Skip to main content

Homology Modeling of Opioid Receptor-Ligand Complexes Using Experimental Constraints

  • Chapter
Drug Addiction

Abstract

Opioid receptors interact with a variety of ligands, including endogenous peptides, opiates, and thousands of synthetic compounds with different structural scaffolds. In the absence of experimental structures of opioid receptors, theoretical modeling remains an important tool for structure-function analysis. The combination of experimental studies and modeling approaches allows development of realistic models of ligand-receptor complexes helpful for elucidation of the molecular determinants of ligand affinity and selectivity and for understanding mechanisms of functional agonism or antagonism. In this review we provide a brief critical assessment of the status of such theoretical modeling and describe some common problems and their possible solutions. Currently, there are no reliable theoretical methods to generate the models in a completely automatic fashion. Models of higher accuracy can be produced if homology modeling, based on the rhodopsin X-ray template, is supplemented by experimental structural constraints appropriate for the active or inactive receptor conformations, together with receptor-specific and ligand-specific interactions. The experimental constraints can be derived from mutagenesis and cross-linking studies, correlative replacements of ligand and receptor groups, and incorporation of metal binding sites between residues of receptors or receptors and ligands. This review focuses on the analysis of similarity and differences of the refined homology models of μ, δ, and κ-opioid receptors in active and inactive states, emphasizing the molecular details of interaction of the receptors with some representative peptide and nonpeptide ligands, underlying the multiple modes of binding of small opiates, and the differences in binding modes of agonists and antagonists, and of peptides and alkaloids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kieffer BL. Recent advances in molecular recognition and signal transduction of active pep-tides: receptors for opioid peptides. Cell Mol Neurobiol. 1995;15:615-635.

    PubMed  CAS  Google Scholar 

  2. Waldhoer M, Bartlett SE, Whistler JL. Opioid receptors. Annu Rev Biochem. 2004;73:953-990.

    PubMed  CAS  Google Scholar 

  3. Pasternak GW. Multiple opiate receptors: déjà vu all over again. Neuropharmacology. 2004;47:312-323.

    PubMed  CAS  Google Scholar 

  4. Vaccarino AL, Kastin AJ. Endogenous opiates: 2000. Peptides. 2001;22:2257-2328.

    PubMed  CAS  Google Scholar 

  5. Hruby VJ, Agnes RS. Conformation-activity relationships of opioid peptides with selective activities at opioid receptors. Biopolymers. 1999;51:391-410.

    PubMed  CAS  Google Scholar 

  6. Mansour A, Hoversten MT, Taylor LP, Watson SJ, Akil H. The cloned mu, delta and kappa receptors and their endogenous ligands: evidence for two opioid peptide recognition cores. Brain Res. 1995;700:89-98.

    PubMed  CAS  Google Scholar 

  7. Mosberg HI, Hurst R, Hruby VJ, et al. Conformationally constrained cyclic enkephalin ana-logs with pronounced delta opioid receptor agonist selectivity. Life Sci. 1983;32:2565-2569.

    PubMed  CAS  Google Scholar 

  8. Pelton JT, Gulya K, Hruby VJ, Duckles S, Yamamura HI. Somatostatin analogs with affinity for opiate receptors in rat brain binding assay. Peptides. 1985;6:159-163.

    PubMed  CAS  Google Scholar 

  9. Pelton JT, Kazmierski W, Gulya K, Yamamura HI, Hruby VJ. Design and synthesis of conformationally constrained somatostatin analogues with high potency and specificity for mu opioid receptors. J Med Chem. 1986;29:2370-2375.

    PubMed  CAS  Google Scholar 

  10. Kawasaki AM, Knapp RJ, Walton A, et al. Syntheses, opioid binding affinities, and potencies of dynorphin A analogues substituted in positions 1, 6, 7, 8, and 10. Int J Pept Protein Res. 1993;42:411-419.

    PubMed  CAS  Google Scholar 

  11. Meyer JP, Collins N, Lung FD, et al. Design, synthesis, and biological properties of highly potent cyclic dynorphin A analogues: analogues cyclized between positions 5 and 11. J Med Chem. 1994;37:3910-3917.

    PubMed  CAS  Google Scholar 

  12. Arttamangkul S, Murray TF, DeLander GE, Aldrich JV. Synthesis and opioid activity of con-formationally constrained dynorphin A analogues. 1. Conformational constraint in the “mes-sage” sequence. J Med Chem. 1995;38:2410-2417.

    PubMed  CAS  Google Scholar 

  13. Lung FD, Collins N, Stropova D, et al. Design, synthesis, and biological activities of cyclic lactam peptide analogues of dynorphin A(1-11)-NH2. J Med Chem. 1996;39:1136-1141.

    PubMed  CAS  Google Scholar 

  14. Eguchi M. Recent advances in selective opioid receptor agonists and antagonists. Med Res Rev. 2004;24:182-212.

    PubMed  CAS  Google Scholar 

  15. Okada T, Ernst OP, Palczewski K, Hofmann KP. Activation of rhodopsin: new insights from structural and biochemical studies. Trends Biochem Sci. 2001;26:318-324.

    PubMed  CAS  Google Scholar 

  16. Li J, Edwards PC, Burghammer M, Villa C, Schertler GF. Structure of bovine rhodopsin in a trig-onal crystal form. J Mol Biol. 2004;343:1409-1438.

    PubMed  CAS  Google Scholar 

  17. Flower DR. Modeling G-protein-coupled receptors for drug design. Biochim Biophys Acta. 1999;1422:207-234.

    PubMed  CAS  Google Scholar 

  18. Flippen-Anderson JL, George C, Bertha CM, Rice KC. X-ray structure of potent opioid receptor ligands: etonitazene, cis-(+)-3-methylfentanyl, etorphine, diprenorphine, and buprenorphine. Heterocycles. 1994;39:751-766.

    CAS  Google Scholar 

  19. Urbanczyk-Lipkowska Z, Etter MC, Lipkowski AW, Portoghese PS. The crystal structure of a bimorphinan with highly selective kappa opioid receptor antagonist activity. J Mol Struct. 1987;159:287-295.

    CAS  Google Scholar 

  20. Griffin JF, Larson DL, Portoghese PS. Crystal structures of alpha- and beta-funaltrexamine: conformational requirement of the fumaramate moiety in the irreversible blockage of mu opioid receptors. J Med Chem. 1986;29:778-783.

    PubMed  CAS  Google Scholar 

  21. Calderon SN, Rice KC, Rothman RB, et al. Probes for narcotic receptor mediated phenom-ena. 23. Synthesis, opioid receptor binding, and bioassay of the highly selective delta agonist (+)-4-[(alpha R)-alpha-( (2S,5R)-4-Allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide (SNC 80) and related novel nonpeptide delta opioid receptor ligands. J Med Chem. 1997;40:695-704.

    PubMed  CAS  Google Scholar 

  22. Lavecchia A, Greco G, Novellino E, Vittorio F, Ronsisvalle G. Modeling of kappa-opioid receptor/agonists interactions using pharmacophore-based and docking simulations. J Med Chem. 2000;43:2124-2134.

    PubMed  CAS  Google Scholar 

  23. Doi M, Ishida T, Inoue M. Conformational characteristics of opioid kappa-receptor agonist: crystal structure of (5S,7S,8S)-(-)-N-methyl-N-[7-(1-pyrrolidinyl)-1-oxaspiro[4.5]dec-8- yl]benzeneacetamide (U69,593), and conformational comparison with some kappa-agonists. Chem Pharm Bull (Tokyo). 1990;38:1815-1818.

    CAS  Google Scholar 

  24. Subramanian G, Patrelini MG, Portoghese PS, Ferguson DM. Molecular docking reveals a novel binding site model for fentanyl at the mu-opioid receptor. J Med Chem. 2000;43:381-391.

    PubMed  CAS  Google Scholar 

  25. Mosberg HI, Fowler CB. Development and validation of opioid ligand-receptor interaction models: the structural basis of mu vs delta selectivity. J Pept Res. 2002;60:329-335.

    PubMed  CAS  Google Scholar 

  26. Przydzial MJ, Pogozheva ID, Andrews SM, et al. Roles of residues 3 and 4 in cyclic tetrapep-tide ligand recognition by the ͫ-opioid receptor. J Pept Res. 2005;65:333-342.

    PubMed  CAS  Google Scholar 

  27. Mosberg HI, Omnaas JR, Medzihradsky F, Smith CB. Cyclic, disulfide- and dithioether-con-taining opioid tetrapeptides: development of a ligand with high delta opioid receptor selectivity and affinity. Life Sci. 1988;43:1013-1020.

    PubMed  CAS  Google Scholar 

  28. Mosberg HI, Lomize AL, Wang C, et al. Development of a model for the δ-opioid receptor pharmacophore. 1. Conformationally restricted Tyr1 replacements in the cyclic δ receptor selec-tive tetrapeptide Tyr-c[D-Cys-Phe-D-Pen]OH (JOM-13). J Med Chem. 1994a;37:4371-4383.

    PubMed  CAS  Google Scholar 

  29. Mosberg HI, Omnaas JR, Lomize A, et al. Development of a model for the δ-opioid receptor pharmacophore. 2. Conformationally restricted Phe3 replacements in the cyclic δ-receptor selective tetrapeptide Tyr-c[D-Cys-Phe-D-Pen]OH (JOM-13). J Med Chem. 1994b; 37:4384-4391.

    PubMed  CAS  Google Scholar 

  30. Mosberg HI, Dua RK, Pogozheva ID, Lomize AL. Development of a model for the δ-opioid receptor pharmacophore. 4. Residue 3 dehydrophenyl-alanine analogs of Tyr-c[D-Cys-Phe-D-Pen]OH (JOM-13) confirm required gauche orientation of aromatic sidechain. Biopolymers. 1996;39:287-296.

    PubMed  CAS  Google Scholar 

  31. Lomize AL, Flippen-Anderson JL, George C, Mosberg HI. Conformational analysis of the δ receptor-selective, cyclic opioid peptide,Tyr-c[D-Cys-Phe-D-Pen]OH(JOM-13): comparison of X-ray crystallographic structures, molecular mechanics simulations and 1H NMR data. J Am Chem Soc. 1994;116:429-436.

    CAS  Google Scholar 

  32. Ho JC. Development of a Model for the δ-opioid Receptor Pharmacophore [dissertation]. [thesis]. Ann Arbor, MI: University of Michigan; 1997.

    Google Scholar 

  33. McFadyen IJ, Ho JC, Mosberg HI, Traynor JR. Modifications of the cyclic mu receptor selec-tive tetrapeptide Tyr-c[D-Cys-Phe-D-Pen]NH2 (Et): effects on opioid receptor binding and activation. J Pept Res. 2000;55:255-261.

    PubMed  CAS  Google Scholar 

  34. Fowler CB, III, Pogozheva ID, III, Lomize AL, III, LeVine H, III, Mosberg HI. Complex of an active µ-opioid receptor with cyclic peptide agonist modeled from experimental con-straints. Biochemistry. 2004a;43:15796-15810.

    PubMed  CAS  Google Scholar 

  35. Mosberg HI. Complementarity of delta opioid ligand pharmacophore and receptor models. Biopolymers. 1999;51:426-439.

    PubMed  CAS  Google Scholar 

  36. Law PY, Loh HH. Regulation of opioid receptor activities. J Pharmacol Exp Ther. 1999;289:607-624.

    PubMed  CAS  Google Scholar 

  37. Chaturvedi K, Christoffers KH, Singh K, Howells RD. Structure and regulation of opioid receptors. Biopolymers. 2000;55:334-346.

    PubMed  CAS  Google Scholar 

  38. Chavkin C, McLaughlin JP, Celver JP. Regulation of opioid receptor function by chronic agonist exposure: constitutive activity and desensitization. Mol Pharmacol. 2001;60:20-25.

    PubMed  CAS  Google Scholar 

  39. Coward P, Wada HG, Falk MS, et al. Controlling signaling with a specifically designed Gi-coupled receptor. Proc Natl Acad Sci USA. 1998;95:352-357.

    PubMed  CAS  Google Scholar 

  40. Pogozheva ID, Lomize AL, Mosberg HI. Opioid receptor 3-dimensional structures from dis-tance geometry calculations with hydrogen bonding constraints. Biophys J. 1998;75:612-634.

    PubMed  CAS  Google Scholar 

  41. Surratt CK, Johnson PS, Moriwaki A, et al. Mu opiate receptor: charged transmembrane domain amino acids are critical for agonist recognition and intrinsic activity. J Biol Chem. 1994;269:20548-20553.

    PubMed  CAS  Google Scholar 

  42. Befort K, Tabbara L, Bausch S, Chavkin C, Evans C, Kieffer BL. The conserved aspartate residue in the third putative transmembrane domain of the delta-opioid receptor is not the anionic counterpart for cationic opiate binding but is a constituent of the receptor binding site. Mol Pharmacol. 1996a;49:216-223.

    PubMed  CAS  Google Scholar 

  43. Befort K, Tabbara L, Kling D, Maigret B, Kieffer BL. Role of aromatic transmembrane residues of the delta-opioid receptor in ligand recognition. J Biol Chem. 1996b;271:10161-10168.

    PubMed  CAS  Google Scholar 

  44. Befort K, Zilliox C, Filliol D, Yue S, Kieffer BL. Constitutive activation of the delta opioid receptor by mutations in transmembrane domains III and VII. J Biol Chem. 1999;274:18574-18581.

    PubMed  CAS  Google Scholar 

  45. Bot G, Blake AD, Li S, Reisine T. Mutagenesis of the mouse delta opioid receptor converts (-)-buprenorphine from a partial agonist to an antagonist. J Pharmacol Exp Ther. 1998a; 284:283-290.

    PubMed  CAS  Google Scholar 

  46. Bot G, Blake AD, Li S, Reisine T. Mutagenesis of a single amino acid in the rat mu-opioid receptor discriminates ligand binding. J Neurochem. 1998b;70:358-365.

    PubMed  CAS  Google Scholar 

  47. Spivak CE, Beglan CL, Seidleck BK, et al. Naloxone activation of mu-opioid receptors mutated at a histidine residue lining the opioid binding cavity. Mol Pharmacol. 1997;52:983-992.

    PubMed  CAS  Google Scholar 

  48. Mansour A, Taylor LP, Fine JL, et al. Key residues defining the mu-opioid receptor binding pocket: a site-directed mutagenesis study. J Neurochem. 1997;68:344-353.

    Article  PubMed  CAS  Google Scholar 

  49. Meng F, Ueda Y, Hoversten MT, et al. Creating a functional opioid alkaloid binding site in the orphanin FQ receptor through site-directed mutagenesis. Mol Pharmacol. 1998;53:772-777.

    PubMed  CAS  Google Scholar 

  50. Li JG, Chen C, Yin J, et al. ASP147 in the third transmembrane helix of the rat mu opioid receptor forms ion-pairing with morphine and naltrexone. Life Sci. 1999;65:175-185.

    PubMed  CAS  Google Scholar 

  51. Fukuda K, Terasako K, Kato S, Mori K. Identification of the amino acid residues involved in selective agonist binding in the first extracellular loop of the delta- and mu-opioid receptors. FEBS Lett. 1995;373:177-181.

    PubMed  CAS  Google Scholar 

  52. Minami M, Onogi T, Nakagawa T, et al. DAMGO, a mu-opioid receptor selective ligand, distinguishes between mu-and kappa-opioid receptors at a different region from that for the distinction between mu- and delta-opioid receptors. FEBS Lett. 1995;364:23-27.

    PubMed  CAS  Google Scholar 

  53. Wang JB, Johnson PS, Wu JM, Wang WF, Uhl GR. Human kappa opiate receptor second extracellular loop elevates dynorphin’s affinity for human mu/kappa chimeras. J Biol Chem. 1994;269:25966-25969.

    PubMed  CAS  Google Scholar 

  54. Xue JC, Chen C, Zhu J, et al. Differential binding domains of peptide and non-peptide ligands in the cloned rat kappa opioid receptor. J Biol Chem. 1994;269:30195-30199.

    PubMed  CAS  Google Scholar 

  55. Ferguson DM, Kramer S, Metzger TG, Law PY, Portoghese PS. Isosteric replacement of acidic with neutral residues in extracellular loop-2 of the kappa-opioid receptor does not affect dynorphin A(1-13) affinity and function. J Med Chem. 2000;43:1251-1252.

    PubMed  CAS  Google Scholar 

  56. Bonner G, Meng F, Akil H. Selectivity of mu-opioid receptor determined by interfacial resi-dues near third extracellular loop. Eur J Pharmacol. 2000;403:37-44.

    PubMed  CAS  Google Scholar 

  57. Xu H, Lu YF, Partilla JS, et al. Opioid peptide receptor studies. 11. Involvement of Tyr148, Trp318 and His319 of the rat mu-opioid receptor in binding of mu-selective ligands. Synapse. 1999;32:23-28.

    PubMed  CAS  Google Scholar 

  58. Ulens C, Van Boven M, Daenens P, Tytgat J. Interaction of p-fluorofentanyl on cloned human opioid receptors and exploration of the role of Trp-318 and His-319 in mu-opioid receptor selectivity. J Pharmacol Exp Ther. 2000;294:1024-1033.

    PubMed  CAS  Google Scholar 

  59. Pepin MC, Yue SY, Roberts E, Wahlestedt C, Walker P. Novel “restoration of function” mutagenesis strategy to identify amino acids of the delta-opioid receptor involved in ligand binding. J Biol Chem. 1997;272:9260-9267.

    PubMed  CAS  Google Scholar 

  60. Valiquette M, Vu HK, Yue SY, Wahlestedt C, Walker P. Involvement of Trp-284, Val-296, and Val-297 of the human delta-opioid receptor in binding of delta-selective ligands. J Biol Chem. 1996;271:18789-18796.

    PubMed  CAS  Google Scholar 

  61. Hjorth SA, Thirstrup K, Grandy DK, Schwartz TW. Analysis of selective binding epitopes for the kappa-opioid receptor antagonist nor-binaltorphimine. Mol Pharmacol. 1995;47:1089-1094.

    PubMed  CAS  Google Scholar 

  62. Cavalli A, Babey AM, Loh HH. Altered adenylyl cyclase responsiveness subsequent to point mutations of Asp 128 in the third transmembrane domain of the delta-opioid receptor. Neuroscience. 1999;93:1025-1031.

    PubMed  CAS  Google Scholar 

  63. Li J, Huang P, Chen C, de Riel JK, Weinstein H, Liu-Chen LY. Constitutive activation of the mu opioid receptor by mutation of D3.49(164), but not D3.32(147): D3.49(164) is critical for stabilization of the inactive form of the receptor and for its expression. Biochemistry. 2001;40:12039-12050.

    PubMed  CAS  Google Scholar 

  64. Mouledous L, Topham CM, Moisand C, Mollereau C, Meunier JC. Functional inactivation of the nociceptin receptor by alanine substitution of glutamine 286 at the C terminus of transmembrane segment VI: evidence from a site-directed mutagenesis study of the ORL1 receptor transmembrane-binding domain. Mol Pharmacol. 2000;57:495-502.

    PubMed  CAS  Google Scholar 

  65. DeCaillot FM, Befort K, Filliol D, Yue S, Walker P, Kieffer BL. Opioid receptor random mutagenesis reveals a mechanism for G protein-coupled receptor activation. Nat Struct Biol. 2003;10:629-636.

    PubMed  CAS  Google Scholar 

  66. Spivak CE, Beglan CL, Zollner C, Surratt CK. Beta-Funaltrexamine, a gauge for the recognition site of wildtype and mutant H297Q mu-opioid receptors. Synapse. 2003;49:55-60.

    PubMed  CAS  Google Scholar 

  67. Chen C, Yin J, Riel JK, et al. Determination of the amino acid residue involved in [3H]beta-funaltrexamine covalent binding in the cloned rat mu-opioid receptor. J Biol Chem. 1996;271:21422-21429.

    PubMed  CAS  Google Scholar 

  68. Jones RM, Hjorth SA, Schwartz TW, Portoghese PS. Mutational evidence for a common kappa antagonist binding pocket in the wild-type kappa and mutant mu[K303E] opioid receptors. J Med Chem. 1998;41:4911-4914.

    PubMed  CAS  Google Scholar 

  69. Larson DL, Jones RM, Hjorth SA, Schwartz TW, Portoghese PS. Binding of norbinaltor-phimine (norBNI) congeners to wild-type and mutant mu and kappa opioid receptors: molecular recognition loci for the pharmacophore and address components of kappa antago-nists. J Med Chem. 2000;43:1573-1576.

    PubMed  CAS  Google Scholar 

  70. Fowler CB, III, Pogozheva ID, III, LeVine H, III, Mosberg HI. Refinement of a homology model of the µ-opioid receptor using distance constraints from intrinsic and engineered zinc-binding sites. Biochemistry. 2004b;43:8700-8710.

    PubMed  CAS  Google Scholar 

  71. Metzger TG, Paterlini MG, Portoghese PS, Ferguson DM. An analysis of the conserved residues between halobacterial retinal proteins and G-protein coupled receptors: implications for GPCR modeling. J Chem Inf Comput Sci. 1996;36:857-861.

    PubMed  CAS  Google Scholar 

  72. Strahs D, Weinstein H. Comparative modeling and molecular dynamics studies of the delta, kappa and mu opioid receptors. Protein Eng. 1997;10:1019-1038.

    PubMed  CAS  Google Scholar 

  73. Alkorta I, Loew GH. A 3D model of the delta opioid receptor and ligand-receptor complexes. Protein Eng. 1996;9:573-583.

    PubMed  CAS  Google Scholar 

  74. Subramanian G, Paterlini MG, Larson DL, Portoghese PS, Ferguson DM. Conformational analysis and automated receptor docking of selective arylacetamide-based kappa-opioid agonists. J Med Chem. 1998;41:4777-4789.

    PubMed  CAS  Google Scholar 

  75. Paterlini G, Portoghese PS, Ferguson DM. Molecular simulation of dynorphin A-(1-10) binding to extracellular loop 2 of the kappa-opioid receptor: a model for receptor activation. J Med Chem. 1997;40:3254-3262.

    PubMed  CAS  Google Scholar 

  76. Filizola M, Laakkonen L, Loew GH. 3D modeling, ligand binding and activation studies of the cloned mouse delta, mu, and kappa opioid receptors. Protein Eng. 1999a;12:927-942.

    PubMed  CAS  Google Scholar 

  77. Filizola M, Carteni-Farina M, Perez JJ. Molecular modeling study of the differential ligand-receptor interaction at the mu, delta and kappa opioid receptors. J Comput Aided Mol Des. 1999b;13:397-407.

    PubMed  CAS  Google Scholar 

  78. Pogozheva ID, Lomize AL, Mosberg HI. The transmembrane 7 alpha-bundle of rhodopsin: distance geometry calculations with hydrogen bonding constraints. Biophys J. 1997;72:1963-1985.

    PubMed  CAS  Google Scholar 

  79. Lomize AL, Pogozheva ID, Mosberg HI. Structural organization of G-protein-coupled receptors. J Comput Aided Mol Des. 1999;13:325-353.

    PubMed  CAS  Google Scholar 

  80. Vaidehi N, Floriano WB, Trabanino R, et al. Prediction of structure and function of G pro-tein-coupled receptors. Proc Natl Acad Sci USA. 2002;99:12622-12627.

    PubMed  CAS  Google Scholar 

  81. Shacham S, Topf M, Avisar N, et al. Modeling the 3D structure of GPCRs from sequence. Med Res Rev. 2001;21:472-483.

    PubMed  CAS  Google Scholar 

  82. Shi L, Javitch JA. The binding site of aminergic G protein-coupled receptors: the transmem-brane segments and second extracellular loop. Annu Rev Pharmacol Toxicol. 2002;42:437-467.

    PubMed  CAS  Google Scholar 

  83. Lawson Z, Wheatley M. The third extracellular loop of G-protein-coupled receptors: more than just a linker between 2 important transmembrane helices. Biochem Soc Trans. 2004;32:1048-1050.

    PubMed  CAS  Google Scholar 

  84. Baker D, Sali A. Protein structure prediction and structural genomics. Science. 2001;294:93-96.

    PubMed  CAS  Google Scholar 

  85. Palczewski K, Kumasaka T, Hori T, et al. Crystal structure of rhodopsin: a G protein-coupled receptor. Science. 2000;289:739-745.

    PubMed  CAS  Google Scholar 

  86. Ballesteros JA, Shi L, Javitch JA. Structural mimicry in G protein-coupled receptors: impli-cations of the high-resolution structure of rhodopsin for structure-function analysis of rhodopsin-like receptors. Mol Pharmacol. 2001;60:1-19.

    PubMed  CAS  Google Scholar 

  87. Klabunde T, Hessler G. Drug design strategies for targeting G-protein-coupled receptors. ChemBioChem. 2002;3:928-944.

    PubMed  CAS  Google Scholar 

  88. Bissantz C, Bernard P, Hibert M, Rognan D. Protein-based virtual screening of chemical databases. II. Are homology models of G-protein coupled receptors suitable targets? Proteins. 2003;50:5-25.

    PubMed  CAS  Google Scholar 

  89. Evers A, Klebe G. Ligand-supported homology modeling of g-protein-coupled receptor sites: models sufficient for successful virtual screening. Angew Chem Int Ed Engl. 2004a;43:248-251.

    PubMed  CAS  Google Scholar 

  90. Horn F, Bettler E, Oliveira L, Campagne F, Cohen FE, Vriend G. GPCRDB information system for G protein-coupled receptors. Nucleic Acids Res. 2003;31:294-297.

    PubMed  CAS  Google Scholar 

  91. Huang P, Li J, Chen C, Visiers I, Weinstein H, Liu-Chen LY. Functional role of a conserved motif in TM6 of the rat mu opioid receptor: constitutively active and inactive receptors result from substitutions of Thr6.34(279) with Lys and Asp. Biochemistry. 2001;40:13501-13509.

    PubMed  CAS  Google Scholar 

  92. Sali A, Blundell TL. Comparative protein modeling by satisfaction of spatial restraints. J Mol Biol. 1993;234:779-815.

    PubMed  CAS  Google Scholar 

  93. Fiser A, Sali A. Modeller: generation and refinement of homology-based protein structure models. Methods Enzymol. 2003;374:461-491.

    PubMed  CAS  Google Scholar 

  94. Peitsch MC. ProMod and Swiss-Model: internet-based tools for automated comparative pro-tein modelling. Biochem Soc Trans. 1996;24:274-279.

    PubMed  CAS  Google Scholar 

  95. Lund O, Frimand K, Gorodkin J, et al. Protein distance constraints predicted by neural net-works and probability density functions. Protein Eng. 1997;10:1241-1248.

    PubMed  CAS  Google Scholar 

  96. ShindyalovIN, BournePE. Improving alignments in HM protocol with intermediate sequences. In: Forth Meeting on the Critical Assessment of Techniques for Protein Structure Prediction; 2000: A-92.

    Google Scholar 

  97. Lambert C, Leonard N, De Bolle X, Depiereux E. ESyPred3D: prediction of proteins 3D structures. Bioinformatics. 2002;18:1250-1256.

    PubMed  CAS  Google Scholar 

  98. Kim DE, Chivian D, Baker D. Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res. 2004;32:W526-W531.

    PubMed  CAS  Google Scholar 

  99. Pieper U, Eswar N, Braberg H, et al. MODBASE, a database of annotated comparative pro-tein structure models, and associated resources. Nucleic Acids Res. 2004;32:D217-D222.

    PubMed  CAS  Google Scholar 

  100. Eswar N, John B, Mirkovic N, et al. Tools for comparative protein structure modeling and analysis. Nucleic Acids Res. 2003;31:3375-3380.

    PubMed  CAS  Google Scholar 

  101. John B, Sali A. Comparative protein structure modeling by iterative alignment, model build-ing and model assessment. Nucleic Acids Res. 2003;31:3982-3992.

    PubMed  CAS  Google Scholar 

  102. Riek RP, Rigoutsos I, Novotny J, Graham RM. Non-alphα-helical elements modulate poly-topic membrane protein architecture. J Mol Biol. 2001;306:349-362.

    PubMed  CAS  Google Scholar 

  103. Fiser A, Do RK, Sali A. Modeling of loops in protein structures. Protein Sci. 2000;9:1753-1773.

    PubMed  CAS  Google Scholar 

  104. Chothia C, Lesk AM. Helix movements and the reconstruction of the haem pocket during the evolution of the cytochrome c family. J Mol Biol. 1985;182:151-158.

    PubMed  CAS  Google Scholar 

  105. Meng EC, Bourne HR. Receptor activation: what does the rhodopsin structure tell us? Trends Pharmacol Sci. 2001;22:587-593.

    PubMed  CAS  Google Scholar 

  106. Karnik SS, Gogonea C, Patil S, Saad Y, Takezako T. Activation of G-protein-coupled recep-tors: a common molecular mechanism. Trends Endocrinol Metab. 2003;14:431-437.

    PubMed  CAS  Google Scholar 

  107. Ghanouni P, Steenhuis JJ, Farrens DL, Kobilka BK. Agonist-induced conformational changes in the G-protein-coupling domain of the beta 2 adrenergic receptor. Proc Natl Acad Sci USA. 2001a;98:5997-6002.

    PubMed  CAS  Google Scholar 

  108. Farrens DL, Altenbach C, Yang K, Hubbell WL, Khorana HG. Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science. 1996;274:768-770.

    PubMed  CAS  Google Scholar 

  109. Gether U, Lin S, Ghanouni P, Ballesteros JA, Weinstein H, Kobilka BK. Agonists induce conformational changes in transmembrane domains III and VI of the beta2 adrenoceptor. EMBO J. 1997;16:6737-6747.

    PubMed  CAS  Google Scholar 

  110. Dunham TD, Farrens DL. Conformational changes in rhodopsin: movement of helix F detected by site-specific chemical labeling and fluorescence spectroscopy. J Biol Chem. 1999;274:1683-1690.

    PubMed  CAS  Google Scholar 

  111. Han M, Smith SO, Sakmar TP. Constitutive activation of opsin by mutation of methionine 257 on transmembrane helix 6. Biochemistry. 1998;37:8253-8261.

    PubMed  CAS  Google Scholar 

  112. Cai K, Klein-Seetharaman J, Hwa J, Hubbell WL, Khorana HG. Structure and function in rhodopsin: effects of disulfide cross-links in the cytoplasmic face of rhodopsin on transducin activation and phosphorylation by rhodopsin kinase. Biochemistry. 1999;38:12893-12898.

    PubMed  CAS  Google Scholar 

  113. Ghanouni P, Gryczynski Z, Steenhuis JJ, et al. Functionally different agonists induce distinct conformations in the G protein coupling domain of the beta 2 adrenergic receptor. J Biol Chem. 2001b;276:24433-24436.

    PubMed  CAS  Google Scholar 

  114. Janz JM, Farrens DL. Rhodopsin activation exposes a key hydrophobic binding site for the transducin alpha-subunit C terminus. J Biol Chem. 2004;279:29767-29773.

    PubMed  CAS  Google Scholar 

  115. Hubbell WL, Altenbach C, Hubbell CM, Khorana HG. Rhodopsin structure, dynamics, and activation: a perspective from crystallography, site-directed spin labeling, sulfhydryl reactiv-ity, and disulfide cross-linking. Adv Protein Chem. 2003;63:243-290.

    PubMed  CAS  Google Scholar 

  116. Lin SW, Sakmar TP. Specific tryptophan UV-absorbance changes are probes of the transition of rhodopsin to its active state. Biochemistry. 1996;35:11149-11159.

    PubMed  CAS  Google Scholar 

  117. Altenbach C, Cai K, Khorana HG, Hubbell WL. Structural features and light-dependent changes in the sequence 306-322 extending from helix VII to the palmitoylation sites in rhodopsin: a site-directed spin-labeling study. Biochemistry. 1999a;38:7931-7937.

    PubMed  CAS  Google Scholar 

  118. Altenbach C, Klein-Seetharaman J, Hwa J, Khorana HG, Hubbell WL. Structural features and light-dependent changes in the sequence 59-75 connecting helices I and II in rhodopsin: a site-directed spin-labeling study. Biochemistry. 1999b;38:7945-7949.

    PubMed  CAS  Google Scholar 

  119. Altenbach C, Cai K, Klein-Seetharaman J, Khorana HG, Hubbell WL. Structure and function in rhodopsin: mapping light-dependent changes in distance between residue 65 in helix TM1 and residues in the sequence 306-319 at the cytoplasmic end of helix TM7 and in helix H8. Biochemistry. 2001a;40:15483-15492.

    PubMed  CAS  Google Scholar 

  120. Altenbach C, Klein-Seetharaman J, Cai K, Khorana HG, Hubbell WL. Structure and function in rhodopsin: mapping light-dependent changes in distance between residue 316 in helix 8 and residues in the sequence 60-75, covering the cytoplasmic end of helices TM1 and TM2 and their connection loop CL1. Biochemistry. 2001b;40:15493-15500.

    PubMed  CAS  Google Scholar 

  121. Gether U, Kobilka BK. G protein-coupled receptors. II. Mechanism of agonist activation. J Biol Chem. 1998;273:17979-17982.

    PubMed  CAS  Google Scholar 

  122. Devanathan S, Yao Z, Salamon Z, Kobilka B, Tollin G. Plasmon-waveguide resonance stud-ies of ligand binding to the human beta 2-adrenergic receptor. Biochemistry. 2004;43:3280-3288.

    PubMed  CAS  Google Scholar 

  123. Salamon Z, Cowell S, Varga E, Yamamura HI, Hruby VJ, Tollin G. Plasmon resonance stud-ies of agonist/antagonist binding to the human delta-opioid receptor: new structural insights into receptor-ligand interactions. Biophys J. 2000;79:2463-2474.

    PubMed  CAS  Google Scholar 

  124. Salamon Z, Hruby VJ, Tollin G, Cowell S. Binding of agonists, antagonists and inverse ago-nists to the human delta-opioid receptor produces distinctly different conformational states dis-tinguishable by plasmon-waveguide resonance spectroscopy. J Pept Res. 2002;60:322-328.

    PubMed  CAS  Google Scholar 

  125. Alves ID, Ciano KA, Boguslavski V, et al. Selectivity, cooperativity, and reciprocity in the interactions between the delta-opioid receptor, its ligands, and G-proteins. J Biol Chem. 2004a;279:44673-44682.

    PubMed  CAS  Google Scholar 

  126. Alves ID, Cowell SM, Salamon Z, Devanathan S, Tollin G, Hruby VJ. Different structural states of the proteolipid membrane are produced by ligand binding to the human delta-opioid receptor as shown by plasmon-waveguide resonance spectroscopy. Mol Pharmacol. 2004b; 65:1248-1257.

    PubMed  CAS  Google Scholar 

  127. Tramontano A, Morea V. Exploiting evolutionary relationships for predicting protein struc-tures. Biotechnol Bioeng. 2003;84:756-762.

    PubMed  CAS  Google Scholar 

  128. Bates PA, Kelley LA, MacCallum RM, Sternberg MJ. Enhancement of protein modeling by human intervention in applying the automatic programs 3D-JIGSAW and 3D-PSSM. Proteins. 2001;39-46.

    Google Scholar 

  129. Li X, Jacobson MP, Friesner RA. High-resolution prediction of protein helix positions and orientations. Proteins. 2004;55:368-382.

    PubMed  CAS  Google Scholar 

  130. Evers A, Gohlke H, Klebe G. Ligand-supported homology modelling of protein binding-sites using knowledge-based potentials. J Mol Biol. 2003;334:327-345.

    PubMed  CAS  Google Scholar 

  131. Ward SD, Hamdan FF, Bloodworth LM, Wess J. Conformational changes that occur during M3 muscarinic acetylcholine receptor activation probed by the use of an in situ disulfide cross-linking strategy. J Biol Chem. 2002;277:2247-2257.

    PubMed  CAS  Google Scholar 

  132. Swaminath G, Lee TW, Kobilka B. Identification of an allosteric binding site for Zn2+ on the beta2 adrenergic receptor. J Biol Chem. 2003;278:352-356.

    PubMed  CAS  Google Scholar 

  133. Elling CE, Thirstrup K, Holst B, Schwartz TW. Conversion of agonist site to metal-ion chela-tor site in the beta(2)-adrenergic receptor. Proc Natl Acad Sci USA. 1999;96:12322-12327.

    PubMed  CAS  Google Scholar 

  134. Holst B, Elling CE, Schwartz TW. Partial agonism through a zinc-ion switch constructed between transmembrane domains III and VII in the tachykinin NK(1) receptor. Mol Pharmacol. 2000;58:263-270.

    PubMed  CAS  Google Scholar 

  135. Lagerstrom MC, Klovins J, Fredriksson R, et al. High affinity agonistic metal ion binding sites within the melanocortin 4 receptor illustrate conformational change of transmembrane region 3. J Biol Chem. 2003;278:51521-51526.

    PubMed  Google Scholar 

  136. Ewing TJ, Makino S, Skillman AG, Kuntz ID. DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases. J Comput Aided Mol Des. 2001;15:411-428.

    PubMed  CAS  Google Scholar 

  137. Jones G, Willett P, Glen RC, Leach AR, Taylor R. Development and validation of a genetic algorithm for flexible docking. J Mol Biol. 1997;267:727-748.

    PubMed  CAS  Google Scholar 

  138. Rarey M, Wefing S, Lengauer T. Placement of medium-sized molecular fragments into active sites of proteins. J Comput Aided Mol Des. 1996;10:41-54.

    PubMed  CAS  Google Scholar 

  139. Taylor RD, Jewsbury PJ, Essex JW. FDS: flexible ligand and receptor docking with a contin-uum solvent model and soft-core energy function. J Comput Chem. 2003;24:1637-1656.

    PubMed  CAS  Google Scholar 

  140. Halgren TA, Murphy RB, Friesner RA, et al. Glide: a new approach for rapid, accurate dock-ing and scoring. 2. Enrichment factors in database screening. J Med Chem. 2004;47:1750-1759.

    PubMed  CAS  Google Scholar 

  141. Venkatachalam CM, Jiang X, Oldfield T, Waldman M. LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites. J Mol Graph Model. 2003;21:289-307.

    PubMed  CAS  Google Scholar 

  142. Cavasotto CN, Abagyan RA. Protein flexibility in ligand docking and virtual screening to protein kinases. J Mol Biol. 2004;337:209-225.

    PubMed  CAS  Google Scholar 

  143. Perola E, Walters WP, Charifson PS. A detailed comparison of current docking and scoring methods on systems of pharmaceutical relevance. Proteins. 2004;56:235-249.

    PubMed  CAS  Google Scholar 

  144. Halperin I, Ma B, Wolfson H, Nussinov R. Principles of docking: an overview of search algorithms and a guide to scoring functions. Proteins. 2002;47:409-443.

    PubMed  CAS  Google Scholar 

  145. Kontoyianni M, McClellan LM, Sokol GS. Evaluation of docking performance: comparative data on docking algorithms. J Med Chem. 2004;47:558-565.

    PubMed  CAS  Google Scholar 

  146. Carlson HA, McCammon JA. Accommodating protein flexibility in computational drug design. Mol Pharmacol. 2000;57:213-218.

    PubMed  CAS  Google Scholar 

  147. Evers A, Klebe G. Successful virtual screening for a submicromolar antagonist of the neuro-kinin-1 receptor based on a ligand-supported homology model. J Med Chem. 2004b;47:5381-5392.

    PubMed  CAS  Google Scholar 

  148. Heyl DL, Mosberg HI. Modification of the Phe3 aromatic moiety in delta receptor-selective dermorphin/deltorphin-related tetrapeptides: effects on opioid receptor binding. Int J Pept Protein Res. 1992;39:450-457.

    Article  PubMed  CAS  Google Scholar 

  149. Sebastian A, Bidlack JM, Jiang Q, et al. 14 beta-[(p-nitrocinnamoyl)amino]morphinones, 14 beta-[(p-nitrocinnamoyl)amino]-7,8-dihydromorphinones, and their codeinone analogues: synthesis and receptor activity. J Med Chem. 1993;36:3154-3160.

    PubMed  CAS  Google Scholar 

  150. Sagara T, Egashira H, Okamura M, Fujii I, Shimohigashi Y, Kanematsu K. Ligand recogni-tion in mu opioid receptor: experimentally based modeling of mu opioid receptor binding sites and their testing by ligand docking. Bioorg Med Chem. 1996;4:2151-2166.

    PubMed  CAS  Google Scholar 

  151. Chabre M, Breton J. Orientation of aromatic residues in rhodopsin: rotation of one tryp-tophan upon the meta I to meta II transition after illumination. Photochem Photobiol. 1979;30:295-299.

    PubMed  CAS  Google Scholar 

  152. Baneres JL, Martin A, Hullot P, Girard JP, Rossi JC, Parello J. Structure-based analysis of GPCR function: conformational adaptation of both agonist and receptor upon leukotriene B4 binding to recombinant BLT1. J Mol Biol. 2003;329:801-814.

    PubMed  CAS  Google Scholar 

  153. Ruprecht JJ, Mielke T, Vogel R, Villa C, Schertler GF. Electron crystallography reveals the structure of metarhodopsin I. EMBO J. 2004;23:3609-3620.

    PubMed  CAS  Google Scholar 

  154. Sammes PG, Taylor JB. Opioid receptors. In: Hansch C, ed. Comprehensive Medicinal Chemistry Oxford, UK: Pergamon Press; 1990:805-844.

    Google Scholar 

  155. Schiller PW, Weltrowska G, Nguyen TM-D, Lemieux C, Chung NN, Lu Y. Conversion of µ-, δ- and ͫ-receptor selective opioid peptide agonists into µ-, δ-, and ͫ-receptor selective antagonists. Life Sci. 2003;73:691-698.

    PubMed  CAS  Google Scholar 

  156. Huang P, Kim S, Loew G. Development of a common 3D pharmacophore for delta-opioid recognition from peptides and non-peptides using a novel computer program. J Comput Aided Mol Des. 1997;11:21-28.

    PubMed  CAS  Google Scholar 

  157. Filizola M, Villar HO, Loew GH. Molecular determinants of non-specific recognition of delta, mu, and kappa opioid receptors. Bioorg Med Chem. 2001a;9:69-76.

    PubMed  CAS  Google Scholar 

  158. Filizola M, Villar HO, Loew GH. Differentiation of delta, mu, and kappa opioid receptor agonists based on pharmacophore development and computed physicochemical properties. J Comput Aided Mol Des. 2001b;15:297-307.

    PubMed  CAS  Google Scholar 

  159. Bernard D, Jr, Coop A, Jr, MacKerell AD, Jr. 2D conformationally sampled pharmacophore: a ligand-based pharmacophore to differentiate delta opioid agonists from antagonists. J Am Chem Soc. 2003;125:3101-3107.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Pogozheva, I.D., Przydzial, M.J., Mosberg, H.I. (2008). Homology Modeling of Opioid Receptor-Ligand Complexes Using Experimental Constraints. In: Rapaka, R.S., Sadée, W. (eds) Drug Addiction. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76678-2_33

Download citation

Publish with us

Policies and ethics