Advertisement

Drug Addiction pp 357-366 | Cite as

Opioid Peptide-Derived Analgesics

  • Peter W. Schiller

Abstract

Two recent developments of opioid peptide-based analgesics are reviewed. The first part of the review discusses the dermorphin-derived, cationic-aromatic tetrapeptide H-Dmt-D-Arg-Phe-Lys-NH2 ([Dmt1]DALDA, where Dmt indicates 2′,6′-dimethyltyrosine), which showed subnanomolar μ receptor binding affinity, extraordinary μ receptor selectivity, and high μ agonist potency in vitro. In vivo, [Dmt1]DALDA looked promising as a spinal analgesic because of its extraordinary antinociceptive effect (3000 times more potent than morphine) in the mouse tail-flick assay, long duration of action (4 times longer than morphine), and lack of effect on respiration. Unexpectedly, [Dmt1]DALDA also turned out to be a potent and longacting analgesic in the tail-flick test when given subcutaneously (s.c), indicating that it is capable of crossing the blood-brain barrier. Furthermore, little or no cross-tolerance was observed with s.c. [Dmt1]DALDA in morphine-tolerant mice. The second part of the review concerns the development of mixed μ agonist/δ antagonists that, on the basis of much evidence, are expected to be analgesics with a low propensity to produce tolerance and physical dependence. The prototype pseudopeptide H-Dmt-TicΨ[CH2NH]Phe-Phe-NH2 (DIPP-NH2[Ψ], where Tic indicates 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid) showed subnanomolar μ and δ receptor binding affinities and the desired μ agonist/δ antagonist profile in vitro. DIPP-NH2[Ψ] produced a potent analgesic effect after intracerebroventricular administration in the rat tail-flick assay, no physical dependence, and less tolerance than morphine. The results obtained with DIPP-NH2[Ψ] indicate that mixed μ agonist/δ antagonists look promising as analgesic drug candidates, but compounds with this profile that are systemically active still need to be developed.

Keywords

Opioid Receptor Morphine Tolerance Delta Opioid Receptor Receptor Binding Affinity Agonist Potency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pfeiffer A, Brantl V, Herz A, Emrich HM. Psychotomimesis mediated by kappa opiate recep-tors. Science. 1986;233:774-776.CrossRefPubMedGoogle Scholar
  2. 2.
    Walsh SL, Strain EC, Abreu ME, Bigelow GE. Enadoline, a selective kappa opioid agonist: comparison with butorphanol and hydromorphone in humans. Psychopharmacology (Berl). 2001;157:151-162.CrossRefGoogle Scholar
  3. 3.
    Yaksh TL. In vivo studies on spinal opiate receptor systems mediating antinociception, I: mu and delta receptor profiles in the primate. J Pharmacol Exp Ther. 1983;226:303-316.PubMedGoogle Scholar
  4. 4.
    Porreca F, Mosberg HI, Hurst R, Hruby VJ, Burks TF. Roles of mu, delta and kappa opioid receptors in spinal and supraspinal mediation of gastrointestinal transit effects and hot-plate analgesia in the mouse. J Pharmacol Exp Ther. 1984;230:341-348.PubMedGoogle Scholar
  5. 5.
    Cowan A, Zhu XZ, Mosberg HI, Omnaas JR, Porreca F. Direct dependence studies in rats with agents selective for different types of opioid receptor. J Pharmacol Exp Ther. 1988;246:950-955.PubMedGoogle Scholar
  6. 6.
    Cheng PY, Wu D, Decena J, Soong Y, McCabe S, Szeto HH. Opioid-induced stimulation of fetal respiratory activity by [D-Ala2]deltorphin, I. Eur J Pharmacol. 1993;230:85-88.CrossRefGoogle Scholar
  7. 7.
    Galligan JJ, Mosberg HI, Hurst R, Hruby VJ, Burks TF. Cerebral delta opioid receptors mediate analgesia but not the intestinal motility effects of intracerebroventricularly adminis-tered opioids. J Pharmacol Exp Ther. 1984;229:641-648.PubMedGoogle Scholar
  8. 8.
    Weber SJ, Greene DL, Sharma SD, et al. Distribution and analgesia of [3H][D-Pen2, D-Pen5]enkephalin and two halogenated analogs after intravenous administration. J Pharmacol Exp Ther. 1991;259:1109-1117.PubMedGoogle Scholar
  9. 9.
    Svensson CI, Rew Y, Malkmus S, et al. Systemic and spinal analgesic activity of a δ-opioid-selective lanthionine enkephalin analog. J Pharmacol Exp Ther. 2003;304:827-832.CrossRefPubMedGoogle Scholar
  10. 10.
    Kamei J, Saitoh A, Ohsawa M, et al. Antinociceptive effects of the selective non-peptidic δ-opioid receptor antagonist TAN-67 in diabetic mice. Eur J Pharmacol. 1995;276: 131-135.CrossRefPubMedGoogle Scholar
  11. 11.
    Chang K-J, Rigdon GC, Howard JL, McNutt RW. A novel, potent and selective nonpeptidic delta opioid receptor agonist BW373U86. J Pharmacol Exp Ther. 1993;267:852-857.PubMedGoogle Scholar
  12. 12.
    Calderon SN, Rothman RB, Porreca F, et al. Probes for narcotic receptor mediated pheno-mena, 19: synthesis of (+)-4-(αR)-α-( (2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxy-benzyl]-N,N-diethylbenzamide (SNC80): a highly selective, nonpeptide delta opioid receptor agonist. J Med Chem. 1994;37:2125-2128.CrossRefPubMedGoogle Scholar
  13. 13.
    Plobeck N, Delorme D, Wei Z-Y, et al. New diarylmethylpiperazines as potent and selective nonpeptidic δ opioid receptor agonists with increased in vitro metabolic stability. J Med Chem. 2000;43:3878-3894.CrossRefPubMedGoogle Scholar
  14. 14.
    DeHaven-Hudkins DL, Dolle RE. Peripherally restricted opioid agonists as novel analgesic agents. Curr Pharm Des. 2004;10:743-757.CrossRefPubMedGoogle Scholar
  15. 15.
    Schiller PW, Nguyen TM-D, Chung NN, Lemieux C. Dermorphin analogues carrying an increased positive net charge in their “message” domain display extremely high µ-opioid receptor selectivity. J Med Chem. 1989;32:698-703.CrossRefPubMedGoogle Scholar
  16. 16.
    Schiller PW, Nguyen TM-D, Berezowska I, et al. Synthesis and in vitro opioid activity pro-files of DALDA analogues. Eur J Med Chem. 2000;35:895-901.CrossRefPubMedGoogle Scholar
  17. 17.
    Neilan CL, Nguyen TM-D, Schiller PW, Pasternak GW. Pharmacological characterization of the dermorphin analog [Dmt1]DALDA, a highly potent and selective µ-opioid peptide. Eur J Pharmacol. 2001;419:15-23.CrossRefPubMedGoogle Scholar
  18. 18.
    Neilan CL, Janvey AJ, Bolan E, et al. Characterization of the binding of [3H][Dmt1]H-Dmt-D-Arg-Phe-Lys-NH2, a highly potent opioid peptide. J Pharmacol Exp Ther. 2003;306:430-436.CrossRefPubMedGoogle Scholar
  19. 19.
    Szeto HH, Lovelace JL, Fridland G, et al. In vivo pharmacokinetics of selective µ-opioid pep-tide agonists. J Pharmacol Exp Ther. 2001;298:57-61.PubMedGoogle Scholar
  20. 20.
    Shimoyama M, Shimoyama N, Zhao G-M, Schiller PW, Szeto HH. Antinociceptive and respiratory effects of intrathecal H-Tyr-D-Arg-Phe-Lys-NH2 (DALDA) and [Dmt1]DALDA. J Pharmacol Exp Ther. 2001;297:364-371.PubMedGoogle Scholar
  21. 21.
    Reimann W, Schlutz H, Selve N. The antinociceptive effects of morphine, desipramine, and serotonin and their combinations after intrathecal injection in the rat. Anesth Analg. 1999;88:141-145.CrossRefPubMedGoogle Scholar
  22. 22.
    Szeto HH, Soong Y, Wu D, Qian X, Zhao G-M. Endogenous opioid peptides contribute to antinociceptive potency of intrathecal [Dmt1]DALDA. J Pharmacol Exp Ther. 2003;305: 696-702.CrossRefPubMedGoogle Scholar
  23. 23.
    Zhao GM, Wu D, Soong Y, et al. Profound spinal tolerance after repeated exposure to a highly selective µ-opioid peptide agonist: role of δ-opioid receptors. J Pharmacol Exp Ther. 2002;302:188-196.CrossRefPubMedGoogle Scholar
  24. 24.
    Ben Y, Smith AP, Schiller PW, Lee NM. Tolerance develops in spinal cord, but not in brain with chronic [Dmt1]DALDA treatment. Br J Pharmacol. 2004;143:987-993.CrossRefPubMedGoogle Scholar
  25. 25.
    Neilan CL, King MA, Rossi G, et al. Differential sensitivities of mouse strains to morphine and [Dmt1]DALDA analgesia. Brain Res. 2003;974:254-257.CrossRefPubMedGoogle Scholar
  26. 26.
    Riba P, Ben Y, Nguyen TM-D, Furst S, Schiller PW, Lee NM. [Dmt1]DALDA is highly selec-tive and potent at µ opioid receptors, but is not cross-tolerant with systemic morphine. Curr Med Chem. 2002;9:31-39.PubMedGoogle Scholar
  27. 27.
    Zhao K, Luo G, Zhao G-M, Schiller PW, Szeto HH. Transcellular transport of a highly polar 3+ net charge opioid tetrapeptide. J Pharmacol Exp Ther. 2003;304:425-432.CrossRefPubMedGoogle Scholar
  28. 28.
    Berezowska I, Chung NN, Lemieux C, Zelent B, Szeto HH, Schiller PW. Highly potent fluo-rescent analogues of the opioid peptide [Dmt1]DALDA. Peptides. 2003;24:1195-1200.CrossRefPubMedGoogle Scholar
  29. 29.
    Abdelhamid EE, Sultana M, Portoghese PS, Takemori AE. Selective blockage of delta opioid receptors prevents the development of morphine tolerance and dependence in mice. J Pharmacol Exp Ther. 1991;258:299-303.PubMedGoogle Scholar
  30. 30.
    Fundytus ME, Schiller PW, Shapiro M, Weltrowska G, Coderre TJ. The highly selective δ-opioid antagonist H-Tyr-TicΨ[CH2-NH]Phe-Phe-OH (TIPP[Ψ]) attenuates morphine toler-ance and dependence. Eur J Pharmacol. 1995;286:105-108.CrossRefPubMedGoogle Scholar
  31. 31.
    Rothman RB, Danks JA, Jacobson AE, Burke TR, Jr, Rice KE, Holaday JW. Morphine toler-ance increases mu-noncompetitive delta binding sites. Eur J Pharmacol. 1986;124:113-119.CrossRefPubMedGoogle Scholar
  32. 32.
    Yukhananov RY, Klodt PM, Riva AD, Zeitsev SV, Masky AI. Opiate withdrawal correlates with the presence of DSLET high-affinity binding. Pharmacol Biochem Behav. 1994;49: 1109-1112.CrossRefPubMedGoogle Scholar
  33. 33.
    Kest B, Lee CY, McLemore GL, Inturrisi CE. An antisense oligodeoxynucleotide to the delta opioid receptor (DOR-1) inhibits morphine tolerance and acute dependence in mice. Brain Res Bull. 1996;39:185-188.CrossRefPubMedGoogle Scholar
  34. 34.
    Zhu Y, King MA, Schuller AG, et al. Retention of supraspinal delta-like analgesia and loss of morphine tolerance in delta opioid receptor knock-out mice. Neuron. 1999;24:243-252.CrossRefPubMedGoogle Scholar
  35. 35.
    Gomes I, Gupta A, Filipovska J, Szeto HH, Pintar JE, Devi LA. A role for heterodimerization of µ and δ opiate receptors in enhancing morphine analgesia. Proc Natl Acad Sci USA. 2004;101:5135-5139.CrossRefPubMedGoogle Scholar
  36. 36.
    Freye E, Latasch L, Portoghese PS. The delta receptor is involved in sufentanil-induced respi-ratory depression—opioid subreceptors mediate different effects. Eur J Anaesthesiol. 1992;9:457-462.PubMedGoogle Scholar
  37. 37.
    Foxx-Orenstein AE, Jin JG, Grider JR. 5HT4 receptor agonists and delta opioid receptor antagonists act synergistically to stimulate colonic propulsion. Am J Physiol. 1998;275: G979-G983.PubMedGoogle Scholar
  38. 38.
    Schiller PW, Nguyen TM-D, Weltrowska G, et al. Differential stereochemical requirements of µ vs δ opioid receptors for ligand binding and signal transduction: development of a class of potent and highly δ-selective peptide antagonists. Proc Natl Acad Sci USA. 1992;89: 11871-11875.CrossRefPubMedGoogle Scholar
  39. 39.
    Schiller PW, Fundytus ME, Merovitz L, et al. The opioid µ agonist/δ antagonist DIPP-NH2[Ψ] produces a potent analgesic effect, no physical dependence, and less tolerance than morphine in rats. J Med Chem. 1999;42:3520-3526.CrossRefPubMedGoogle Scholar
  40. 40.
    Schiller PW, Weltrowska G, Berezowska I, et al. The TIPP opioid peptide family: develop-ment of δ antagonists, δ agonists and mixed µ agonist/δ antagonists. Biopolymers (Peptide Science). 1999;51:411-425.CrossRefPubMedGoogle Scholar
  41. 41.
    Weltrowska G, Lemieux C, Chung NN, Schiller PW. A chimeric opioid peptide with mixed µ agonist/δ antagonist properties. J Pept Res. 2004;63:63-68.CrossRefPubMedGoogle Scholar
  42. 42.
    Ananthan S, Kezar HS, III, Carter RL, et al. Synthesis, opioid receptor binding, and biological activities of naltrexone-derived pyrido- and pyrimidomorphinans. J Med Chem. 1999;42: 3527-3538.CrossRefPubMedGoogle Scholar
  43. 43.
    Ananthan S, Khare NK, Saini SK, et al. Identification of opioid ligands possessing mixed µ agonist/δ antagonist activity among pyridomorphinans derived from naloxone, oxymorphone, and hydromorphone. J Med Chem. 2004;47:1400-1412.CrossRefPubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2008

Authors and Affiliations

  1. 1.Laboratory of Chemical Biology and Peptide ResearchClinical Research Institute of MontrealMontrealCanada

Personalised recommendations