Skip to main content

Role of Morphine’s Metabolites in Analgesia: Concepts and Controversies

  • Chapter
  • 2265 Accesses

Abstract

The metabolites of morphine, morphine-6-glucuronide (M6G) and morphine-3-glucuronide (M3G), have been extensively studied for their contribution to clinical effects following administration of morphine. Those contributions to both the desired effect (ie, analgesia) and the undesired effects (eg, nausea, respiratory depression) are the subject of clinical controversy. Much attention and effort have been directed at investigating the properties of M6G because of interest in this substance as a possible substitute for morphine. It exhibits increased potency and the possibility of a better side effect profile compared with morphine, although the reported relative benefits vary widely. M3G is not analgesic, but its role in producing side effects, including the development of clinical tolerance, has been proposed. This review is focused on M6G and the factors that contribute to its clinical utility. The formation and distribution of M6G are presented, as are the analgesic effect and the onset of this effect. The impact of genetics, age, and gender on M6G and its effects is also reviewed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Coffman B, King C, Rios G, Tephly T. The glucuronidation of opioids, other xenobiotics, and androgens by human UGT2B7Y(268) and UGT2B7H(268). Drug Metab Dispos. 1998;26:73-77.

    PubMed  Google Scholar 

  2. Ratka A, Wittwer E, Baker L, Kern S. Pharmacokinetics of morphine, morphine-3-glucuro-nide, and morphine-6-glucuronide in healthy older men and women. Am J Pain Manage. 2004;14:45-55.

    Google Scholar 

  3. Stone A, Mackenzie P, Galetin A, Houston J, Miners J. Isoform selectivity and kinetics of morphine 3- and 6-glucuronidation by human UDP-glucuronosyltransferases: evidence for atypical glucuronidation kinetics by UGT2B7. Drug Metab Dispos. 2003;31:1086-1089.

    Article  PubMed  Google Scholar 

  4. Aasmundstad T, Storset P. Influence of ranitidine on the morphine-3-glucuronide to morphine-6-glucuronide ratio after oral administration of morphine in humans. Hum Exp Toxicol. 1998;17:347-352.

    Article  PubMed  Google Scholar 

  5. Faura C, Collins S, Moore R, McQuay H. Systematic review of factors affecting the ratio of morphine and its major metabolites. Pain. 1998;74:43-53.

    Article  PubMed  Google Scholar 

  6. Antonilli L, Suriano C, Paolone G, Badiani A, Nencini P. Repeated exposures to heroin and/or cadmium alter the rate of formation of morphine glucuronides in the rat. J Pharmacol Exp Ther. 2003;307:651-660.

    Article  PubMed  Google Scholar 

  7. Antonilli L, Semeraro F, Suriano C, Signore L, Nencini P. High levels of morphine-6-glucuronide in street heroin addicts. Psychopharmacology (Berl). 2003;170:200-204.

    Article  Google Scholar 

  8. Lotsch J, Geisslinger G. Morphine-6-glucuronide: an analgesic of the future? Clin Pharmacokinet. 2001;40:485-499.

    Article  PubMed  Google Scholar 

  9. Smith G, Smith M. Morphine-3-glucuronide: evidence to support its putative role in the devel-opment of tolerance to the antinociceptive effects of morphine in the rat. Pain. 1995;62:51-60.

    Article  PubMed  Google Scholar 

  10. Vaughan CW, Connor M. In search of a role for the morphine metabolite morphine-3-glucuro-nide. Anesth Analg. 2003;97:311-312.

    Article  PubMed  Google Scholar 

  11. Andersen G, Christrup L, Sjogren P. Relationships among morphine metabolism, pain and side effects during long-term treatment: an update. J Pain Symptom Manage. 2003;25:74-91.

    Article  PubMed  Google Scholar 

  12. Ashby M, Fleming B, Wood M, Somogyi A. Plasma morphine and glucuronide (M3G and M6G) concentrations in hospice inpatients. J Pain Symptom Manage. 1997;14:157-167.

    Article  PubMed  Google Scholar 

  13. Baker L, Hyrien O, Ratka A. Contributions of morphine-3-glucuronide and morphine-6-glu-curonide to differences in morphine analgesia in humans. Am J Pain Manage. 2003;13:16-28.

    Google Scholar 

  14. Hemstapat K, Monteith G, Smith D, Smith M. Morphine-3-glucuronide’s neuro-excitatory effects are mediated by indirect activation of NMDA receptors: mechanistic studies in embry-onic cultured hippocampal neurones. Anesth Analg. 2003;97:494-505.

    Article  PubMed  Google Scholar 

  15. Okura T, Saito M, Nakanishi M, et al. Different distribution of morphine and morphine-6β-glucuronide after intracerebroventricular injection in rats. Br J Pharmacol. 2003;140: 211-217.

    Article  PubMed  Google Scholar 

  16. Mantione KJ, Goumon Y, Esch T, Stefano GB. Morphine 6B glucuronide: fortuitous morphine metabolite or preferred peripheral regulatory opiate? Med Sci Monit. 2005;11:MS43-MS46.

    PubMed  Google Scholar 

  17. Lotsch J, Skarke C, Darimont J, Schmidt H, Geisslinger G. The transfer half-life of morphine-6-glucuronide from plasma to effect site assessed by pupil size measurement in healthy volunteers. Anesthesiology. 2001;95:1329-1338.

    Article  PubMed  Google Scholar 

  18. Tunblad K, Hammarlund-Udenaes M, Jonsson EN. Influence of probenecid on the delivery of morphine-6-glucuronide to the brain. Eur J Pharm Sci. 2005;24:49-57.

    Article  PubMed  Google Scholar 

  19. Bouw MRXR, Tunblad K, Hammarlund-Udenaes M. Blood-brain barrier transport and brain distribution of morphine-6-glucuronide in relation to the antinociceptive effect in rats—phar-macokinetic/pharmacodynamic modelling. Br J Pharmacol. 2001;134:1796-1804.

    Article  PubMed  Google Scholar 

  20. Bourasset F, Cisternino S, Temsamani J, Scherrmann JM. Evidence for an active transport of morphine-6-β-D-glucuronide but not P-glycoprotein-mediated at the blood-brain barrier. J Neurochem. 2003;86:1564-1567.

    Article  PubMed  Google Scholar 

  21. Lotsch J, Skarke C, Liefhold J, Geisslinger G. Genetic predictors of the clinical response to opioid analgesics. Clin Pharmacokinet. 2004;43:983-1013.

    Article  PubMed  Google Scholar 

  22. Buetler TMW, Wilder-Smith OH, Wilder-Smith CH, Aebi S, Cerny T, Brenneisen R. Analgesic action of i.v. morphine-6-glucuronide in healthy volunteers. Br J Anaesth. 2000;84:97-99.

    PubMed  Google Scholar 

  23. Hanna MHEK, Fung M. Randomized, double-blind study of the analgesic efficacy of mor-phine-6-glucuronide versus morphine sulfate for postoperative pain in major surgery. Anesthesiology. 2005;102:815-821.

    Article  PubMed  Google Scholar 

  24. Motamed C, Mazoit X, Ghanouchi K, et al. Preemptive intravenous morphine-6-glucuronide is ineffective for postoperative pain relief. Anesthesiology. 2000;92:355-360.

    Article  PubMed  Google Scholar 

  25. Langlade A, Carr DB, Serrie A, Silbert BS, Szyfelbein SK, Lipkowski AW. Enhanced potency of intravenous, but not intrathecal, morphine and morphine-6-glucuronide after burn trauma. Life Sci. 1994;54:1699-1709.

    Article  PubMed  Google Scholar 

  26. Grace D, Fee J. A comparison of intrathecal morphine-6-glucuronide and intrathecal morphine sulfate as analgesics for total hip replacement. Anesth Analg. 1996;83:1055-1059.

    Article  PubMed  Google Scholar 

  27. Yamada H, Ishii K, Ishii Y, et al. Formation of highly analgesic morphine-6-glucuronide follow-ing physiologic concentration of morphine in human brain. J Toxicol Sci. 2003;28:395-401.

    Article  PubMed  Google Scholar 

  28. Cann C, Curran J, Milner T, Ho B. Unwanted effects of morphine-6-glucuronide and morphine. Anaesthesia. 2002;57:1200-1203.

    Article  PubMed  Google Scholar 

  29. Romberg R, Olofsen E, Sarton E, Teppema L, Dahan A. Pharmacodynamic effect of morphine-6-glucuronide versus morphine on hypoxic and hypercapnic breathing in healthy volunteers. Anesthesiology. 2003;99:788-798. 616E. Wittwer, S.E. Kern

    Article  PubMed  Google Scholar 

  30. Kilpatrick G, Smith T. Morphine-6-glucuronide: actions and mechanisms. Med Res Rev. 2005;25:521-544.

    Article  PubMed  Google Scholar 

  31. Pasternak G. Incomplete cross tolerance and multiple mu opioid peptide receptors. Trends Pharmacol Sci. 2001;22:67-70.

    Article  PubMed  Google Scholar 

  32. Rossi GC, Pan YX, Brown GP, Pasternak GW. Antisense mapping the MOR-1 opioid recep-tor: evidence for alternative splicing and a novel morphine-6 beta-glucuronide receptor. FEBS Lett. 1995;369:192-196.

    Article  PubMed  Google Scholar 

  33. Rossi GC, Leventhal L, Pan YX, et al. Antisense mapping of MOR-1 in rats: distinguishing between morphine and morphine-6beta-glucuronide antinociception. J Pharmacol Exp Ther. 1997;281:109-114.

    PubMed  Google Scholar 

  34. Zelcer N, Wetering K, Hillebrand M, et al. Mice lacking multidrug resistance protein 3 show altered morphine pharmacokinetics and morphine-6-glucuronide antinociception. Proc Natl Acad Sci USA. 2005;102:7274-7279.

    Article  PubMed  Google Scholar 

  35. Lotsch J, Zimmermann M, Darimont J, et al. Does the A118G polymorphism at the µ-opioid receptor gene protect against morphine-6-glucuronide toxicity? Anesthesiology. 2002;97:814-819.

    Article  PubMed  Google Scholar 

  36. Lotsch J, Skarke C, Grosch S, Darimont J, Schmidt H, Geisslinger G. The polymorphism A118G of the human mu-opioid receptor gene decreased the pupil constrictory effect of mor-phine-6-glucuronide but not that of morphine. Pharmacogenetics. 2002;12:3-9.

    Article  PubMed  Google Scholar 

  37. Romberg R, Olofsen E, Bijl H, et al. Polymorphism of mu-opioid receptor gene (OPRM1: c.118A > G) does not protect against opioid-induced respiratory depression despite reduced analgesic response. Anesthesiology. 2005;102:522-530.

    Article  PubMed  Google Scholar 

  38. Mogil JSSS, Strasburg K, Kaplan L, et al. Melanocortin-1 receptor gene variants affect pain and µ-opioid analgesia in mice and humans. J Med Genet. 2005;42:583-587.

    Article  PubMed  Google Scholar 

  39. Wittwer E, Ratka A, Kern S. The impact of endogenous steroidal hormones on the pharma-cokinetics of oral morphine: a population analysis. Proceedings of the 79th IARS Clinical and Scientific Conference. 79th IARS Clinical and Scientific Conference; March 20-22, 2005; Honolulu, HI. Philadelphia, PA: LWW Publishers; 2004: PR04-R58.

    Google Scholar 

  40. Murthy BR, Pollack GM, Brouwer KL. Contribution of morphine-6-glucuronide to antinocic-eption following intravenous administration of morphine to healthy volunteers. J Clin Pharmacol. 2002;42:569-576.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven E. Kern .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Wittwer, E., Kern, S.E. (2008). Role of Morphine’s Metabolites in Analgesia: Concepts and Controversies. In: Rapaka, R.S., Sadée, W. (eds) Drug Addiction. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76678-2_35

Download citation

Publish with us

Policies and ethics