Skip to main content

Engineering a Generalized Neural Network Mapping of Volatility Spillovers in European Government Bond Markets

  • Chapter
Book cover Handbook of Financial Engineering

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 18))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amari, S.-I. Mathematical foundations of neurocomputing. IEEE Transactions on Neural Networks, 78(9):1443–1463, 1990.

    Google Scholar 

  2. Andersen, T., Bollerslev, T., Diebold, F., and Ebens, H. The distribution of realized stock return volatility. Journal of Financial Economics, 61(1):43–76, 2001.

    Article  Google Scholar 

  3. Baele, L. Volatility spillover effects in European equity markets: Evidence from a regime switching model. Ghent University, Working paper, 2002.

    Google Scholar 

  4. Bekaert, G., and Harvey, C. R. Time-varying world market integration. Journal of Finance, 50(2):403–444, 1995.

    Article  Google Scholar 

  5. Bekaert, G., and Harvey, C. R. Emerging equity market volatility. Journal of Financial Economics, 43:29–77, 1997.

    Article  Google Scholar 

  6. Bekaert, G., Harvey, C. R., and Ng, A. Market integration and contagion. Journal of Business, 78:39–69, 2005.

    Article  Google Scholar 

  7. Berndt, E. K., Hall, B. H., Hall, R. E., and Hausman, J. A. Estimation and inference in nonlinear structural models. Annals of Economic and Social Measurement, 3:653–665, 1974.

    Google Scholar 

  8. Bollerslev, T. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31:307–327, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  9. Booth, G. G., Martikainen, T., and Tse, T. Price and volatility spillovers in Scandinavian stock markets. Journal of Banking and Finance, 21:811–823, 1997.

    Article  Google Scholar 

  10. Broomhead, D. S., and Lowe, D. Multivariate functional interpolation and adaptive networks. Complex Systems, 2:321–355, 1988.

    MATH  MathSciNet  Google Scholar 

  11. Christiansen, C. Volatility-spillover effects in European bond markets. University of Aarhus, Denmark, Working paper series no. 162, 2003.

    Google Scholar 

  12. Clare, A., and Lekkos, I. An analysis of the relationship between international bond markets. Bank of England, Working paper, 2000.

    Google Scholar 

  13. Craven, M., and Shavlik, J. Using neural networks for data mining. Future Generation Computer Systems, 1997.

    Google Scholar 

  14. Crouse, R. H., Jin, C., and Hanumara, R. C. Unbiased ridge estimation with prior information and ridge trace. Communication in Statistics, 24(9):2341–2354, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  15. Dash, G., Hanumara, C., and Kajiji, N. Neural network architectures for efficient modeling of FX futures options volatility. Operational Research: An International Journal, 3(1):3–23, 2003.

    Google Scholar 

  16. Dash, G., and Kajiji, N. New evidence on the predictability of South African FX volatility in heterogenous bilateral markets. The African Finance Journal, 5(1):1–15, 2003.

    Google Scholar 

  17. Diamond, F., Simons, J. et al. J.P. Morgan government bond indices. J.P. Morgan, Portfolio Research Report, 2002.

    Google Scholar 

  18. Engle, R. F. Autoregressive conditional heteroskedasticity with estimates of the variance of U.K. inflation. Econometrica, 50:987–1008, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  19. Hemmerle, W. J. An explicit solution for generalized ridge regression. Technometrics, 17(3):309–314. 1975.

    Article  MATH  MathSciNet  Google Scholar 

  20. Hoerl, A. E., and Kennard, R. W. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(3):55–67, 1970.

    Article  MATH  Google Scholar 

  21. Kajiji, N. Adaptation of alternative closed form regularization parameters with prior information to the radial basis function neural network for high frequency financial rime series. University of Rhode Island, 2001.

    Google Scholar 

  22. Kaski, S. Data exploration using self-organizing maps. Neural Networks Research Centre, Helsinki University of Technology, 1997.

    Google Scholar 

  23. Kaski, S., and Kohonen, T. Exploratory data analysis by the self-organizing map: Structures of welfare and poverty in the world. In A. Refenes, Y. Abu-Mostafa, J. Moody, and A. Weigend, Editors, Neural Networks in Financial Engineering, World Scientific, Singapore, 1996, pages 498–507.

    Google Scholar 

  24. Kohonen, T. The self-organizing map. Proceedings of the IEEE, 78(9):1464–1480 1990.

    Article  Google Scholar 

  25. Koutmos, G., and Booth, G. G. Asymmetric volatility transmission in international stock markets. Journal of International Money and Finance, 14:747–762, 1995.

    Article  Google Scholar 

  26. Ljung, G., and Box, G. On a measure of lack of fit in time series models. Biometrika, 67:297–303, 1978.

    Article  Google Scholar 

  27. Lohninger, H. Evaluation of neural networks based on radial basis functions and their application to the prediction of boiling points from structural parameters. Journal of Chemical Information and Computer Sciences, 33:736–744, 1993.

    Google Scholar 

  28. Lu, H., Setiono, R., and Liu, H. Effective data mining using neural networks. IEEE Transactions on Knowledge and Data Engineering, 8(6):957–961, 1996.

    Article  Google Scholar 

  29. McNelis, P. D. Neural Networks in Finance: Gaining Predictive Edge in the Market. Elsevier Academic Press, Burlington, MA, 2005.

    Google Scholar 

  30. Mehta, K., and Bhattacharyya, S. Adequacy of training data for evolutionary mining of trading rules. Decision Support Systems, 37(4):461–474, 2004.

    Article  Google Scholar 

  31. Nelson, D. B. Conditional heteroskedasticity in asset returns: A new approach. Econometrica, 59:347–370, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  32. Nelson, D. B., and Cao, C. Q. Inequality constraints in the univariate GARCH model. Journal of Business and Economic Statistics, 10:229–235, 1992.

    Article  Google Scholar 

  33. Ng, A. Volatility spillover effects from Japan and the US to the pacific-basin. Journal of International Money and Finance, 19:207–233, 2000.

    Article  Google Scholar 

  34. Orr, M. J. L. Introduction to Radial Basis Function Networks. Center for Cognitive Science, Scotland, UK, 1996.

    Google Scholar 

  35. Orr, M. J. L. MATLAB Routines for Subset Selection and Ridge Regression in Linear Neural Networks. Center for Cognitive Science, Scotland, UK, 1997.

    Google Scholar 

  36. Parthasarathy, K., and Narendra, K. Stable adaptive control of a class of discrete-time nonlinear systems using radial basis neural networks. Yale University, Report No. 9103, 1991.

    Google Scholar 

  37. Polak, E. Computational Methods in Optimization. Academic Press, New York, 1971.

    Google Scholar 

  38. Refenes, A. N., and Bolland, P. Modeling quarterly returns on the FTSE: A comparative study with regression and neural networks. In C. H. Chen, Editor, Fuzzy Logic and Neural Network Handbook. McGraw-Hill, New York, 1996.

    Google Scholar 

  39. Rustichini, A., Dickhaut, J., Ghirardato, P., Smith, K., and Pardo, J. V. A brain imaging study of procedural choice. University of Minnesota, Working paper, 2002.

    Google Scholar 

  40. Saarinen, S., Bramley, R., and Cybenko, G. Ill- conditioning in neural network training problems. SIAM Journal of Scientific Computing, 14(3):693–714, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  41. Sanner, R. M., and Slotine, J.-J. E. Gaussian networks for direct adaptive control. IEEE Transactions on Neural Networks, 3:837–863, 1992.

    Article  Google Scholar 

  42. Schraudolph, N. N., and Sejnowski, T. J. Tempering backpropagation networks: Not all weights are created equal. In D. S. Touretzky, M. C. Moser, and M. E. Hasselmo, Editors, Advances in Neural Information Processing Systems, MIT Press, Cambridge, 1996, pages 563–569.

    Google Scholar 

  43. Shapiro, S. S., and Wilk, M. B. An analysis of variance test for normality (complete samples). Biometrika, 52(3/4):597–611, 1965.

    Article  MathSciNet  Google Scholar 

  44. Shi, J. J. Reducing prediction error by transforming input data for neural networks. Journal of Computing in Civil Engineering, 14(2):109–116, 2000.

    Article  Google Scholar 

  45. Skintzi, V. D., and Refenes, A.-P. N. Volatility spillovers and dynamic correlation in European bond markets. Financial Engineering Research Center, Athens University of Economics and Business, Athens, 2004.

    Google Scholar 

  46. Smagt, P. Minimization methods for training feed-forward networks. Neural Networks, 7(1):1–11, 1994.

    Article  Google Scholar 

  47. Tikhonov, A., and Arsenin, V. Solutions of Ill-Posed Problems. Wiley, New York, 1977.

    Google Scholar 

  48. Weigend, A. S., and Rumelhart, D. Generalization of by weight-elimination applied to currency exchange rate prediction. Proceedings of IJCNN, New York, 1991.

    Google Scholar 

  49. Zirilli, J. S. Financial Prediction Using Neural Networks. International Thompson Computer Press, London, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gordon H. Dash Jr. or Nina Kajiji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Dash, G.H., Kajiji, N. (2008). Engineering a Generalized Neural Network Mapping of Volatility Spillovers in European Government Bond Markets. In: Zopounidis, C., Doumpos, M., Pardalos, P.M. (eds) Handbook of Financial Engineering. Springer Optimization and Its Applications, vol 18. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-76682-9_7

Download citation

Publish with us

Policies and ethics