Drug Addiction pp 617-624 | Cite as

Mu Opioid Receptor Regulation and Opiate Responsiveness

  • Kirsten M. Raehal
  • Laura M. Bohn


Opiate drugs such as morphine are well known for their ability to produce potent analgesia as well as such unwanted side effects as tolerance, physical dependence, respiratory suppression and constipation. Opiates act at opioid receptors, which belong to the family of G protein-coupled receptors. The mechanisms governing mu opioid receptor (μOR) regulation are of particular interest since morphine and other clinically important analgesics produce their pharmacological effects through this receptor. Here we review recent advances in understanding how opioid receptor regulation can impart differential agonist efficacy produced in vivo.


Opioid Receptor Locus Coeruleus Chronic Morphine GPCR Signaling Receptor Endocytosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mansour A, Watson SJ, Akil H. Opioid receptors: Past, present and future. Trends Neurosci. 1995;18:69-70.CrossRefPubMedGoogle Scholar
  2. 2.
    Kieffer BL. Opioids: First lessons from knockout mice. Trends Pharmacol Sci. 1999; 20:19-26.CrossRefPubMedGoogle Scholar
  3. 3.
    Kieffer BL, Gaveriaux-Ruff C. Exploring the opioid system by gene knockout. Prog Neurobiol. 2002;66:285-306.CrossRefPubMedGoogle Scholar
  4. 4.
    Ferguson SS, Zhang J, Barak LS, Caron MG. Role of beta-arrestins in the intracellular traf-ficking of G-protein-coupled receptors. Adv Pharmacol. 1998;42:420-424.CrossRefPubMedGoogle Scholar
  5. 5.
    Luttrell LM, Lefkowitz RJ. The role of beta-arrestins in the termination and transduction of G-protein-coupled receptor signals. J Cell Sci. 2002;115:455-465.PubMedGoogle Scholar
  6. 6.
    Perry SJ, Lefkowitz RJ. Arresting developments in heptahelical receptor signaling and regula-tion. Trends Cell Biol. 2002;12:130-138.CrossRefPubMedGoogle Scholar
  7. 7.
    Benovic JL, Kuhn H, Weyand I, Codina J, Caron MG, Lefkowitz RJ. Functional desensitiza-tion of the isolated beta-adrenergic receptor by the beta-adrenergic receptor kinase: Potential role of an analog of the retinal protein arrestin (48-kDa protein). Proc Natl Acad Sci USA. 1987;84:8879-8882.CrossRefPubMedGoogle Scholar
  8. 8.
    Lohse MJ, Benovic JL, Codina J, Caron MG, Lefkowitz RJ. Beta-Arrestin: A protein that reg-ulates beta-adrenergic receptor function. Science. 1990;248:1547-1550.CrossRefPubMedGoogle Scholar
  9. 9.
    Chavkin C, McLaughlin JP, Celver JP. Regulation of opioid receptor function by chronic agonist exposure: constitutive activity and desensitization. Mol Pharmacol. 2001;60:20-25.PubMedGoogle Scholar
  10. 10.
    Connor M, Osborne PB, Christie MJ. Mu-opioid receptor desensitization: Is morphine differ-ent? Br J Pharmacol. 2004;143:685-696.CrossRefPubMedGoogle Scholar
  11. 11.
    Bohn LM, Gainetdinov RR, Caron MG. G protein-coupled receptor kinase/beta-arrestin sys-tems and drugs of abuse: Psychostimulant and opiate studies in knockout mice. Neuromolecular Med. 2004;5:41-50.CrossRefPubMedGoogle Scholar
  12. 12.
    Gainetdinov RR, Premont RT, Bohn LM, Lefkowitz RJ, Caron MG. Desensitization of G protein-coupled receptors and neuronal functions. Annu Rev Neurosci. 2004;27:107-144.CrossRefPubMedGoogle Scholar
  13. 13.
    Zhang J, Ferguson SS, Barak LS, et al. Role for G protein-coupled receptor kinase in agonist-specific regulation of mu-opioid receptor responsiveness. Proc Natl Acad Sci USA. 1998;95:7157-7162.CrossRefPubMedGoogle Scholar
  14. 14.
    Bohn LM, Lefkowitz RJ, Gainetdinov RR, Peppel K, Caron MG, Lin FT. Enhanced morphine analgesia in mice lacking beta-arrestin 2. Science. 1999;286:2495-2498.CrossRefPubMedGoogle Scholar
  15. 15.
    Bohn LM, Lefkowitz RJ, Caron MG. Differential mechanisms of morphine antinociceptive tol-erance revealed in beta-arrestin2 knock-out mice. J Neurosci. 2002;22:10494-10500.PubMedGoogle Scholar
  16. 16.
    Bohn LM, Gainetdinov RR, Sotnikova TD, et al. Enhanced rewarding properties of morphine, but not cocaine, in beta-arrestin2 knock-out mice. J Neurosci. 2003;23:10265-10273.PubMedGoogle Scholar
  17. 17.
    Bohn LM, Gainetdinov RR, Lin FT, Lefkowitz RJ, Caron MG. Mu-opioid receptor desensiti-zation by beta-arrestin2 determines morphine tolerance but not dependence. Nature. 2000;408:720-723.CrossRefPubMedGoogle Scholar
  18. 18.
    Noble F, Cox BM. Differential desensitization of mu- and delta- opioid receptors in selected neural pathways following chronic morphine treatment. Br J Pharmacol. 1996;117: 161-169.PubMedGoogle Scholar
  19. 19.
    Sim LJ, Selley DE, Dworkin SI, Childers SR. Effects of chronic morphine administration on mu opioid receptor-stimulated [35S]GTPgammaS autoradiography in rat brain. J Neurosci. 1996;16:2684-2692.PubMedGoogle Scholar
  20. 20.
    Przewlocka B, Sieja A, Starowicz K, Maj M, Bilecki W, Przewlocki R. Knockdown of spinal opioid receptors by antisense targeting beta-arrestin reduces morphine tolerance and allodynia in rat. Neurosci Lett. 2002;325:107-110.CrossRefPubMedGoogle Scholar
  21. 21.
    Raehal KM, Walker JKL, Bohn LM. Morphine side-effects in b-arrestin-2 knockout mice. J Pharmacol Exp Ther. 2005;314:1195-1201.CrossRefPubMedGoogle Scholar
  22. 22.
    Luttrell LM, Ferguson SS, Daaka Y, et al. Beta-arrestin-dependent formation of beta2 adren-ergic receptor-Src protein kinase complexes. Science. 1999;283:655-661.CrossRefPubMedGoogle Scholar
  23. 23.
    Luttrell LM, Daaka Y, Lefkowitz RJ. Regulation of tyrosine kinase cascades by G-protein-coupled receptors. Curr Opin Cell Biol. 1999;11:177-183.CrossRefPubMedGoogle Scholar
  24. 24.
    Ahn S, Maudsley S, Luttrell LM, Lefkowitz RJ, Daaka Y. Src-mediated tyrosine phosphorylation of dynamin is required for beta2-adrenergic receptor internalization and mitogen-activated protein kinase signaling. J Biol Chem. 1999;274:1185-1188.CrossRefPubMedGoogle Scholar
  25. 25.
    DeFea KA, Vaughn ZD, O’Bryan EM, Nishijima D, Dery O, Bunnett NW. The proliferative and antiapoptotic effects of substance P are facilitated by formation of a beta -arrestin-depend-ent scaffolding complex. Proc Natl Acad Sci USA. 2000;97:11086-11091.CrossRefPubMedGoogle Scholar
  26. 26.
    Miller WE, Maudsley S, Ahn S, Khan KD, Luttrell LM, Lefkowitz RJ. beta-arrestin1 interacts with the catalytic domain of the tyrosine kinase c-SRC. Role of beta-arrestin1-dependent tar-geting of c-SRC in receptor endocytosis. J Biol Chem. 2000;275:11312-11319.CrossRefPubMedGoogle Scholar
  27. 27.
    Barlic J, Andrews JD, Kelvin AA, et al. Regulation of tyrosine kinase activation and granule release through beta-arrestin by CXCRI. Nat Immunol. 2000;1:227-233.CrossRefPubMedGoogle Scholar
  28. 28.
    Imamura T, Huang J, Dalle S, et al. beta -Arrestin-mediated recruitment of the Src family kinase Yes mediates endothelin-1-stimulated glucose transport. J Biol Chem. 2001;276:43663-43667.CrossRefPubMedGoogle Scholar
  29. 29.
    DeFea KA, Zalevsky J, Thoma MS, Dery O, Mullins RD, Bunnett NW. beta-arrestin-dependent endocytosis of proteinase-activated receptor 2 is required for intracellular targeting of activated ERK1/2. J Cell Biol. 2000;148:1267-1281.CrossRefPubMedGoogle Scholar
  30. 30.
    Luttrell LM, Roudabush FL, Choy EW, et al. Activation and targeting of extracellular signal-regulated kinases by beta-arrestin scaffolds. Proc Natl Acad Sci USA. 2001;98:2449-2454.CrossRefPubMedGoogle Scholar
  31. 31.
    Tohgo A, Pierce KL, Choy EW, Lefkowitz RJ, Luttrell LM. Beta-Arrestin scaffolding of the ERK cascade enhances cytosolic ERK activity but inhibits ERK-mediated transcription fol-lowing angiotensin AT1a receptor stimulation. J Biol Chem. 2002;277:9429-9436.CrossRefPubMedGoogle Scholar
  32. 32.
    Tohgo A, Choy EW, Gesty-Palmer D, et al. The stability of the G protein-coupled receptor-beta-arrestin interaction determines the mechanism and functional consequence of ERK acti-vation. J Biol Chem. 2003;278:6258-6267.CrossRefPubMedGoogle Scholar
  33. 33.
    McDonald PH, Chow CW, Miller WE, et al. Beta-arrestin2: A receptor-regulated MAPK scaf-fold for the activation of JNK3. Science. 2000;290:1574-1577.CrossRefPubMedGoogle Scholar
  34. 34.
    Wang Q, Zhao J, Brady AE, et al. Spinophilin blocks arrestin actions in vitro and in vivo at G protein-coupled receptors. Science. 2004;304:1940-1944.CrossRefPubMedGoogle Scholar
  35. 35.
    Shenoy SK, McDonald PH, Kohout TA, Lefkowitz RJ. Regulation of receptor fate by ubiqui- tination of activated beta2-adrenergic receptor and beta-arrestin. Science. 2001;294: 1307-1313.CrossRefPubMedGoogle Scholar
  36. 36.
    Shenoy SK, Lefkowitz RJ. Trafficking patterns of beta-arrestin and G protein-coupled recep-tors determined by the kinetics of beta-arrestin deubiquitination. J Biol Chem. 2003;278:14498-14506.CrossRefPubMedGoogle Scholar
  37. 37.
    Shenoy SK, Lefkowitz RJ. Receptor-specific ubiquitination of beta-arrestin directs assembly and targeting of 7TM receptor-signalosomes. J Biol Chem. 2005;280:15315-15324.CrossRefPubMedGoogle Scholar
  38. 38.
    Cvejic S, Devi LA. Dimerization of the delta opioid receptor: Implication for a role in receptor internalization. J Biol Chem. 1997;272:26959-26964.CrossRefPubMedGoogle Scholar
  39. 39.
    Jordan BA, Devi LA. G-protein-coupled receptor heterodimerization modulates receptor func-tion. Nature. 1999;399:697-700.CrossRefPubMedGoogle Scholar
  40. 40.
    Gomes I, Gupta A, Filipovska J, Szeto HH, Pintar JE, Devi LA. A role for heterodimerization of mu and delta opiate receptors in enhancing morphine analgesia. Proc Natl Acad Sci USA. 2004;101:5135-5139.CrossRefPubMedGoogle Scholar
  41. 41.
    Wang D, Sun X, Bohn LM, Sadee W. Opioid receptor homo- and hetero-dimerization in living cells by quantitative bioluminescence resonance energy transfer. Mol Pharmacol. 2005;67:2173-2184.CrossRefPubMedGoogle Scholar
  42. 42.
    Jordan BA, Trapaidze N, Gomes I, Nivarthi R, Devi LA. Oligomerization of opioid receptors with beta 2-adrenergic receptors: a role in trafficking and mitogen-activated protein kinase acti-vation. Proc Natl Acad Sci USA. 2001;98:343-348.CrossRefPubMedGoogle Scholar
  43. 43.
    Pan YX, Bolan E, Pasternak GW. Dimerization of morphine and orphanin FQ/nociceptin receptors: Generation of a novel opioid receptor subtype. Biochem Biophys Res Commun. 2002;297:659-663.CrossRefPubMedGoogle Scholar
  44. 44.
    Pfeiffer M, Koch T, Schroder H, et al. Homo- and heterodimerization of somatostatin receptor subtypes. Inactivation of sst(3) receptor function by heterodimerization with sst(2A). J Biol Chem. 2001;276:14027-14036.PubMedGoogle Scholar
  45. 45.
    Pfeiffer M, Koch T, Schroder H, Laugsch M, Hollt V, Schulz S. Heterodimerization of soma-tostatin and opioid receptors cross-modulates phosphorylation, internalization, and desensiti-zation. J Biol Chem. 2002;277:19762-19772.CrossRefPubMedGoogle Scholar
  46. 46.
    Pfeiffer M, Kirscht S, Stumm R, et al. Heterodimerization of substance P and mu-opioid recep-tors regulates receptor trafficking and resensitization. J Biol Chem. 2003;278:51630-51637.CrossRefPubMedGoogle Scholar
  47. 47.
    Yu Y, Zhang L, Yin X, Sun H, Uhl GR, Wang JB. Mu opioid receptor phosphorylation, desen-sitization, and ligand efficacy. J Biol Chem. 1997;272:28869-28874.CrossRefPubMedGoogle Scholar
  48. 48.
    Sim-Selley LJ, Selley DE, Vogt LJ, Childers SR, Martin TJ. Chronic heroin self-administra-tion desensitizes mu opioid receptor-activated G-proteins in specific regions of rat brain. J Neurosci. 2000;20:4555-4562.PubMedGoogle Scholar
  49. 49.
    Yabaluri N, Medzihradsky F. Down-regulation of mu-opioid receptor by full but not partial agonists is independent of G protein coupling. Mol Pharmacol. 1997;52:896-902.PubMedGoogle Scholar
  50. 50.
    Arden JR, Segredo V, Wang Z, Lameh J, Sadee W. Phosphorylation and agonist-specific intra-cellular trafficking of an epitope-tagged mu-opioid receptor expressed in HEK 293 cells. J Neurochem. 1995;65:1636-1645.PubMedCrossRefGoogle Scholar
  51. 51.
    Keith DE, Murray SR, Zaki PA, et al. Morphine activates opioid receptors without causing their rapid internalization. J Biol Chem. 1996;271:19021-19024.CrossRefPubMedGoogle Scholar
  52. 52.
    Sternini C, Spann M, Anton B, et al. Agonist-selective endocytosis of mu opioid receptor by neurons in vivo. Proc Natl Acad Sci USA. 1996;93:9241-9246.CrossRefPubMedGoogle Scholar
  53. 53.
    Whistler JL, von Zastrow M. Morphine-activated opioid receptors elude desensitization by beta-arrestin. Proc Natl Acad Sci USA. 1998;95:9914-9919.CrossRefPubMedGoogle Scholar
  54. 54.
    Bohn LM, Dykstra LA, Lefkowitz RJ, Caron MG, Barak LS. Relative opioid efficacy is deter-mined by the complements of the G protein-coupled receptor desensitization machinery. Mol Pharmacol. 2004;66:106-112.CrossRefPubMedGoogle Scholar
  55. 55.
    Koch T, Widera A, Bartzsch K, et al. Receptor endocytosis counteracts the development of opioid tolerance. Mol Pharmacol. 2005;67:280-287.CrossRefPubMedGoogle Scholar
  56. 56.
    Cheng ZJ, Yu QM, Wu YL, Ma L, Pei G. Selective interference of beta-arrestin 1 with kappa and delta but not mu opioid receptor/G protein coupling. J Biol Chem. 1998;273: 24328-24333.CrossRefPubMedGoogle Scholar
  57. 57.
    Gurevich EV, Benovic JL, Gurevich VV. Arrestin2 expression selectively increases during neural differentiation. J Neurochem. 2004;91:1404-1416.CrossRefPubMedGoogle Scholar
  58. 58.
    Terwilliger RZ, Ortiz J, Guitart X, Nestler EJ. Chronic morphine administration increases beta-adrenergic receptor kinase (beta ARK) levels in the rat locus coeruleus. J Neurochem. 1994;63:1983-1986.PubMedGoogle Scholar
  59. 59.
    Fan XL, Zhang JS, Zhang XQ, Yue W, Ma L. Differential regulation of beta-arrestin 1 and beta-arrestin 2 gene expression in rat brain by morphine. Neuroscience. 2003;117:383-389.CrossRefPubMedGoogle Scholar
  60. 60.
    Hurle MA. Changes in the expression of G protein-coupled receptor kinases and beta-arrestin 2 in rat brain during opioid tolerance and supersensitivity. J Neurochem. 2001;77:486-492.CrossRefPubMedGoogle Scholar
  61. 61.
    Diaz A, Pazos A, Florez J, Ayesta FJ, Santana V, Hurle MA. Regulation of mu-opioid recep-tors, G-protein-coupled receptor kinases and beta-arrestin 2 in the rat brain after chronic opi-oid receptor antagonism. Neuroscience. 2002;112:345-353.CrossRefPubMedGoogle Scholar
  62. 62.
    Ferrer-Alcon M, La Harpe R, Garcia-Sevilla JA. Decreased immunodensities of micro-opioid receptors, receptor kinases GRK 2/6 and beta-arrestin-2 in postmortem brains of opiate addicts. Brain Res Mol Brain Res. 2004;121:114-122.CrossRefPubMedGoogle Scholar
  63. 63.
    Haberstock-Debic H, Wein M, Barrot M, et al. Morphine acutely regulates opioid receptor traffick-ing selectively in dendrites of nucleus accumbens neurons. J Neurosci. 2003;23:4324-4332.PubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2008

Authors and Affiliations

  1. 1.Departments of Pharmacology & PsychiatryThe Ohio State University College of Medicine and Public HealthColumbus

Personalised recommendations