Skip to main content

Activation of G-Proteins in Brain by Endogenous and Exogenous Cannabinoids

  • Chapter
Drug Addiction
  • 2260 Accesses

Abstract

The biological response to cannabinoid agonist begins when the agonist-bound receptor activates G-protein Gα subunits, thus initiating a cascade of signal transduction pathways. For this reason, information about cannabinoid receptors/G-protein coupling is critical to understand both the acute and chronic actions of cannabinoids. This review focuses on these mechanisms, predominantly examining the ability of cannabinoid agonists to activate G-proteins in brain with agonist-stimulated [35S]guanylyl-5′-O-(γ-thio)-triphosphate ([35S]GTPγS) binding. Acute efficacies of cannabinoid agonists at the level of G-protein activation depend not only on the ability of the agonist to induce a high affinity state in Gα for GTP, but also to induce a low affinity for GDP. When several agonists are compared, it is clear that cannabinoid agonists differ considerably in their efficacy. Both WIN 55212-2 and levonantradol are full agonists, while Δ9-tetrahydrocannabinol is a weak partial agonist. Of interest, anandamide and its stable analog methanandamide are partial agonists. Chronic treatment in vivo with cannabinoids produces significant tolerance to the physiological and behavioral effects of these drugs, and several studies have shown that this is accompanied by a significant loss in the ability of cannabinoid receptors to couple to G-proteins in brain. These effects vary across different brain regions and are usually (but not always) accompanied by loss of cannabinoid receptor binding. Although the relationship between cannabinoid receptor desensitization and tolerance has not yet been established, these mechanisms may represent events that lead to a loss of cannabinoid agonist response and development of tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Howlett AC. Inhibition of neuroblastoma adenylyl cyclase by cannabinoid and nantradol compounds. Life Sci. 1984;35:1803-1810.

    Article  CAS  PubMed  Google Scholar 

  2. Howlett AC, Fleming RM. Cannabinoid inhibition of adenylate cyclase: pharmacology of the response in neuroblastoma cell membranes. Mol Pharmacol. 1984;26:532-538.

    CAS  PubMed  Google Scholar 

  3. Howlett AC. Cannabinoid inhibition of adenylate cyclase: biochemistry of the response in neuroblastoma cell membranes. Mol Pharmacol. 1985;27:429-436.

    CAS  PubMed  Google Scholar 

  4. Howlett AC, Qualy JM, Khachatrian LL. Involvement of Gi in the inhibition of adenylate cyclase by cannabimimetic drugs. Mol Pharmacol. 1986;29:307-313.

    CAS  PubMed  Google Scholar 

  5. Devane WA, Dysarz FAI, Johnson MR, Melvin LS, Howlett AC. Determination and charac-terization of a cannabinoid receptor in rat brain. Mol Pharmacol. 1988;34:605-613.

    CAS  PubMed  Google Scholar 

  6. Herkenham M, Lynn AB, Johnson MR, Melvin LS, de Costa BR, Rice KC. Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci. 1991;11:563-583.

    CAS  PubMed  Google Scholar 

  7. Matsuda LA, Lolait SJ, Brownstein MJ, Young AL, Bonner TI. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature. 1990;346:561-564.

    Article  CAS  PubMed  Google Scholar 

  8. Munro S, Thomas KL, Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature. 1993;365:61-65.

    Article  CAS  PubMed  Google Scholar 

  9. Devane WA, Hanus L, Breuer A, et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science. 1992;258:1946-1949.

    Article  CAS  PubMed  Google Scholar 

  10. Mechoulam R, Ben-Shabat S, Hanus L, et al. Identification of an endogenous 2-monoglycer-ide, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol. 1995;50:83-90.

    Article  CAS  PubMed  Google Scholar 

  11. Houston DB, Howlett AC. Solubilization of the cannabinoid receptor from rat brain and its functional interaction with guanine nucleotide-binding proteins. Mol Pharmacol. 1993;43:17-22.

    CAS  PubMed  Google Scholar 

  12. Mukhopadhyay S, Howlett AC. Chemically distinct ligands promote differential CB1 cannabi-noid receptor-Gi protein interactions. Mol Pharmacol. 2005;67:2016-2024.

    Article  CAS  PubMed  Google Scholar 

  13. Selley DE, Stark S, Sim LJ, Childers SR. Cannabinoid receptor stimulation of guanosine-5′-O-(3-[35S]thio)triphosphate binding in rat brain membranes. Life Sci. 1996;59:659-668.

    Article  CAS  PubMed  Google Scholar 

  14. Kurose H, Katada T, Haga T, Haga K, Ichiyama A, Ui M. Functional interaction of purified muscarinic receptors with purified inhibitory guanine nucleotide regulatory proteins reconstituted in phospholipid vesicles. J Biol Chem. 1986;261:6423-6428.

    CAS  PubMed  Google Scholar 

  15. Florio VA, Sternweiss PC. Mechanisms of muscarinic receptor action on Go in reconstituted phospholipid vesicles. J Biol Chem. 1989;264:3909-3915.

    CAS  PubMed  Google Scholar 

  16. Asano T, Pedersen SE, Scott CW, Ross EM. Reconstitution of catecholamine-stimulated bind-ing of guanosine 5′-O-(3-thiotriphosphate) to the stimulatory GTP-binding protein of ade-nylate cyclase. Biochemistry. 1984;23:5460-5467.

    Article  CAS  PubMed  Google Scholar 

  17. Hilf G, Gierschik P, Jakobs KH. Muscarinic acetylcholine receptor-stimulated binding of guanosine 5′-O-(3-thiotriphosphate) to guanine-nucleotide-binding proteins in cardiac mem-branes. Eur J Biochem. 1989;186:725-731.

    Article  CAS  PubMed  Google Scholar 

  18. Lorenzen A, Fuss M, Vogt H, Schwabe U. Measurement of guanine nucleotide-binding pro-tein activation by A1 adenosine receptor agonists in bovine brain membranes: stimulation of guanosine-5′-O-(3-[35S]thio)triphosphate binding. Mol Pharmacol. 1993;44:115-123.

    CAS  PubMed  Google Scholar 

  19. Lazareno S, Farries T, Birdsall NJM. Pharmacological characterization of guanine nucleotide exchange reactions in membranes from CHO cells stably transfected with human muscarinic receptors M1-M4. Life Sci. 1993;52:449-456.

    Article  CAS  PubMed  Google Scholar 

  20. Levy FO, Zhu X, Kaumann AJ, Birnbaumer L. Efficacy of β1-adrenergic receptors is lower than that of β2-adrenergic receptors. Proc Natl Acad Sci USA. 1993;90:10798-10802.

    Article  CAS  PubMed  Google Scholar 

  21. Birnbaumer L, Levy FO, Zhu X, Kaumann AJ. Studies on the intrinsic activity (efficacy) of human adrenergic receptors. Tex Heart Inst J. 1994;21:16-21.

    CAS  PubMed  Google Scholar 

  22. Breivogel CS, Selley DE, Childers SR. Acute and chronic effects of opioids on delta and mu receptor activation of G-proteins in NG108-15 and SK-N-SH cell membranes. J Neurochem. 1997;68:1462-1472.

    Article  CAS  PubMed  Google Scholar 

  23. Sim LJ, Selley DE, Childers SR. In vitro autoradiography of receptor-activated G-proteins in rat brain by agonist-stimulated guanylyl 5′-[γ-[35S]thio]-triphosphate binding. Proc Natl Acad Sci USA. 1995;92:7242-7246.

    Article  CAS  PubMed  Google Scholar 

  24. Breivogel CS, Selley DE, Childers SR. Cannabinoid receptor agonist efficacy for stimulating [35S]GTPγS binding to rat cerebellar membranes correlates with agonist-induced decreases in GDP affinity. J Biol Chem. 1998;273:16865-16873.

    Article  CAS  PubMed  Google Scholar 

  25. Kuster J, Stevenson J, Ward S, D’Ambra T, Haycock D. Aminoalkylindole binding in rat cer-ebellum: selective displacement by natural and synthetic cannabinoids. J Pharmacol Exp Ther. 1993;264:1352-1363.

    CAS  PubMed  Google Scholar 

  26. Sim LJ, Selley DE, Xiao R, Childers SR. Differences in G-protein activation by mu and delta opioid, and cannabinoid, receptors in rat striatum. Eur J Pharmacol. 1996;307:97-105.

    Article  CAS  PubMed  Google Scholar 

  27. Breivogel CS, Sim LJ, Childers SR. Regional differences in cannabinoid receptor/G-protein coupling in rat brain. J Pharmacol Exp Ther. 1997;282:1632-1642.

    CAS  PubMed  Google Scholar 

  28. Selley DE, Sim LJ, Xiao R, Liu Q, Childers SR. Mu opioid receptor-stimulated [35S]GTPγS binding in rat thalamus and cultured cell lines: signal transduction mechanisms underlying agonist efficacy. Mol Pharmacol. 1997;51:87-96.

    CAS  PubMed  Google Scholar 

  29. Burkey TH, Quock RM, Consroe P, et al. Relative efficacies of cannabinoid CB1 receptor ago-nists in the mouse brain. Eur J Pharmacol. 1997;336:295-298.

    Article  CAS  PubMed  Google Scholar 

  30. Sim LJ, Hampson RE, Deadwyler SA, Childers SR. Effects of chronic treatment with Δ9-tetrahydrocannabinol on cannabinoid-stimulated [35S]GTPγS autoradiography in rat brain. J Neurosci. 1996;16:8057-8066.

    CAS  PubMed  Google Scholar 

  31. Childers SR, Sexton T, Roy MB. Effects of anandamide on cannabinoid receptors in rat brain membranes. Biochem Pharmacol. 1994;47:711-715.

    Article  CAS  PubMed  Google Scholar 

  32. Mackie K, Devane WA, Hille B. Anandamide, an endogenous cannabinoid, inhibits calcium cur-rents as a partial agonist in N18 neuroblastoma cells. Mol Pharmacol. 1993;44:498-503.

    CAS  PubMed  Google Scholar 

  33. Shen M, Piser TM, Seybold VS, Thayer SA. Cannabinoid receptor agonists inhibit glutamatergic synaptic transmission in rat hippocampal cultures. J Neurosci. 1996;16:4322-4334.

    CAS  PubMed  Google Scholar 

  34. Landsman RS, Burkey TH, Consroe P, Roeske WR, Yamamura HI. SR141716A is an inverse agonist at the human cannabinoid CB1 receptor. Eur J Pharmacol. 1997;334:R1-R2.

    Article  CAS  PubMed  Google Scholar 

  35. Felder CC, Joyce KE, Briley EM, et al. Comparison of the pharmacology and signal transduc-tion of the human cannabinoid CB1 and CB2 receptors. Mol Pharmacol. 1995;48:443-450.

    CAS  PubMed  Google Scholar 

  36. Pacheco M, Ward SJ, Childers SR. Identification of cannabinoid receptors in cultures of rat cerebel-lar granule cells. Brain Res. 1993;603:102-110.

    Article  CAS  PubMed  Google Scholar 

  37. Bidaut-Russell M, Devane WA, Howlett AC. Cannabinoid receptors and modulation of cyclic AMP accumulation in the rat brain. J Neurochem. 1990;55:21-26.

    Article  CAS  PubMed  Google Scholar 

  38. Glass M, Felder CC. Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors augments cAMP accumulation in striatal neurons: evidence for a Gs linkage to the CB1 recep-tor. J Neurosci. 1997;17:5327-5333.

    CAS  PubMed  Google Scholar 

  39. Caulfield MP, Brown DA. Cannabinoid receptor agonists inhibit Ca currents in NG108-15 neuroblastoma cells via a pertussis toxin-sensitive mechanism. Br J Pharmacol. 1992;106:231-232.

    CAS  PubMed  Google Scholar 

  40. Mackie K, Lai Y, Westenbroek R, Mitchell R. Cannabinoids activate an inwardly rectifying potassium conductance and inhibit Q-type calcium currents in AtT20 cells transfected with rat brain cannabinoid receptor. J Neurosci. 1995;15:6552-6561.

    CAS  PubMed  Google Scholar 

  41. Diana MA, Levenes C, Mackie K, Marty A. Short-term retrograde inhibition of GABAergic synaptic currents in rat Purkinje cells is mediated by endogenous cannabinoids. J Neurosci. 2002;22:200-208.

    CAS  PubMed  Google Scholar 

  42. Deadwyler SA, Heyser CJ, Hampson RE. Complete adaptation to the memory disruptive effects of delta-9-THC following 35 days of exposure. Neurosci Res Commun. 1995;17:9-18.

    CAS  Google Scholar 

  43. Abood ME, Sauss C, Fan F, Tilton CL, Martin BR. Development of behavioral tolerance to Δ9-THC without alteration of cannabinoid receptor binding or mRNA levels in whole brain. Pharmacol Biochem Behav. 1993;46:575-579.

    Article  CAS  PubMed  Google Scholar 

  44. Adams IB, Martin BR. Cannabis: pharmacology and toxicology in animals and humans. Addiction. 1996;91:1585-1614.

    Article  CAS  PubMed  Google Scholar 

  45. Fan F, Tao Q, Abood ME, Martin BR. Cannabinoid receptor down-regulation without altera-tion of the inhibitory effect of CP 55,940 on adenylyl cyclase in the cerebellum of CP 55,940-tolerant mice. Brain Res. 1996;706:13-20.

    Article  CAS  PubMed  Google Scholar 

  46. Rodríguez de Fonseca F, Gorriti MA, Fernandez-Ruiz JJ, Palomo T, Ramos JA. Downregulation of rat brain cannabinoid binding sites after chronic Δ9-tetrahydrocannabinol treatment. Pharmacol Biochem Behav. 1994;47:33-40.

    Article  PubMed  Google Scholar 

  47. Romero J, Garciá L, Fernández-Ruiz JJ, Cebeira M, Ramos JA. Changes in rat brain cannabi-noid binding sites after acute or chronic exposure to their endogenous agonist, anandamide, or to Δ9-tetrahydrocannabinol. Pharmacol Biochem Behav. 1995;51:731-737.

    Article  CAS  PubMed  Google Scholar 

  48. Coutts AA, Anavi-Goffer S, Ross RA, et al. Agonist-induced internalization and trafficking of cannabinoid CB1 receptors in hippocampal neurons. J Neurosci. 2001;21:2425-2433.

    CAS  PubMed  Google Scholar 

  49. Breivogel CS, Childers SR, Deadwyler SA, Hampson RE, Vogt LJ, Sim-Selley LJ. Chronic Δ9-tetrahydrocannabinol produces a time-dependent loss of cannabinoid receptors and can-nabinoid receptor-activated G-proteins in rat brain. J Neurochem. 1999;73:2447-2459.

    Article  CAS  PubMed  Google Scholar 

  50. Breivogel CS, Scates SM, Beletskaya IO, Lowery OB, Aceto MD, Martin BR. The effects of delta9-tetrahydrocannabinol physical dependence on brain cannabinoid receptors. Eur J Pharmacol. 2003;459:139-150.

    Article  CAS  PubMed  Google Scholar 

  51. Sim-Selley LJ, Martin BR. Effect of chronic administration of R-(+)-[2,3-Dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl)methanone mesylate (WIN55,212-2) or delta(9)-tetrahydrocannabinol on cannabinoid receptor adaptation in mice. J Pharmacol Exp Ther. 2002;303:36-44.

    Article  CAS  PubMed  Google Scholar 

  52. Corchero J, Romero J, Berrendero F, et al. Time-dependent differences of repeated administration with Delta9-tetrahydrocannabinol in proenkephalin and cannabinoid receptor gene expression and G-protein activation by mu-opioid and CB1-cannabinoid receptors in the caudate-putamen. Brain Res Mol Brain Res. 1999;67:148-157.

    Article  CAS  PubMed  Google Scholar 

  53. Rubino T, Vigano D, Costa B, Colleoni M, Parolaro D. Loss of cannabinoid-stimulated gua-nosine 5′-O-(3-[(35)S]thiotriphosphate) binding without receptor down-regulation in brain regions of anandamide-tolerant rats. J Neurochem. 2000;75:2478-2484.

    Article  CAS  PubMed  Google Scholar 

  54. Sim-Selley LJ. Regulation of cannabinoid CB1 receptors in the central nervous system by chronic cannabinoids. Crit Rev Neurobiol. 2003;15:91-119.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven R. Childers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Childers, S.R. (2008). Activation of G-Proteins in Brain by Endogenous and Exogenous Cannabinoids. In: Rapaka, R.S., Sadée, W. (eds) Drug Addiction. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76678-2_42

Download citation

Publish with us

Policies and ethics