Excitation Wave Propagation in Narrow Passes

  • Boris Ja. Kogan


Direct physiological evidence [1-4] exists that occurrences of arrhythmia are commonplace in the presence of infarct scars, where regions of normal and excitable myocardium are interspersed with regions of unexcitable myocardium. These regions form narrow and wide pathways for wave propagation and each of these pathways assumes a configuration that can be categorized into a particular type of border geometry.

The concept of critical curvature of the wavefront (introduced in chapter 9) provides a connection between pathway border geometry and the properties of surviving myocardium within the pathway and the appearance of a unidirectional conduction block. The conduction block facilitates the appearance of reentrant arrhythmias, which can in turn, lead to ventricular fibrillation.


Excitable Medium Border Zone Space Unit Critical Width Narrow Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    de Bakker, J.M., F.J.L. van Capelle, M.J. Janse, A.A. Wilde, R. Coronel, A.E. Becker, K.P. Dingemans, N.M. van Hemel, and R.N. Hauer, Reentry as a cause of ventricular tachycardia in patients with chronic ischemic heart disease: electrophysiologic and anatomic correlation. Circulation, 1988. 77: 589-606.Google Scholar
  2. 2.
    Bolick, D.R., D.B. Hackel, K.A. Reimer, and R.E. Ideker, Quantitative analysis of myocardial infarct structure in patients with ventricular tachycardia. Circulation, 1986. 74: 1266-1279.Google Scholar
  3. 3.
    Fenoglio Jr., J.J., T.D. Pham, A.H. Harken, L.N. Horowitz, M.E. Josephson, and A.L. Wit, Recurrent sustained ventricular tachycardia: structure and ultrastructure of subendocardial regions in which tachycardia originates. Circulation, 1983. 68: 518–533.Google Scholar
  4. 4.
    de Bakker, J.M., R. Coronel, S. Tasseron, A.A. Wilde, T. Opthof, M.J. Janse, F.J. van Capelle, A.E. Becker, and G. Jambroes, Ventricular tachycardia in the infarcted, Langendorff-perfused human heart: role of the arrangement of surviving cardiac fibers. J Am Coll Cardiol, 1990. 15: 1594-1607.CrossRefGoogle Scholar
  5. 5.
    Kogan, B.Y., W.J. Karplus, B.S. Billet, and W.G. Stevenson, Excitation wave propagation within narrow pathways: geometric configurations facilitating unidirectional block and reentry. Physica D, 1992. 59: 275-296.MATHCrossRefGoogle Scholar
  6. 6.
    Gilmour Jr., R.F., J.J. Heger, E.N. Prystowsky, and D.P. Zipes, Cellular electrophysiologic abnormalities of diseased human ventricular myocardium. Am J Cardiol, 1983. 51: 137-144.CrossRefGoogle Scholar
  7. 7.
    Myerburg, R.J., K. Epstein, M.S. Gaide, S.S. Wong, A. Castellanos, H. Gelband, J.S. Cameron, and A.L. Bassett, Cellular electrophysiology in acute and healed experimental myocardial infarction. Ann N Y Acad Sci, 1982. 382: 90-115.CrossRefGoogle Scholar
  8. 8.
    Dillon, S.M., M.A. Allessie, P.C. Ursell, and A.L. Wit, Influences of anisotropic tissue structure on reentrant circuits in the epicardial border zone of subacute canine infarcts. Circ Res, 1988. 63: 182-206.Google Scholar
  9. 9.
    Zykov, V.S., Analytic estimate of the dependence of excitation wave velocity in a two dimensional excitable medium on the curvature of its front. Biofizika (USSR), 1980. 25: 888- 892.Google Scholar
  10. 10.
    Pang, A.T., On Simulating and Visualizing Nonlinear Distributed Parameter Systems Using Massively Parallel Computers, in Computer Science. 1990, University of California, Los Angeles: Los Angeles. p. 155.Google Scholar
  11. 11.
    Kogan, B.Y., W.J. Karplus, B.S. Billet, A.T. Pang, H.S. Karagueuzian, and S.S. Khan, The simplified Fitzhugh-Nagumo model with action potential duration restitution: effects on 2D- wave propagation. Physica D, 1991. 50: 327-340.MATHCrossRefGoogle Scholar
  12. 12.
    Zykov, V.S., Simulation of Wave Process in Excitable Media. Nonlinear science: theory and applications, ed. A.V. Holden. 1987, Manchester and New York: Manchester University Press.Google Scholar
  13. 13.
    Cabo, C. and R.C. Barr, Unidirectional block in a computer model of partially coupled segments of cardiac Purkinje tissue. Ann Biomed Eng, 1993. 21: 633-644.CrossRefGoogle Scholar
  14. 14.
    Kogan, B.Y., W.J. Karplus, and M.G. Karpoukhin. The effect of boundary conditions and geometry of 2D excitable media on properties of wave propagation. in International Workshop on Dynamism and Regulation in Non-linear Chemical Systems. 1994. Tsukuba, Japan: National Institute of Materials and Chemical Research (Japan). p. 79-81.Google Scholar
  15. 15.
    Kogan, B.Y., W.J. Karplus, and B.S. Billet. Excitation wave propagation through narrow pathways. in Spatio-Temporal Organization in Nonequilibrium Systems. 1992. Berlin, Germany: Project Verlag. p. 122-127.Google Scholar
  16. 16.
    Pertsov, A.M., E.A. Ermakova, and E.E. Shnol, On the diffraction of autowaves. Physica D, 1990. 44: 178-190.MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of California, Los AngelesLos AngelesUSA

Personalised recommendations