Skip to main content

Kappa Opioid Antagonists: Past Successes and Future Prospects

  • Chapter
Drug Addiction

Abstract

Antagonists of the kappa opioid receptor were initially investigated as pharmacological tools that would reverse the effects of kappa opioid receptor agonists. In the years following the discovery of the first selective kappa opioid antagonists, much information about their chemistry and pharmacology has been elicited and their potential therapeutic uses have been investigated. The review presents the current chemistry, ligand-based structure activity relationships, and pharmacology of the known nonpeptidic selective kappa opioid receptor antagonists. This manuscript endeavors to provide the reader with a useful reference of the investigations made to define the structure-activity relationships and pharmacology of selective kappa opioid receptor antagonists and their potential uses as pharmacological tools and as therapeutic agents in the treatment of disease states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wang JB, Johnson PS, Persico AM, Hawkins AL, Griffin CA, Uhl GR. Human mu opiate receptor - cDNA and genomic clones, pharmacologic characterization and chromosomal assignment. FEBS Lett. 1994;338:217-222.

    PubMed  Google Scholar 

  2. Mansson E, Bare L, Yang D. Isolation of a human kappa opioid receptor cDNA from placenta. Biochem Biophys Res Commun. 1994;202:1431-1434.

    PubMed  Google Scholar 

  3. Kieffer BL, Befort K, Gavriaux-Ruff C, Hirth CG. The opioid receptor: isolation of a cDNA by expression cloning and pharmacological characterization. Proc Natl Acad Sci USA. 1992;89:12048-12052.

    PubMed  Google Scholar 

  4. Peters GR, Gaylor S. Human central nervous system (CNS) effects of a selective kappa opioid agonist [abstract] Clin Pharmacol Ther. 1989;45:130.

    Google Scholar 

  5. Casy AF, Parfitt RT. Opioid Analgesics. New York and London: Plenum Press; 1986.

    Google Scholar 

  6. Schmidhammer H. Opioid receptor antagonists. Prog Med Chem. 1998;35:83-132.

    PubMed  Google Scholar 

  7. Coop A, Rice KC. Role of delta-opioid receptors in biological processes. Drug News Perspect. 2000;13:481-487.

    PubMed  Google Scholar 

  8. Rees DC. Chemical structures and biological activities of non-peptide selective kappa opioid ligands. Prog Med Chem. 1992;29:109-139.

    PubMed  Google Scholar 

  9. Kuzmin AV, Gerrits MAFM, Van Ree JM. Kappa-opioid receptor blockade with nor-binaltorphimine modulates cocaine self-administration in drug-naïve rats. Eur J Pharmacol. 1998;358:197-202.

    PubMed  Google Scholar 

  10. Mague SD, Pliakas AM, Todtenkopf MS, et al. Antidepressant-like effects of kappa-opi-oid receptor antagonists in the forced swim test in rats. J Pharmacol Exp Ther. 2003;305:323-330.

    PubMed  Google Scholar 

  11. Jewett DC, Grace MK, Jones RM, Billington CJ, Portoghese PS, Levine AS. The kappa-opioid antagonist GNTI reduces U50,488-, DAMGO-, and deprivation-induced feeding, but not butorphanol- and neuropeptide-Y-induced feeding in rats. Brain Res. 2001;909:75-80.

    PubMed  Google Scholar 

  12. Roth BL, Baner K, Westkaemper R, et al. Salvinorin A: a potent naturally occurring nonni-trogenous kappa opioid selective agonist. Proc Natl Acad Sci USA. 2002;99:11934-11939.

    PubMed  Google Scholar 

  13. Schmidhammer H. Opioid receptor antagonists. Prog Med Chem. 1998;35:83-132.

    PubMed  Google Scholar 

  14. Bennett MA, Murray TF, Aldrich JV. Identification of arodyn, a novel acetylated dynorphin A-(1-11) analogue, as a Í« opioid receptor antagonist. J Med Chem. 2002;45:5617-5619.

    PubMed  Google Scholar 

  15. Weltrowska G, Lu Y, Lemieux C, Chung NN, Schiller PW. A novel cyclic enkephalin ana-logue with potent opioid antagonist activity. Bioorg Med Chem Lett. 2004;14:4731-4733.

    PubMed  Google Scholar 

  16. Aldrich JV. Analgesics. In: Abraham DJ, ed. Burger’s Medicinal Chemistry and Drug Discovery, Volume 6, Nervous System Agents. 6th ed. New York: John Wiley and Sons; 2003:329-482.

    Google Scholar 

  17. Cowan A, Lewis JW. Buprenorphine: Combatting Drug Abuse with a Unique Opioid. New York: John Wiley and Sons; 1995.

    Google Scholar 

  18. Devi LA. Heterodimerization of G-protein-coupled receptors: pharmacology, signaling, and traf-ficking. Trends Pharmacol Sci. 2001;22:532-537.

    PubMed  Google Scholar 

  19. Rusovici DE, Negus SS, Mello NK, Bidlack JM. Í«-opioid receptors are differentially labeled by arylacetamides and benzomorphans. Eur J Pharmacol. 2004;485:119-125.

    PubMed  Google Scholar 

  20. Zimmerman DM, Leander JD. Selective opioid receptor agonists and antagonists: research tools and potential therapeutic agents. J Med Chem. 1990;33:895-902.

    PubMed  Google Scholar 

  21. Larson DL, Jones RM, Hjorth SA, Schwartz TW, Portoghese PS. Binding of norbinaltorphimine (norBNI) congeners to wild-type and mutant mu and kappa opioid receptors: molecular rec-ognition loci for the pharmacophore and address components of kappa antagonists. J Med Chem. 2000;43:1573-1576.

    PubMed  Google Scholar 

  22. Jones RM, Hjorth SA, Schwartz TW, Portoghese PS. Mutational evidence for a common ͫ antagonist binding pocket in the wild-type ͫ and mutant µ[K303E] opioid receptors. J Med Chem. 1998;41:4911-4914.

    PubMed  Google Scholar 

  23. Sharma SK, Jones RM, Metzger TG, Ferguson DM, Portoghese PS. Transformation of a Í«-opioid receptor antagonist to a Í«-agonist by transfer of a guanidinium group form the 5'- to the 6'-position of naltrindole. J Med Chem. 2001;44:2073-2079.

    PubMed  Google Scholar 

  24. Stevens WC, Jones RM, Subramanian G, Metzger TG, Ferguson DM, Portoghese PS. Potent and selective indolomorphinan antagonists of the kappa-opioid receptor. J Med Chem. 2000;43:2759-2769.

    PubMed  Google Scholar 

  25. Metzger TG, Paterlini MG, Ferguson DM, Portoghese PS. Investigation of the selectivity of oxymorphone- and naltrexone-derived ligands via site directed mutagenesis of opioid recep-tors: exploring the ‘address’ recognition locus. J Med Chem. 2001;44:857-862.

    PubMed  Google Scholar 

  26. Kong H, Raynor K, Yano H, Takeda J, Bell GI, Reisine T. Agonists and antagonists bind to different domanins of the cloned Í« opioid receptor. Proc Natl Acad Sci USA. 1994;91: 8042-8046.

    PubMed  Google Scholar 

  27. Hjorth SA, Thirstrup K, Grandy DK, Schwartz TW. Analysis of selective binding epitopes for the Í«-opioids receptor antagonist nor-binaltorphimine. Mol Pharmacol. 1995;47: 1089-1094.

    PubMed  Google Scholar 

  28. Eguchi M. Recent Advances in selective opioid receptor agonists and antagonists. Med Res Rev. 2004;24:182-212.

    PubMed  Google Scholar 

  29. Portoghese PS, Lipkowski AW, Takemori AE. Binaltorphimine and nor-binaltorphimine, potent and selective Í«-opioid receptor antagonists. Life Sci. 1987;40:1287-1292.

    PubMed  Google Scholar 

  30. Butelman ER, Harris TJ, Kreek MJ. The plant-derived hallucinogen, salvinorin A, produces kappa-opioid agonist-like discriminative effects in rhesus monkeys. Psychopharmacology (Berl). 2004;172:220-224.

    Google Scholar 

  31. Erez M, Takemori AE, Portoghese PS. Narcotic antagonistic potency of bivalent ligands which contain β-naltrexamine. Evidence for bridging between proximal recognition sites. J Med Chem. 1982;25:847-849.

    PubMed  Google Scholar 

  32. Portoghese PS, Takemori AE. TENA, a selective kappa opioid receptor antagonist. Life Sci. 1985;36:801-805.

    PubMed  Google Scholar 

  33. Botros S, Lipkowski AW, Takemori AE, Portoghese PS. Investigation of the structural requirements for the ͫ-selective opioid receptor antagonist, 6β,6β-[ethlenebis(oxyethyleneimi no)]bis[17-(cyclopropylmethyl)-4,5α-epoxymorphinan-3,14-diol] (TENA). J Med Chem. 1986;29:874-876.

    PubMed  Google Scholar 

  34. Portoghese PS, Ronsisvalle G, Larson DL, Takemori AE. Synthesis and opioid antagonist potencies of naltrexamine bivalent ligands with conformationally restricted spacers. J Med Chem. 1986;29:1650-1653.

    PubMed  Google Scholar 

  35. Portoghese PS, Larson DL, Sayre LM, et al. Opioid agonist and antagonist bivalent ligands. The relationship between spacer length and selectivity at multiple opioid receptors. J Med Chem. 1986;29:1855-1861.

    PubMed  Google Scholar 

  36. Portoghese AS, Lipkowski AW, Takemori AE. Bimorphinans as highly selective, potent Í« opioid receptor antagonists. J Med Chem. 1987;30:238-239.

    PubMed  Google Scholar 

  37. Takemori AE, Portoghese PS. Selective naltrexone-derived opioid receptor antagonists. Annu Rev Pharmacol Toxicol. 1992;32:239-269.

    PubMed  Google Scholar 

  38. Portoghese PS. Bivalent ligands and the message-address concept in the design of selective opioid receptor antagonists. Trends Pharmacol Sci. 1989;10:230-235.

    PubMed  Google Scholar 

  39. Schwyzer R. ACTH: a short introductory review. Ann N Y Acad Sci. 1977;297:3-26.

    PubMed  Google Scholar 

  40. Lin C, Takemori AE, Portoghese PS. Synthesis and Í«-opioid antagonist selectivity of a nor-binaltorphimine congener. Identification of the address moiety reqired for Í«-antagonist activ-ity. J Med Chem. 1993;36:2412-2415.

    PubMed  Google Scholar 

  41. Thomas JB, Atkinson RN, Vinson A, et al. Identification of (3R)-7-Hydroxy-N-( (1S)-1-{[(3R,4R)-4-(3-hydroxyphenyl)-3,4-dimethyl-1-piperidinyl]methyl}-2-methylpropyl)-1,2,3,4-tetrahydro-3-isoquinolinecarboxamide as a novel potent and selective opioid Í« receptor antagonist. J Med Chem. 2003;46:3127-3137.

    PubMed  Google Scholar 

  42. Grundt P, Williams IA, Lewis JW, Husbands SM. Identification of a new scaffold for Í« opioid receptor antagonism based on the 2-amino-1,1-dimethyl-7-hydroxytetralin pharmacophore. J Med Chem. 2004;47:5069-5075.

    PubMed  Google Scholar 

  43. Portoghese PS, Nagase H, Takemori AE. Only one pharmacophore is required for the Í« opioid antagonist selectivity of norbinaltorphimine. J Med Chem. 1988;31:1344-1347.

    PubMed  Google Scholar 

  44. Portoghese PS, Nagase H, Lipkowski AW, Larson DL, Takemori AE. Binaltorphimine-related bivalent ligands and their Í« opioid receptor antagonist selectivity. J Med Chem. 1988;31:836-841.

    PubMed  Google Scholar 

  45. Schmidhammer H, Ganglbauer E, Mitterdorfer J, Rollinger JM, Smith CFC. Synthesis and biological evaluation of 14-alkoxymorphinans 14,14′-dimethoxy analogues of norbinaltor-phimine: synthesis and determination of their ͫ opioid antagonist selectivity. Helv Chim Acta. 1990;73:1779-1783.

    Google Scholar 

  46. Schmidhammer H, Smith CFC. A simple and efficient method for the preparation of binaltor-phimine and derivatives and determination of their Í« opioid antagonist selectivity. Helv Chim Acta. 1989;72:675-677.

    Google Scholar 

  47. Portoghese PS, Garzon-Aburbeh A, Nagase H, Lin C, Takemori AE. Role of the spacer in conferring Í« opioid receptor selectivity to bivalent ligands related to norbinaltorphimine. J Med Chem. 1991;34:1292-1296.

    PubMed  Google Scholar 

  48. Portoghese PS, Lin C, Farouz-Grant R, Takemori AE. Structure-activity relationship of N17’substituted norbinaltorphimine congeners. Role of the N17′ basic group in the interaction with a putative address subsite on the ͫ opioid receptor. J Med Chem. 1994;37: 1495-1500.

    PubMed  Google Scholar 

  49. Thomas JB, Fix SE, Rothman RB, et al. Importance of phenolic address groups in opioid kappa receptor selective antagonists. J Med Chem. 2004;47:1070-1073.

    PubMed  Google Scholar 

  50. Marki A, Otvos F, Toth G, Hosztafi S, Borsodi A. Tritiated kappa receptor antagonist norbinaltorphimine: synthesis and in vitro binding in three different tissues. Life Sci. 2000;66:43-49.

    PubMed  Google Scholar 

  51. Olmsted SL, Takemori AE, Portoghese PS. A remarkable change of opioid receptor selec-tivity on the attachment of a peptidomimetic ͫ address element to the δ antagonist, naltrindole: 5'-[(N2-alkylamidino)methyl]naltrindole derivatives as a novel class of ͫ opioid receptor antagonists. J Med Chem. 1993;36:179-180.

    PubMed  Google Scholar 

  52. Jones RM, Portoghese PS. 5'-Guanidinonaltrindole, a highly selective and potent Í«-opioid receptor antagonist. Eur J Pharmacol. 2000;396:49-52.

    PubMed  Google Scholar 

  53. Jales AR, Husbands SM, Lewis JW. Selective Í«-opioid antagonists related to naltrindole. Effect of side-chain spacer in the 5'-amidinoalkyl series. Bioorg Med Chem Lett. 2000;10:2259-2261.

    PubMed  Google Scholar 

  54. Black SL, Jales AR, Brandt W, Lewis JW, Husbands SM. The role of the side chain in deter-mining relative δ- and ͫ-affinity in C5'-substituted analogues of naltrindole. J Med Chem. 2003;46:314-317.

    PubMed  Google Scholar 

  55. Black SL, Chauvignac C, Grundt P, et al. Guanidino N-substituted and N,N-disubstituted derivatives of the Í«-opioid antagonist GNTI. J Med Chem. 2003;46:5505-5511.

    PubMed  Google Scholar 

  56. Ananthan S, Kezar HS, Saini SK, et al. Synthesis, opioid receptor binding, and functional activity of 5'-subsitituted 17-cyclopropylmethylpyrido[2',3',:6,7]morphinans. Bioorg Med Chem Lett. 2003;13:529-532.

    PubMed  Google Scholar 

  57. Thomas JB, Atkinson RN, Rothman RB, et al. Identification of the first trans-(3R,4R)-dimethyl-4-(3-hydroxyphenyl)piperidine derivative to possess highly potent and selective opioid Í« recep-tor antagonist activity. J Med Chem. 2001;44:2687-2690.

    PubMed  Google Scholar 

  58. Zimmerman DM, Leander JD, Cantrell BE, et al. Structure-activity relationships of trans-3, 4-dimethyl-4-(3-hydroxyphenyl)piperidine antagonists for µ- and ͫ-opioid receptors. J Med Chem. 1993;36:2833-2841.

    PubMed  Google Scholar 

  59. Thomas JB, Fall MJ, Cooper JB, et al. Identification of an opioid Í« receptor subtype-selective N-substituent for (+)-(3R,4R)-dimethyl-4-(3-hydroxyphenyl)piperidine. J Med Chem. 1998;41:5188-5197.

    PubMed  Google Scholar 

  60. Thomas JB, Atkinson RN, Namdev N, et al. Discovery of an opioid ͫ receptor selective pure antagonist from a library of N-substituted 4β-methyl-5-(3-hydroxyphenyl)morphans. J Med Chem. 2002;45:3524-3530.

    PubMed  Google Scholar 

  61. Grundt P, Williams IA, Lewis JW, Husbands SM. Identification of a new scaffold for opioid receptor antagonism based on the 2-amino-1,1-dimethyl-7-hydroxytetralin pharmacophore. J Med Chem. 2004;47:5069-5075.

    PubMed  Google Scholar 

  62. de Costa BR, Band L, Rothman RB, et al. Synthesis of an affinity ligand (‘UPHIT’) for in vivo acylation of the ͫ-opioid receptor. FEBS Lett. 1989;249:178-182.

    PubMed  Google Scholar 

  63. de Costa BR, Rothman RB, Bykov V, Jacobson AE, Rice KC. Selective and enantiospecific acylation of Í« opioid receptors by (1S,2S)-trans-2-isothiocyanato-N-methyl-N-[2-(1-pyrrolidi nyl)cyclohecyl]benzeneacetamide. Demonstration of Í« receptor heterogeneity. J Med Chem. 1989;32:281-283.

    PubMed  Google Scholar 

  64. Chang AC, Takemori AE, Portoghese PS. 2-(3,4-dichlorophenyl)-N-methyl-N-[(1S)-1-(3-isothiocyanatophenyl)-2-(1-pyrrolidinyl)ethyl]acetamide: an opioid receptor affinity label that produces selective and long-lasting Í« antagonism in mice. J Med Chem. 1994;37:1547-1549.

    PubMed  Google Scholar 

  65. Chang AC, Takemori AE, Ojala WH, Gleason WB, Portoghese PS. Í« opioid receptor selective affinity labels: electrophilic benzeneacetamides as Í«-selective opioid antagonists. J Med Chem. 1994;37:4490-4498.

    PubMed  Google Scholar 

  66. Chauvignac C, Miller CN, Srivastava SK, Lewis JW, Husbands SM, Traynor JR. Major effect of pyrrolic N-benzylation in norbinaltorphiminie, the selective Í«-opioid receptor antagonist. J Med Chem. 2005;48:1676-1679.

    PubMed  Google Scholar 

  67. Negus SS, Mello NK, Linsenmayer DC, Jones RM, Portoghese PS. Kappa opioid antagonist effects of the novel kappa antagonist 5'-guanidinonaltrindole (GNTI) in an assay of sched-ule-controlled behavior in rhesus monkeys. Psychopharmacology (Berlin). 2002;163:412-419.

    Google Scholar 

  68. Bertalmio AJ, Woods JH. Differentiation between mu and kappa receptor-mediated effects in opioid drug discrimination: apparent pA2 analysis. J Pharmacol Exp Ther. 1987;243: 591-597.

    PubMed  Google Scholar 

  69. Negus SS, Butelman ER, Chang KJ, DeCosta B, Winger G, Woods JH. Behavioral effects of the systemically active delta opioid agonist BW373U86 in rhesus monkeys. J Pharmacol Exp Ther. 1994;270:1025-1034.

    PubMed  Google Scholar 

  70. Carroll I, Thomas JB, Dykstra LA, et al. Pharmacological properties of JDTic: a novel Í«-opioid receptor antagonist. Eur J Pharmacol. 2004;501:111-119.

    PubMed  Google Scholar 

  71. Butelman ER, Negus SS, Ai Y, deCosta BR, Woods JH. Kappa opioid antagonist effects of systemically administered nor-binaltorphimine in a thermal antinociception assay in rhesus monkeys. J Pharmacol Exp Ther. 1993;267:1269-1276.

    PubMed  Google Scholar 

  72. Endoh T, Matsuura H, Tanaka C, Nagase H. Nor-binaltorphimine: a potent and selective kappa-opioid receptor antagonist with long-lasting activity in vivo. Arch Int Pharmacodyn Ther. 1992;316:30-42.

    PubMed  Google Scholar 

  73. Broadbear JH, Negus SS, Butelman ER, de Costa BR, Woods JH. Differential effects of sys-temically administered nor-binaltorphimine (nor-BNI) on kappa-opioid agonists in the mouse writhing assay. Psychopharmacology (Berlin). 1994;115:311-319.

    Google Scholar 

  74. Ko MCH, Lee H, Song MS, et al. Activation of Í«-opioid receptors inhibits pruritus evoked by subcutaneous or intrathecal administration of morphine in monkeys. J Pharmacol Exp Ther. 2003;305:173-179.

    PubMed  Google Scholar 

  75. Jones DNC, Holtzman SG. Long term kappa opioid receptor blockade following nor-binaltor-phimine. Eur J Pharmacol. 1992;215:345-348.

    PubMed  Google Scholar 

  76. Horan P, Taylor J, Yamamura HI, Porreca F. Extremely long-lasting antagonistic actions of nor-binaltorphimine (nor-BNI) in the mouse tail-flick test. J Pharmacol Exp Ther. 1992;260: 1237-1243.

    PubMed  Google Scholar 

  77. Ko MCH, Johnson MD, Butelman ER, Willmont KJ, Mosberg HI, Woods JH. Intracisternal nor-binaltorphimine distinguishes central and peripheral kappa-opioid antinociception in rhe-sus monkeys. J Pharmacol Exp Ther. 1999;291:1113-1120.

    PubMed  Google Scholar 

  78. Jewett DC, Woods JH. Nor-binaltorphimine: a very, very long acting kappa opioid antagonist in pigeons. Behav Pharmacol. 1995;6:815-820.

    PubMed  Google Scholar 

  79. Takemori AE, Ho BY, Naeseth JS, Portoghese PS. Nor-binaltorphimine, a highly selective kappa-opioid antagonist in analgesic and receptor binding assays. J Pharmacol Exp Ther. 1988;246:255-258.

    PubMed  Google Scholar 

  80. Takemori AE, Schwartz MM, Portoghese PS. Suppression by nor-binaltorphimine of kappa opioid-mediated diuresis in rats. J Pharmacol Exp Ther. 1988;247:971-974.

    PubMed  Google Scholar 

  81. Ko MCH, Willmont KJ, Lee H, Flory GS, Woods JH. Ultra-long antagonism of kappa opioid agonist-induced diuresis by intracisternal nor-binaltorphimine in monkeys. Brain Res. 2003;982:38-44.

    PubMed  Google Scholar 

  82. Carlezon WA Jr, Thome J, Olson VG, et al. Regulation of cocaine reward by CREB. Science. 1998;282:2272-2275.

    PubMed  Google Scholar 

  83. Pliakas AM, Carlson RR, Neve RL, Konradi C, Nestler EJ, Carlexon WA. Altered responsive-ness to cocaine and increased immobility in the forced swim test associated with elevated cAMP response element-binding protein expression in nucleus accumbens. J Neurosci. 2001; 21:7397-7403.

    PubMed  Google Scholar 

  84. McLaughlin JP, Marton-Popovici M, Chavkin C. Í« opioid receptor antagonism and prodynor-phin gene disruption block stress-induced behavioral responses. J Neurosci. 2003;23: 5674-5683.

    PubMed  Google Scholar 

  85. Berrocoso E, Rojas-Corrales MO, Mico JA. Non-selective opioid receptor antagonism of the antidepressant-like effect of venlafaxine in the forced swimming test in mice. Neurosci Lett. 2004;363:25-28.

    PubMed  Google Scholar 

  86. Newton SS, Thome J, Wallace TL, et al. Inhibition of cAMP response element-binding pro-tein or dynorphin in the nucleus accumbens produces an antidepressant-like effect. J Neurosci. 2002;22:10883-10890.

    PubMed  Google Scholar 

  87. Shirayama Y, Ishida H, Iwata M, Hazama G, Kawahara R, Duman RS. Stress increases dynor-phin immunoreactivity in limbic brain regions and dynorphin antagonism produces antide-pressant-like effects. J Neurochem. 2004;90:1258-1268.

    PubMed  Google Scholar 

  88. Kamei J, Nagase H. Norbinaltorphimine, a selective Í« opioid receptor antagonist, induces an itch-associated response in mice. Eur J Pharmacol. 2001;418:141-145.

    PubMed  Google Scholar 

  89. Cowan A, Inan S, Kehner GB. GNTI, a kappa receptor antagonist, causes compulsive scratch-ing in mice. The Pharmacologist. 2002;44:A51.

    Google Scholar 

  90. Togashi Y, Umeuchi H, Okano K, et al. Antipruritic activity of the Í«-opioid receptor agonist, TRK-820. Eur J Pharmacol. 2002;435:259-264.

    PubMed  Google Scholar 

  91. Ko MCH, Lee H, Song MS, et al. Activation of Í«-opioid receptors inhibits pruritus evoked by subcutaneous of intrathecal administration of morphine in monkeys. J Pharmacol Exp Ther. 2003;305:173-179.

    PubMed  Google Scholar 

  92. Umeuchi H, Togashi Y, Honda T, et al. Involvement of central µ-opioid system in the scratch-ing behavior in mice, and the suppression of it by the activation of ͫ-opioid system. Eur J Pharmacol. 2003;477:29-35.

    PubMed  Google Scholar 

  93. Levine AS, Grace M, Portoghese PS, Billington CJ. The effect of selective opioid antagonists on butorphanol-induced feeding. Brain Res. 1994;637:242-248.

    PubMed  Google Scholar 

  94. Cole JL, Berman N, Bodnar RJ. Evaluation of chronic opioid receptor antagonist effects upon weight and intake measures in lean and obese zucker rats. Peptides. 1997;18:1201-1207.

    PubMed  Google Scholar 

  95. Bodnar RJ, Glass MJ, Ragnauth A, Cooper ML. General, µ and ͫ opioid antagonists in the nucleus accumbens alter food intake under deprivation, glucoprivic and palatable conditions. Brain Res. 1995;700:205-212.

    PubMed  Google Scholar 

  96. Leventhal L, Kirkham TC, Cole JL, Bodnar RJ. Selective actions of central µ and ͫ opioid antagonists upon sucrose intake in sham-fed rats. Brain Res. 1995;685:205-210.

    PubMed  Google Scholar 

  97. Khaimova E, Kandov Y, Israel Y, Cataldo G, Hadjimarkou MM, Bodnar RJ. Opioid receptor subtype antagonists differentially alter GABA agonist-induced feeding elicited from either the nucleus accumbens shell or ventral tegmental area regions in rats. Brain Res. 2004;1026:284-294.

    PubMed  Google Scholar 

  98. Kotz CM, Grace MK, Billington CJ, Levine AS. The effect of norbinaltorphimine, β-funal-trexamine and naltrindole on NPY-induced feeding. Brain Res. 1993;631:325-328.

    PubMed  Google Scholar 

  99. Calcagnetti DJ, Calcagnetti RL, Fanselow MS. Centrally administered opioid antagonists, nor-binaltorphimine, 16-methyl cyprenorphine, and Mr2266, suppress intake of a sweet solution. Pharmacol Biochem Behav. 1990;35:69-73.

    PubMed  Google Scholar 

  100. Spanagel R, Shippenberg TS. Modulation of morphine-induced sensitization by endogenous Í« opioid systems in the rat. Neurosci Lett. 1993;153:232-236.

    PubMed  Google Scholar 

  101. Williams KL, Ko MHC, Rice KC, Woods JH. Effect of opioid receptor antagonists on hypothalamic-pituitary-adrenal activity in rhesus monkeys. Psychoneuroendocrinology. 2003;28:513-528.

    PubMed  Google Scholar 

  102. Narita M, Kishimoto Y, Ise Y, Yajima Y, Misawa K, Suzuki T. Direct evidence for the involvement of the mesolimbic Í«-opioid system in the morphine-induced rewarding effect under an inflammatory pain-like state. Neuropsychopharmacology. 2005;30:111-118.

    PubMed  Google Scholar 

  103. Joynes RL, Grau JW. Instrumental learning within the spinal cord: III. Prior exposure to noncontingent shock induces a behavioral deficit that is blocked by an opioid antagonist. Neurobiol Learn Mem. 2004;82:35-51.

    Google Scholar 

  104. Cheng HY, Laviolette SR, van der Kooy D, Penninger JM. DREAM ablation selectively alters THC place aversion and analgesia but leaves intact the motivational and analgesic effects of morphine. Eur J Neurosci. 2004;19:3033-3041.

    PubMed  Google Scholar 

  105. Mizoguchi H, Leitermann RJ, Narita M, Nagase H, Suzuki T, Tseng LF. Region-dependant G-protein activation by Í«-opioid receptor agonists in the mouse brain. Neurosci Lett. 2004;356:145-147.

    PubMed  Google Scholar 

  106. Fan L, Tien L, Tanaka S, et al. Enhanced binding of nor-binaltorphimine to Í«-opioid recep-tors in rats dependent on butorphanol. J Neurosci Res. 2003;72:781-789.

    PubMed  Google Scholar 

  107. Cosentino M, Marino F, DePonti F, et al. Tonic modulation of neurotransmitter release in the guinea-pig myenteric plexus: effect of µ and ͫ opioid receptor blockade and of chronic sympa-thetic denervation. Neurosci Lett. 1995;194:185-188.

    PubMed  Google Scholar 

  108. Ossipov MH, Kovelowski CJ, Wheeler-Aceto H, et al. Opioid antagonists and antisera to endogenous opioids increase the nociceptive response to formalin: demonstration of an opi-oid kappa and delta inhibitory tone. J Pharmacol Exp Ther. 1996;277:784-788.

    PubMed  Google Scholar 

  109. Obara I, Mika J. Schafer MK-H, Przewlocka B. Antagonists of the Í«-opioid receptor enhance allodynia in rats and mice after sciatic nerve ligation. Br J Pharmacol. 2003;140:538-546.

    PubMed  Google Scholar 

  110. Baker AK, Meert TF. Functional effects of systemically administered agonists and antago-nists of µ, δ, and ͫ opioid receptor subtypes on body temperature in mice. J Pharmacol Exp Ther. 2002;302:1253-1264.

    PubMed  Google Scholar 

  111. Tortella FC, Echevarria E, Lipkowski AW, Takemori AE, Portoghese PS, Holaday JW. Selective kappa antagonist properties of nor-binaltrophimine in the rat seizure model. Life Sci. 1989;44:661-665.

    PubMed  Google Scholar 

  112. Manzanares J, Lookingland KJ, LaVigne SD, Moore KE. Activation of tuberohypophysial dopamine neurons following intracerebroventricular administration of the selective kappa opioid receptor antagonist nor-binaltorphimine. Life Sci. 1991;48:1143-1149.

    PubMed  Google Scholar 

  113. McIntosh M, Kane K, Parratt J. Effects of selective opioid receptor agonists and antagonists during myocardial ischaemia. Eur J Pharmacol. 1992;210:37-44.

    PubMed  Google Scholar 

  114. Llobel F, Laorden ML. Effects of µ-, δ-, and ͫ-opioid antagonists in atrial preparations from failing human hearts. Gen Pharmacol. 1997;28:371-374.

    PubMed  Google Scholar 

  115. Cao Z, Liu L, VanWinkle DM. Activation of δ- and ͫ-opioid receptors by opioid peptides protects cardiomyocytes via KATP channels. Am J Physiol Heart Circ Physiol. 2003;285: H1032-H1039.

    PubMed  Google Scholar 

  116. Carey GJ, Bergman J. Enadoline discrimination in squirrel monkeys: effects of opioid ago-nists and antagonists. J Pharmacol Exp Ther. 2001;297:215-223.

    PubMed  Google Scholar 

  117. Jewett DC, Woods JH. Nor-binaltorphimine: an ultra-long acting kappa-opioid antagonist in pigeons. Behav Pharmacol. 1995;6:815-820.

    PubMed  Google Scholar 

  118. Picker MJ, Mathewson C, Allen RM. Opioids and rate of positively reinforced behavior: III. Antagonism by the long-lasting kappa antagonist norbinaltorphimine. Behav Pharmacol. 1996;7:495-504.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Coop .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Metcalf, M.D., Coop, A. (2008). Kappa Opioid Antagonists: Past Successes and Future Prospects. In: Rapaka, R.S., Sadée, W. (eds) Drug Addiction. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76678-2_25

Download citation

Publish with us

Policies and ethics