Skip to main content

Computational Methods in Drug Design: Modeling G Protein-Coupled Receptor Monomers, Dimers, and Oligomers

  • Chapter
  • 2286 Accesses

Abstract

G protein-coupled receptors (GPCRs) are membrane proteins that serve as very important links through which cellular signal transduction mechanisms are activated. Many vital physiological events such as sensory perception, immune defense, cell communication, chemotaxis, and neurotransmission are mediated by GPCRs. Not surprisingly, GPCRs are major targets for drug development today. Most modeling studies in the GPCR field have focused upon the creation of a model of a single GPCR (ie, a GPCR monomer) based upon the crystal structure of the Class A GPCR, rhodopsin. However, the emerging concept of GPCR dimerization has challenged our notions of the monomeric GPCR as functional unit. Recent work has shown not only that many GPCRs exist as homo- and heterodimers but also that GPCR oligomeric assembly may have important functional roles. This review focuses first on methodology for the creation of monomeric GPCR models. Special emphasis is given to the identification of localized regions where the structure of a GPCR may diverge from that of bovine rhodopsin. The review then focuses on GPCR dimers and oligomers and the bioinformatics methods available for identifying homo- and heterodimer interfaces.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Takeda S, Kadowaki S, Haga T, Takaesu H, Mitaku S. Identification of G protein-coupled receptor genes from the human genome sequence. FEBS Lett. 2002;520:97-101.

    PubMed  Google Scholar 

  2. Kolakowski LF, Jr. GCRDb: a G-protein-coupled receptor database. Receptors Channels. 1994;2:1-7.

    PubMed  Google Scholar 

  3. Bockaert J, Pin JP. Molecular tinkering of G protein-coupled receptors: an evolutionary success. EMBO J. 1999;18:1723-1729.

    PubMed  Google Scholar 

  4. Fredriksson R, Lagerstrom MC, Lundin LG, Schioth HB. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol. 2003;63:1256-1272.

    PubMed  Google Scholar 

  5. Eilers M, Hornak V, Smith SO, Konopka JB. Comparison of class A and D G protein-coupled receptors: common features in structure and activation. Biochemistry. 2005;44:8959-8975.

    PubMed  Google Scholar 

  6. Ballesteros JA, Weinstein H. Integrated methods for the construction of three dimensional models and computational probing of structure function relations in G protein-coupled recep-tors. In: Sealfon SC, Conn PM, eds. Methods in Neurosciences. vol. 25. San Diego, CA: Academic Press; 1995:366-428.

    Google Scholar 

  7. Palczewski K, Kumasaka T, Hori T, et al. Crystal structure of rhodopsin: a G protein-coupled receptor. Science. 2000;289:739-745.

    PubMed  Google Scholar 

  8. Li J, Edwards PC, Burghammer M, Villa C, Schertler GF. Structure of bovine rhodopsin in a trigonal crystal form. J Mol Biol. 2004;343:1409-1438.

    PubMed  Google Scholar 

  9. Okada T, Fujiyoshi Y, Silow M, Navarro J, Landau EM, Shichida Y. Functional role of internal water molecules in rhodopsin revealed by X-ray crystallography. Proc Natl Acad Sci USA. 2002;99:5982-5987.

    PubMed  Google Scholar 

  10. Okada T, Sugihara M, Bondar AN, Elstner M, Entel P, Buss V. The retinal conformation and its environment in rhodopsin in light of a new 2.2 A crystal structure. J Mol Biol. 2004;342:571-583.

    PubMed  Google Scholar 

  11. Wess J. G-protein-coupled receptors: molecular mechanisms involved in receptor activation and selectivity of G-protein recognition. FASEB J. 1997;11:346-354.

    PubMed  Google Scholar 

  12. Iiri T, Farfel Z, Bourne HR. G-protein diseases furnish a model for the turn-on switch. Nature. 1998;394:35-38.

    PubMed  Google Scholar 

  13. Menon ST, Han M, Sakmar TP. Rhodopsin: structural basis of molecular physiology. Physiol Rev. 2001;81:1659-1688.

    PubMed  Google Scholar 

  14. Lewis JW, Kliger DS. Photointermediates of visual pigments. J Bioenerg Biomembr. 1992;24:201-210.

    PubMed  Google Scholar 

  15. Schertler GF. Structure of rhodopsin and the metarhodopsin I photointermediate. Curr Opin Struct Biol. 2005;15:408-415.

    PubMed  Google Scholar 

  16. Bramblett RD, Panu AM, Ballesteros JA, Reggio PH. Construction of a 3D model of the cannabinoid CB1 receptor: determination of helix ends and helix orientation. Life Sci. 1995;56:1971-1982.

    PubMed  Google Scholar 

  17. Ballesteros JA, Weinstein H. Analysis and refinement of criteria for predicting the structure and relative orientations of transmembranal helical domains. Biophys J. 1992;62:107-109.

    PubMed  Google Scholar 

  18. Marti-Renom MA, Stuart AC, Fiser A, Sanchez R, Melo F, Sali A. Comparative protein struc-ture modeling of genes and genomes. Annu Rev Biophys Biomol Struct. 2000;29:291-325.

    PubMed  Google Scholar 

  19. Sali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993;234:779-815.

    PubMed  Google Scholar 

  20. Fiser A, Do RK, Sali A. Modeling of loops in protein structures. Protein Sci. 2000;9:1753-1773.

    PubMed  Google Scholar 

  21. Ballesteros JA, Shi L, Javitch JA. Structural mimicry in G protein-coupled receptors: impli-cations of the high-resolution structure of rhodopsin for structure-function analysis of rho-dopsin-like receptors. Mol Pharmacol. 2001;60:1-19.

    PubMed  Google Scholar 

  22. Zhang R, Hurst DP, Barnett-Norris J, Reggio PH, Song ZH. Cysteine 2.59(89) in the second transmembrane domain of human CB2 receptor is accessible within the ligand binding crevice: evidence for possible CB2 deviation from a rhodopsin template. Mol Pharmacol. 2005;68:69-83.

    PubMed  Google Scholar 

  23. Ballesteros JA, Deupi X, Olivella M, Haaksma EE, Pardo L. Serine and threonine residues bend alpha-helices in the chi(1) = g(−) conformation. Biophys J. 2000;79:2754-2760.

    PubMed  Google Scholar 

  24. Guarnieri F, Weinstein H. Conformational memories and the exploration of biologically relevant peptide conformations: an illustration for the gonadotropin-releasing hormone. J Am Chem Soc. 1996;118:5580-5589.

    Google Scholar 

  25. Shi L, Liapakis G, Xu R, Guarnieri F, Ballesteros JA, Javitch JA. Beta 2 adrenergic receptor activation. Modulation of the proline kink in transmembrane 6 by a rotamer toggle switch. J Biol Chem. 2002;277:40989-40996.

    PubMed  Google Scholar 

  26. Barnett-Norris J, Hurst DP, Buehner K, Ballesteros JA, Guarnieri F, Reggio PH. Agonist alkyl tail interaction with cannabinoid CB1 receptor V6.43/I6.46 groove induces a Helix 6 active conformation. Int J Quantum Chem. 2002;88:76-86.

    Google Scholar 

  27. Eisenberg D, Weiss RM, Terwilliger TC. The hydrophobic moment detects periodicity in protein hydrophobicity. Proc Natl Acad Sci USA. 1984;81:140-144.

    PubMed  Google Scholar 

  28. Komiya H, Yeates TO, Rees DC, Allen JP, Feher G. Structure of the reaction center from Rhodobacter sphaeroides R-26 and 2.4.1: symmetry relations and sequence comparisons between different species. Proc Natl Acad Sci USA. 1988;85:9012-9016.

    PubMed  Google Scholar 

  29. Donnelly D, Johnson MS, Blundell TL, Saunders J. An analysis of the periodicity of conserved residues in sequence alignments of G-protein coupled receptors: implications for the three-dimensional structure. FEBS Lett. 1989;251:109-116.

    PubMed  Google Scholar 

  30. Donnelly D, Overington JP, Ruffle SV, Nugent JH, Blundell TL. Modeling alpha-helical transmembrane domains: the calculation and use of substitution tables for lipid-facing residues. Protein Sci. 1993;2:55-70.

    PubMed  Google Scholar 

  31. Baldwin J. The probable arrangement of the helices in G protein-coupled receptors. EMBO J. 1993;12:1693-1703.

    PubMed  Google Scholar 

  32. Schertler GF, Villa C, Henderson R. Projection structure of rhodopsin. Nature. 1993;362:770-772.

    PubMed  Google Scholar 

  33. Trabanino RJ, 3rd, Hall SE, 3rd, Vaidehi N, 3rd, Floriano WB, 3rd, Kam VW, 3rd, Goddard WA, 3rd. First principles predictions of the structure and function of g-protein-coupled receptors: validation for bovine rhodopsin. Biophys J. 2004;86:1904-1921.

    PubMed  Google Scholar 

  34. Kalani MY, Vaidehi N, Hall SE, et al. The predicted 3D structure of the human D2 dopamine receptor and the binding site and binding affinities for agonists and antagonists. Proc Natl Acad Sci USA. 2004;101:3815-3820.

    PubMed  Google Scholar 

  35. Freddolino PL, Kalani MY, Vaidehi N, et al. Predicted 3D structure for the human beta 2 adrenergic receptor and its binding site for agonists and antagonists. Proc Natl Acad Sci USA. 2004;101:2736-2741.

    PubMed  Google Scholar 

  36. Ruprecht JJ, Mielke T, Vogel R, Villa C, Schertler GF. Electron crystallography reveals the structure of metarhodopsin I. EMBO J. 2004;23:3609-3620.

    PubMed  Google Scholar 

  37. Gether U, Kobilka BK. G protein-coupled receptors, II: mechanism of agonist activation. J Biol Chem. 1998;273:17979-17982.

    PubMed  Google Scholar 

  38. Arnis S, Fahmy K, Hofmann KP, Sakmar TP. A conserved carboxylic acid group mediates light-dependent proton uptake and signaling by rhodopsin. J Biol Chem. 1994;269: 23879-23881.

    PubMed  Google Scholar 

  39. Ghanouni P, Steenhuis JJ, Farrens DL, Kobilka BK. Agonist-induced conformational changes in the G-protein-coupling domain of the beta 2 adrenergic receptor. Proc Natl Acad Sci USA. 2001;98:5997-6002.

    PubMed  Google Scholar 

  40. Farrens D, Altenbach C, Ynag K, Hubbell W, Khorana H. Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science. 1996;274:768-770.

    PubMed  Google Scholar 

  41. Gether U, Lin S, Ghanouni P, Ballesteros J, Weinstein H, Kobilka B. Agonists induce con-formational changes in transmembrane domains III and VI of the beta2 adrenoceptor. EMBO J. 1997;16:6737-6747.

    PubMed  Google Scholar 

  42. Ballesteros J, Jensen A, Liapakis G, et al. Activation of the b2 adrenergic receptor involves disruption of an ionic link between the cytoplasmic ends of transmembrane segments 3 and 6. J Biol Chem. 2001;276:29171-29177.

    PubMed  Google Scholar 

  43. Visiers I, Ebersole BJ, Dracheva S, Ballesteros J, Sealfon SC, Weinstein H. Structural motifs as functional microdomains in G-protein-coupled receptors: energetic considerations in the mechanism of activation of the serotonin 5-HT2a receptor by disruption of the ionic lock of the arginine cage. Int J Quantum Chem. 2002;88:65-75.

    Google Scholar 

  44. Jensen AD, Guarnieri F, Rasmussen SG, Asmar F, Ballesteros JA, Gether U. Agonist-induced conformational changes at the cytoplasmic side of transmembrane segment 6 in the beta 2 adrenergic receptor mapped by site-selective fluorescent labeling. J Biol Chem. 2001;276:9279-9290.

    PubMed  Google Scholar 

  45. McAllister SD, Hurst DP, Barnett-Norris J, Lynch D, Reggio PH, Abood ME. Structural mimicry in class A G protein-coupled receptor rotamer toggle switches: the importance of the F3.36(201)/W6.48(357) interaction in cannabinoid CB1 receptor activation. J Biol Chem. 2004;279:48024-48037.

    PubMed  Google Scholar 

  46. Gouldson PR, Kidley NJ, Bywater RP, et al. Toward the active conformations of rhodopsin and the beta2-adrenergic receptor. Proteins. 2004;56:67-84.

    PubMed  Google Scholar 

  47. Klein-Seetharaman J, Yanamala NV, Javeed F, et al. Differential dynamics in the G protein-coupled receptor rhodopsin revealed by solution NMR. Proc Natl Acad Sci USA. 2004;101:3409-3413.

    PubMed  Google Scholar 

  48. Borhan B, Souto ML, Imai H, Shichida Y, Nakanishi K. Movement of retinal along the vis-ual transduction path. Science. 2000;288:2209-2212.

    PubMed  Google Scholar 

  49. Lin S, Sakmar T. Specific tryptophan UV-absorbance changes are probes of the transition of rhodopsin to its active state. Biochemistry. 1996;35:11149-11159.

    PubMed  Google Scholar 

  50. Singh R, Hurst DP, Barnett-Norris J, Lynch DL, Reggio PH, Guarnieri F. Activation of the cannabinoid CB1 receptor may involve a W6.48/F3.36 rotamer toggle switch. J Pept Res. 2002;60:357-370.

    PubMed  Google Scholar 

  51. Ghanouni P, Gryczynski Z, Steenhuis JJ, et al. Functionally different agonists induce distinct conformations in the G protein coupling domain of the beta 2 adrenergic receptor. J Biol Chem. 2001;276:24433-24436.

    PubMed  Google Scholar 

  52. Mukhopadhyay S, Howlett AC. Chemically distinct ligands promote differential CB1 can-nabinoid receptor-Gi protein interactions. Mol Pharmacol. 2005;67:2016-2024.

    PubMed  Google Scholar 

  53. Paterlini MG. The function of the extracellular regions in opioid receptor binding: insights from computational biology. Curr Top Med Chem. 2005;5:357-367.

    PubMed  Google Scholar 

  54. Tosatto SC, Bindewald E, Hesser J, Manner R. A divide and conquer approach to fast loop modeling. Protein Eng. 2002;15:279-286.

    PubMed  Google Scholar 

  55. Xiang Z, Soto CS, Honig B. Evaluating conformational free energies: the colony energy and its application to the problem of loop prediction. Proc Natl Acad Sci USA. 2002;99:7432-7437.

    PubMed  Google Scholar 

  56. Mehler EL, Periole X, Hassan SA, Weinstein H. Key issues in the computational simulation of GPCR function: representation of loop domains. J Comput Aided Mol Des. 2002;16:841-853.

    PubMed  Google Scholar 

  57. Hassan SA, Mehler EL, Weinstein H. Structure calculation of protein segments connecting domains with defined secondary structure: a simulated annealing Monte Carlo combined with biased scaled collective variables technique. In: Schlick T, Gan HH, eds. Computational Methods for Macromolecules: Challenges and Applications. Vol 24. New York, NY: Springer Verlag; 2002:197-231.

    Google Scholar 

  58. Hassan SA, Guarnieri F, Mehler EL. A general treatment of solvent effects based on screened coulomb potentials. J Phys Chem B. 2000;104:6478-6489.

    Google Scholar 

  59. Chabre M, le Maire M. Monomeric G-protein-coupled receptor as a functional unit. Biochemistry. 2005;44:9395-9403.

    PubMed  Google Scholar 

  60. Terrillon S, Bouvier M. Roles of G-protein-coupled receptor dimerization. EMBO Rep. 2004;5:30-34.

    PubMed  Google Scholar 

  61. Bulenger S, Marullo S, Bouvier M. Emerging role of homo- and heterodimerization in G-protein-coupled receptor biosynthesis and maturation. Trends Pharmacol Sci. 2005;26:131-137.

    PubMed  Google Scholar 

  62. Reddy PS, Corley RB. Assembly, sorting, and exit of oligomeric proteins from the endoplas-mic reticulum. Bioessays. 1998;20:546-554.

    PubMed  Google Scholar 

  63. Marshall FH, Jones KA, Kaupmann K, Bettler B. GABAB receptors—the first 7TM het-erodimers. Trends Pharmacol Sci. 1999;20:396-399.

    PubMed  Google Scholar 

  64. Margeta-Mitrovic M, Jan YN, Jan LY. A trafficking checkpoint controls GABA(B) receptor het-erodimerization. Neuron. 2000;27:97-106.

    PubMed  Google Scholar 

  65. Milligan G. Oligomerisation of G-protein-coupled receptors. J Cell Sci. 2001;114:1265-1271.

    PubMed  Google Scholar 

  66. Roess DA, Smith SM. Self-association and raft localization of functional luteinizing hor-mone receptors. Biol Reprod. 2003;69:1765-1770.

    PubMed  Google Scholar 

  67. Latif R, Graves P, Davies TF. Ligand-dependent inhibition of oligomerization at the human thyrotropin receptor. J Biol Chem. 2002;277:45059-45067.

    PubMed  Google Scholar 

  68. Terrillon S, Durroux T, Mouillac B, et al. Oxytocin and vasopressin V1a and V2 receptors form constitutive homo- and heterodimers during biosynthesis. Mol Endocrinol. 2003;17:677-691.

    PubMed  Google Scholar 

  69. Fotiadis D, Liang Y, Filipek S, Saperstein DA, Engel A, Palczewski K. Atomic-force micro-scopy: rhodopsin dimers in native disc membranes. Nature. 2003;421:127-128.

    PubMed  Google Scholar 

  70. Liang Y, Fotiadis D, Filipek S, Saperstein DA, Palczewski K, Engel A. Organization of the G protein-coupled receptors rhodopsin and opsin in native membranes. J Biol Chem. 2003;278:21655-21662.

    PubMed  Google Scholar 

  71. Jordan BA, Devi LA. G-protein-coupled receptor heterodimerization modulates receptor function. Nature. 1999;399:697-700.

    PubMed  Google Scholar 

  72. Galvez T, Duthey B, Kniazeff J, et al. Allosteric interactions between GB1 and GB2 subunits are required for optimal GABA(B) receptor function. EMBO J. 2001;20:2152-2159.

    PubMed  Google Scholar 

  73. Gomes I, Jordan BA, Gupta A, Trapaidze N, Nagy V, Devi LA. Heterodimerization of mu and delta opioid receptors: a role in opiate synergy. J Neurosci. 2000;20:RC110.

    PubMed  Google Scholar 

  74. Maggio R, Barbier P, Colelli A, Salvadori F, Demontis G, Corsini GU. G protein-linked receptors: pharmacological evidence for the formation of heterodimers. J Pharmacol Exp Ther. 1999;291:251-257.

    PubMed  Google Scholar 

  75. Rocheville M, Lange DC, Kumar U, Patel SC, Patel RC, Patel YC. Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity. Science. 2000;288:154-157.

    PubMed  Google Scholar 

  76. Franco R, Ferre S, Agnati L, et al. Evidence for adenosine/dopamine receptor interactions: indications for heteromerization. Neuropsychopharmacology. 2000;23:S50-S59.

    PubMed  Google Scholar 

  77. Nelson G, Chandrashekar J, Hoon MA, et al. An amino-acid taste receptor. Nature. 2002;416:199-202.

    PubMed  Google Scholar 

  78. Nelson G, Hoon MA, Chandrashekar J, Zhang Y, Ryba NJ, Zuker CS. Mammalian sweet taste receptors. Cell. 2001;106:381-390.

    PubMed  Google Scholar 

  79. Mellado M, Rodriguez-Frade JM, Vila-Coro AJ, et al. Chemokine receptor homo- or het-erodimerization activates distinct signaling pathways. EMBO J. 2001;20:2497-2507.

    PubMed  Google Scholar 

  80. AbdAlla S, Lother H, Quitterer U. AT1-receptor heterodimers show enhanced G-protein activation and altered receptor sequestration. Nature. 2000;407:94-98.

    PubMed  Google Scholar 

  81. Gines S, Hillion J, Torvinen M, et al. Dopamine D1 and adenosine A1 receptors form func-tionally interacting heteromeric complexes. Proc Natl Acad Sci USA. 2000;97:8606-8611.

    PubMed  Google Scholar 

  82. Pfeiffer M, Koch T, Schroder H, et al. Homo- and heterodimerization of somatostatin recep-tor subtypes. Inactivation of sst(3) receptor function by heterodimerization with sst(2A). J Biol Chem. 2001;276:14027-14036.

    PubMed  Google Scholar 

  83. Kearn CS, Blake-Palmer K, Daniel E, Mackie K, Glass M. Concurrent stimulation of can-nabinoid CB1 and dopamine D2 receptors enhances heterodimer formation: a mechanism for receptor cross-talk? Mol Pharmacol. 2005;67:1697-1704.

    PubMed  Google Scholar 

  84. Hamm HE. How activated receptors couple to G proteins. Proc Natl Acad Sci USA. 2001;98:4819-4821.

    PubMed  Google Scholar 

  85. Baneres JL, Parello J. Structure-based analysis of GPCR function: evidence for a novel pentameric assembly between the dimeric leukotriene B4 receptor BLT1 and the G-protein. J Mol Biol. 2003;329:815-829.

    PubMed  Google Scholar 

  86. Rocheville M, Lange DC, Kumar U, Sasi R, Patel RC, Patel YC. Subtypes of the somatosta-tin receptor assemble as functional homo- and heterodimers. J Biol Chem. 2000;275:7862-7869.

    PubMed  Google Scholar 

  87. Xu J, He J, Castleberry AM, Balasubramanian S, Lau AG, Hall RA. Heterodimerization of alpha 2A- and beta 1-adrenergic receptors. J Biol Chem. 2003;278:10770-10777.

    PubMed  Google Scholar 

  88. Stanasila L, Perez JB, Vogel H, Cotecchia S. Oligomerization of the alpha 1a- and alpha 1b-adrenergic receptor subtypes. Potential implications in receptor internalization. J Biol Chem. 2003;278:40239-40251.

    PubMed  Google Scholar 

  89. Barki-Harrington L, Luttrell LM, Rockman HA. Dual inhibition of beta-adrenergic and angiotensin II receptors by a single antagonist: a functional role for receptor-receptor interaction in vivo. Circulation. 2003;108:1611-1618.

    PubMed  Google Scholar 

  90. Schulz A, Grosse R, Schultz G, Gudermann T, Schoneberg T. Structural implication for receptor oligomerization from functional reconstitution studies of mutant V2 vasopressin receptors. J Biol Chem. 2000;275:2381-2389.

    PubMed  Google Scholar 

  91. Lee SP, O’Dowd BF, Ng GY, et al. Inhibition of cell surface expression by mutant receptors demonstrates that D2 dopamine receptors exist as oligomers in the cell. Mol Pharmacol. 2000;58:120-128.

    PubMed  Google Scholar 

  92. Hamdan FF, Ward SD, Siddiqui NA, Bloodworth LM, Wess J. Use of an in situ disulfide cross-linking strategy to map proximities between amino acid residues in transmembrane domains I and VII of the M3 muscarinic acetylcholine receptor. Biochemistry. 2002;41:7647-7658.

    PubMed  Google Scholar 

  93. Hadac EM, Ji Z, Pinon DI, Henne RM, Lybrand TP, Miller LJ. A peptide agonist acts by occupation of a monomeric G protein-coupled receptor: dual sites of covalent attachment to domains near TM1 and TM7 of the same molecule make biologically significant domain-swapped dimerization unlikely. J Med Chem. 1999;42:2105-2111.

    PubMed  Google Scholar 

  94. Overton MC, Blumer KJ. The extracellular N-terminal domain and transmembrane domains 1 and 2 mediate oligomerization of a yeast G protein-coupled receptor. J Biol Chem. 2002;277:41463-41472.

    PubMed  Google Scholar 

  95. Guo W, Shi L, Javitch JA. The fourth transmembrane segment forms the interface of the dopamine D2 receptor homodimer. J Biol Chem. 2003;278:4385-4388.

    PubMed  Google Scholar 

  96. Guo W, Shi L, Filizola M, Weinstein H, Javitch JA. Crosstalk in G protein-coupled receptors: changes at the transmembrane homodimer interface determine activation. Proc Natl Acad Sci USA. 2005;102:17495-17500.

    PubMed  Google Scholar 

  97. Gouldson PR, Higgs C, Smith RE, Dean MK, Gkoutos GV, Reynolds CA. Dimerization and domain swapping in G-protein-coupled receptors: a computational study. Neuro-psychopharmacology. 2000;23:S60-S77.

    Google Scholar 

  98. Maggio R, Vogel Z, Wess J. Coexpression studies with mutant muscarinic/adrenergic receptors provide evidence for intermolecular “cross-talk” between G-protein-linked receptors. Proc Natl Acad Sci USA. 1993;90:3103-3107.

    PubMed  Google Scholar 

  99. Ridge KD, Lee SS, Abdulaev NG. Examining rhodopsin folding and assembly through expression of polypeptide fragments. J Biol Chem. 1996;271:7860-7867.

    PubMed  Google Scholar 

  100. Kobilka BK, Kobilka TS, Daniel K, Regan JW, Caron MG, Lefkowitz RJ. Chimeric alpha 2-beta 2-adrenergic receptors: delineation of domains involved in effector coupling and ligand binding specificity. Science. 1988;240:1310-1316.

    PubMed  Google Scholar 

  101. Schoneberg T, Liu J, Wess J. Plasma membrane localization and functional rescue of trun-cated forms of a G protein-coupled receptor. J Biol Chem. 1995;270:18000-18006.

    PubMed  Google Scholar 

  102. Schoneberg T, Yun J, Wenkert D, Wess J. Functional rescue of mutant V2 vasopressin recep-tors causing nephrogenic diabetes insipidus by a co-expressed receptor polypeptide. EMBO J. 1996;15:1283-1291.

    PubMed  Google Scholar 

  103. Gudermann T, Schoneberg T, Schultz G. Functional and structural complexity of signal transduction via G-protein-coupled receptors. Annu Rev Neurosci. 1997;20:399-427.

    PubMed  Google Scholar 

  104. Nielsen SM, Elling CE, Schwartz TW. Split-receptors in the tachykinin neurokinin-1 system-mutational analysis of intracellular loop 3. Eur J Biochem. 1998;251:217-226.

    PubMed  Google Scholar 

  105. Bakker RA, Dees G, Carrillo JJ, et al. Domain swapping in the human histamine H1 receptor. J Pharmacol Exp Ther. 2004;311:131-138.

    PubMed  Google Scholar 

  106. Maggio R, Barbier P, Fornai F, Corsini GU. Functional role of the third cytoplasmic loop in muscarinic receptor dimerization. J Biol Chem. 1996;271:31055-31060.

    PubMed  Google Scholar 

  107. Filizola M, Weinstein H. The study of G-protein coupled receptor oligomerization with computational modeling and bioinformatics. FEBS J. 2005;272:2926-2938.

    PubMed  Google Scholar 

  108. Pazos F, Helmer-Citterich M, Ausiello G, Valencia A. Correlated mutations contain informa-tion about protein-protein interaction. J Mol Biol. 1997;271:511-523.

    PubMed  Google Scholar 

  109. Gouldson PR, Dean MK, Snell CR, Bywater RP, Gkoutos G, Reynolds CA. Lipid-facing correlated mutations and dimerization in G-protein coupled receptors. Protein Eng. 2001;14:759-767.

    PubMed  Google Scholar 

  110. Filizola M, Olmea O, Weinstein H. Prediction of heterodimerization interfaces of G-protein coupled receptors with a new subtractive correlated mutation method. Protein Eng. 2002;15:881-885.

    PubMed  Google Scholar 

  111. Filizola M, Weinstein H. Structural models for dimerization of G-protein coupled receptors: the opioid receptor homodimers. Biopolymers. 2002;66:317-325.

    PubMed  Google Scholar 

  112. Olmea O, Valencia A. Improving contact predictions by the combination of correlated mutations and other sources of sequence information. Fold Des. 1997;2:S25-S32.

    PubMed  Google Scholar 

  113. Barnett-Norris J, Reggio PH. Identification of possible CB1/dopamine D2 heterodimer interfaces using correlated mutation analysis. 2005 Symposium on the Cannabinoids; June 24-27; Clearwater Beach, FL. Burlington, VT: International Cannabinoid Research Society; 2005:101.

    Google Scholar 

  114. Lichtarge O, Bourne HR, Cohen FE. Evolutionarily conserved Galphabetagamma binding surfaces support a model of the G protein-receptor complex. Proc Natl Acad Sci USA. 1996;93:7507-7511.

    PubMed  Google Scholar 

  115. Lichtarge O, Bourne HR, Cohen FE. An evolutionary trace method defines binding surfaces common to protein families. J Mol Biol. 1996;257:342-358.

    PubMed  Google Scholar 

  116. Lichtarge O, Yamamoto KR, Cohen FE. Identification of functional surfaces of the zinc binding domains of intracellular receptors. J Mol Biol. 1997;274:325-337.

    PubMed  Google Scholar 

  117. Livingstone CD, Barton GJ. Protein sequence alignments: a strategy for the hierarchical analysis of residue conservation. Comput Appl Biosci. 1993;9:745-756.

    PubMed  Google Scholar 

  118. Madabushi S, Gross AK, Philippi A, Meng EC, Wensel TG, Lichtarge O. Evolutionary trace of G protein-coupled receptors reveals clusters of residues that determine global and class-specific functions. J Biol Chem. 2004;279:8126-8132.

    PubMed  Google Scholar 

  119. Chothia C, Lesk AM. The relation between the divergence of sequence and structure in pro-teins. EMBO J. 1986;5:823-826.

    PubMed  Google Scholar 

  120. Koshi JM, Mindell DP, Goldstein RA. Using physical-chemistry-based substitution models in phylogenetic analyses of HIV-1 subtypes. Mol Biol Evol. 1999;16:173-179.

    PubMed  Google Scholar 

  121. Koshi JM, Goldstein RA. Models of natural mutations including site heterogeneity. Proteins. 1998;32:289-295.

    PubMed  Google Scholar 

  122. Koshi JM, Goldstein RA. Context-dependent optimal substitution matrices. Protein Eng. 1995;8:641-645.

    PubMed  Google Scholar 

  123. Soyer OS, Dimmic MW, Neubig RR, Goldstein RA. Dimerization in aminergic G-protein-coupled receptors: application of a hidden-site class model of evolution. Biochemistry. 003;42:14522-14531.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia H. Reggio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Reggio, P.H. (2008). Computational Methods in Drug Design: Modeling G Protein-Coupled Receptor Monomers, Dimers, and Oligomers. In: Rapaka, R.S., Sadée, W. (eds) Drug Addiction. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76678-2_3

Download citation

Publish with us

Policies and ethics