A, Dupont J. Association between lower optic nerve laser Doppler blood volume measurements and glaucomatous visual field progression. Br J Ophthalmol. 2003;87:1487–1490.PubMedGoogle Scholar
  187. 187.
    Janulevičienė I, Sliesoraitytė I, Siesky B, Harris A. Diagnostic compatibility of structural and haemodynamic parameters in open-angle glaucoma patients. Acta Ophthalmol. 2008;86(5):552–557.PubMedGoogle Scholar


  1. Bonomi L, Marchini G, Marraffa M, et al. Vascular risk factors for primary open angle glaucoma: the Egna-Neumarkt Study. Ophthalmology. 2000;107(7):1287-1293.PubMedGoogle Scholar
  2. Choi J, Kim KH, Jeong J, et al. Circadian fluctuation of mean ocular perfusion pressure is a consistent risk factor for normal-tension glaucoma. Invest Ophthalmol Vis Sci. 2007;48(1):104-111.PubMedGoogle Scholar
  3. Delaney Y, Walshe TE, O’Brien C. Vasospasm in glaucoma: clinical and laboratory aspects. Optom Vis Sci. 2006;83(7):406-414.PubMedGoogle Scholar
  4. Deokule S, Weinreb RN. Relationships among systemic blood pressure, intraocular pressure, and open-angle glaucoma. Can J Ophthalmol. 2008;43(3):302-307.PubMedGoogle Scholar
  5. Dielemans I, Vingerling JR, Algra D, et al. Primary open-angle glaucoma, intraocular pressure, and systemic blood pressure in the general elderly population. The Rotterdam Study. Ophthalmology. 1995;102(1):54-60.PubMedGoogle Scholar
  6. Flammer J, Orgul S. Optic nerve blood-flow abnormalities in glaucoma. Prog Retin Eye Res. 1998;17(2):267-89.PubMedGoogle Scholar
  7. Flammer J, Orgul S, Costa VP, et al. The impact of ocular blood flow in glaucoma. Prog Retin Eye Res. 2002;21(4):359-393.PubMedGoogle Scholar
  8. Grieshaber MC, Flammer J. Blood flow in glaucoma. Curr Opin Ophthalmol. 2005;16(2):79-83.PubMedGoogle Scholar
  9. Grunwald JE, Piltz J, Hariprasad SM, DuPont J. Optic nerve and choroidal circulation in glaucoma. Invest Ophthalmol Vis Sci. 1998;39(12):2329-2336.PubMedGoogle Scholar
  10. Grunwald JE, Piltz J, Hariprasad SM, et al. Optic nerve blood flow in glaucoma: effect of systemic hypertension. Am J Ophthalmol. 1999;127(5):516-522.PubMedGoogle Scholar
  11. Hennis A, Wu SY, Nemesure B, Leske MC. Hypertension, diabetes, and longitudinal changes in intraocular pressure. Ophthalmology. 2003;110(5):908-914.PubMedGoogle Scholar
  12. Leske MC, Connell AM, Wu SY, et al. Risk factors for open-angle glaucoma. The Barbados Eye Study. Arch Ophthalmol. 1995;113(7):918-924.PubMedGoogle Scholar
  13. Leske MC, Heijl A, Hyman L, et al. Predictors of long-term progression in the early manifest glaucoma trial. Ophthalmology. 2007;114(11):1965-1972.PubMedGoogle Scholar
  14. Leske MC, Wu SY, Hennis A, et al. Risk factors for incident open-angle glaucoma: the Barbados Eye Studies. Ophthalmology. 2008;115(1):85-93.PubMedGoogle Scholar
  15. Liu JH, Gokhale PA, Loving RT, et al. Laboratory assessment of diurnal and nocturnal ocular perfusion pressures in humans. J Ocul Pharmacol Ther. 2003;19(4):291-297.PubMedGoogle Scholar
  16. Michelson G, Groh MJ, Langhans M. Perfusion of the juxtapapillary retina and optic nerve head in acute ocular hypertension. Ger J Ophthalmol. 1996;5(6):315-321.PubMedGoogle Scholar
  17. Mitchell P, Lee AJ, Rochtchina E, Wang JJ. Open-angle glaucoma and systemic hypertension: the blue mountains eye study. J Glaucoma. 2004;13(4):319-326.PubMedGoogle Scholar
  18. Nicolela MT, Hnik P, Drance SM. Scanning laser Doppler flowmeter study of retinal and optic disk blood flow in glaucomatous patients. Am J Ophthalmol. 1996;122(6):775-783.PubMedGoogle Scholar
  19. Orzalesi N, Rossetti L, Omboni S. Vascular risk factors in glaucoma: the results of a national survey. Graefes Arch Clin Exp Ophthalmol. 2007;245(6):795-802.PubMedGoogle Scholar
  20. Piltz-Seymour JR. Laser Doppler flowmetry of the optic nerve head in glaucoma. Surv Ophthalmol. 1999;43 Suppl 1:S191-S198.PubMedGoogle Scholar
  21. Piltz-Seymour JR, Grunwald JE, Hariprasad SM, Dupont J. Optic nerve blood flow is diminished in eyes of primary open-angle glaucoma suspects. Am J Ophthalmol. 2001;132(1):63-69.PubMedGoogle Scholar
  22. Rojanapongpun P, Drance SM, Morrison BJ. Ophthalmic artery flow velocity in glaucomatous and normal subjects. Br J Ophthalmol. 1993;77(1):25-9.PubMedGoogle Scholar
  23. Tielsch JM, Katz J, Sommer A, et al. Hypertension, perfusion pressure, and primary open-angle glaucoma. A population-based assessment. Arch Ophthalmol. 1995;113(2):216-221.PubMedGoogle Scholar
  24. Ulrich WD, Ulrich C, Bohne BD. Deficient autoregulation and lengthening of the diffusion distance in the anterior optic nerve circulation in glaucoma: an electro-encephalo-dynamographic investigation. Ophthalmic Res. 1986;18(5):253–259.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Brent Siesky
    • 1
  • Alon Harris
    • 1
  • Rita Ehrlich
    • 1
  • Nisha Kheradiya
    • 1
  • Carlos Rospigliosi Lopez
    • 1
  1. 1.Department of OphthalmologyIndiana University School of MedicineIndianapolisUSA

Personalised recommendations