Skip to main content

Excitation Wave Propagation in Narrow Passes

  • Chapter
  • First Online:
Introduction to Computational Cardiology
  • 970 Accesses

Abstract

Direct physiological evidence [1-4] exists that occurrences of arrhythmia are commonplace in the presence of infarct scars, where regions of normal and excitable myocardium are interspersed with regions of unexcitable myocardium. These regions form narrow and wide pathways for wave propagation and each of these pathways assumes a configuration that can be categorized into a particular type of border geometry.

The concept of critical curvature of the wavefront (introduced in chapter 9) provides a connection between pathway border geometry and the properties of surviving myocardium within the pathway and the appearance of a unidirectional conduction block. The conduction block facilitates the appearance of reentrant arrhythmias, which can in turn, lead to ventricular fibrillation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. de Bakker, J.M., F.J.L. van Capelle, M.J. Janse, A.A. Wilde, R. Coronel, A.E. Becker, K.P. Dingemans, N.M. van Hemel, and R.N. Hauer, Reentry as a cause of ventricular tachycardia in patients with chronic ischemic heart disease: electrophysiologic and anatomic correlation. Circulation, 1988. 77: 589-606.

    Google Scholar 

  2. Bolick, D.R., D.B. Hackel, K.A. Reimer, and R.E. Ideker, Quantitative analysis of myocardial infarct structure in patients with ventricular tachycardia. Circulation, 1986. 74: 1266-1279.

    Google Scholar 

  3. Fenoglio Jr., J.J., T.D. Pham, A.H. Harken, L.N. Horowitz, M.E. Josephson, and A.L. Wit, Recurrent sustained ventricular tachycardia: structure and ultrastructure of subendocardial regions in which tachycardia originates. Circulation, 1983. 68: 518–533.

    Google Scholar 

  4. de Bakker, J.M., R. Coronel, S. Tasseron, A.A. Wilde, T. Opthof, M.J. Janse, F.J. van Capelle, A.E. Becker, and G. Jambroes, Ventricular tachycardia in the infarcted, Langendorff-perfused human heart: role of the arrangement of surviving cardiac fibers. J Am Coll Cardiol, 1990. 15: 1594-1607.

    Article  Google Scholar 

  5. Kogan, B.Y., W.J. Karplus, B.S. Billet, and W.G. Stevenson, Excitation wave propagation within narrow pathways: geometric configurations facilitating unidirectional block and reentry. Physica D, 1992. 59: 275-296.

    Article  MATH  Google Scholar 

  6. Gilmour Jr., R.F., J.J. Heger, E.N. Prystowsky, and D.P. Zipes, Cellular electrophysiologic abnormalities of diseased human ventricular myocardium. Am J Cardiol, 1983. 51: 137-144.

    Article  Google Scholar 

  7. Myerburg, R.J., K. Epstein, M.S. Gaide, S.S. Wong, A. Castellanos, H. Gelband, J.S. Cameron, and A.L. Bassett, Cellular electrophysiology in acute and healed experimental myocardial infarction. Ann N Y Acad Sci, 1982. 382: 90-115.

    Article  Google Scholar 

  8. Dillon, S.M., M.A. Allessie, P.C. Ursell, and A.L. Wit, Influences of anisotropic tissue structure on reentrant circuits in the epicardial border zone of subacute canine infarcts. Circ Res, 1988. 63: 182-206.

    Google Scholar 

  9. Zykov, V.S., Analytic estimate of the dependence of excitation wave velocity in a two dimensional excitable medium on the curvature of its front. Biofizika (USSR), 1980. 25: 888- 892.

    Google Scholar 

  10. Pang, A.T., On Simulating and Visualizing Nonlinear Distributed Parameter Systems Using Massively Parallel Computers, in Computer Science. 1990, University of California, Los Angeles: Los Angeles. p. 155.

    Google Scholar 

  11. Kogan, B.Y., W.J. Karplus, B.S. Billet, A.T. Pang, H.S. Karagueuzian, and S.S. Khan, The simplified Fitzhugh-Nagumo model with action potential duration restitution: effects on 2D- wave propagation. Physica D, 1991. 50: 327-340.

    Article  MATH  Google Scholar 

  12. Zykov, V.S., Simulation of Wave Process in Excitable Media. Nonlinear science: theory and applications, ed. A.V. Holden. 1987, Manchester and New York: Manchester University Press.

    Google Scholar 

  13. Cabo, C. and R.C. Barr, Unidirectional block in a computer model of partially coupled segments of cardiac Purkinje tissue. Ann Biomed Eng, 1993. 21: 633-644.

    Article  Google Scholar 

  14. Kogan, B.Y., W.J. Karplus, and M.G. Karpoukhin. The effect of boundary conditions and geometry of 2D excitable media on properties of wave propagation. in International Workshop on Dynamism and Regulation in Non-linear Chemical Systems. 1994. Tsukuba, Japan: National Institute of Materials and Chemical Research (Japan). p. 79-81.

    Google Scholar 

  15. Kogan, B.Y., W.J. Karplus, and B.S. Billet. Excitation wave propagation through narrow pathways. in Spatio-Temporal Organization in Nonequilibrium Systems. 1992. Berlin, Germany: Project Verlag. p. 122-127.

    Google Scholar 

  16. Pertsov, A.M., E.A. Ermakova, and E.E. Shnol, On the diffraction of autowaves. Physica D, 1990. 44: 178-190.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Ja. Kogan .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kogan, B.J. (2010). Excitation Wave Propagation in Narrow Passes. In: Introduction to Computational Cardiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-76686-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-76686-7_10

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-76685-0

  • Online ISBN: 978-0-387-76686-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics