Skip to main content

The Role of Crystallography in Drug Design

  • Chapter

Abstract

Structure and function are intimately related. Nowhere is this more important than the area of bioactive molecules. It has been shown that the enantioselectivity of an enzyme is directly related to its chirality. X-ray crystallography is the only method for determining the “absolute” configuration of a molecule and is the most comprehensive technique available to determine the structure of any molecule at atomic resolution. Results from crystallographic studies provide unambiguous, accurate, and reliable 3-dimensional structural parameters, which are prerequisites for rational drug design and structure-based functional studies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Griffin JF, Duax WL, eds. Molecular Structure and Biological Activity. New York, NY: Elsevier Biomedical; 1982.

    Google Scholar 

  2. Hughes J, Smith TW, Kosterlitz HW, Fothergill LA, Morgan BA, Morris HR. Identification of 2 related pentapeptides from brain with potent opiate agonist activity. Nature. 1975;258:577-579.

    Article  PubMed  CAS  Google Scholar 

  3. Temussi PA, Picone D, Castiglione-Morelli MA, Motta A, Tancredi T. Bioactive conformation of linear peptides in solution: an elusive goal. Biopolymers. 1989;28:91-107.

    Article  PubMed  CAS  Google Scholar 

  4. Karle IL, Karle J, Mastropaolo D, Camerman A, Camerman N. [Leu - 5 ]enkepalin -4 co-crystallizing conformers with extended backbones that form an anti-parallel beta-sheet. Acta Crystallogr. 1983;B39:625-637.

    CAS  Google Scholar 

  5. Smith D, Griffin JF. Conformation of [Leu-5]enkephalin rrom X-ray-diffraction: features important for recognition at opiate receptor. Science. 1978;199:1214-1216.

    Article  PubMed  CAS  Google Scholar 

  6. Aubry A, Birlirakis N, Sakarellos-Daitsiotis M, Sakarellos C, Marraud M. A crystal molecular-conformation of leucine-enkephalin related to the morphine molecule. Biopolymers. 1989;28:27-40.

    Article  PubMed  CAS  Google Scholar 

  7. Doi M, Tanaka M, Ishida T, et al. Crystal-structures of [Met5] and [(4-bromo)Phe4,Met5]e nkephalins: formation of a dimeric antiparallel beta-structure. J Biochem (Tokyo). 1987;101:485-490.

    CAS  Google Scholar 

  8. Loew GH. Molecular modeling of opioid analgesics. Mod Drug Discovery. 1999;2:24-30.

    CAS  Google Scholar 

  9. SHELXTL [Computer program]. Version 6.10. Madison, Wisconsin: Bruker AXS Inc. 2000.

    Google Scholar 

  10. Griffin JF, Langs DA, Smith GD, Blundell TL, Tickle IJ, Bedarkar S. The crystal-structures of [Met5] enkephalin and a third form of [Leu5] enkephalin: observations of a novel pleated β-sheet. Proc Natl Acad Sci USA. 1986;83:3272-3276.

    Article  PubMed  CAS  Google Scholar 

  11. Deschamps JR, Flippen-Anderson JL, Brine GA, Hayes JP, George C. Boc-tyrosyl-D-alanyl-glycyl-N-methyl-pnenylalanyl-O-methyl-methionine hydrate: a protected analog of metkeph-amid. Acta Crystallogr. 2002;58E:o13-o15.

    Google Scholar 

  12. Ishida T, Kenmotsu M, Mino Y, et al. X-Ray diffraction studies of enkephalins: crystal-structure of [(4′-bromo)Phe4,Leu5] enkephalin. Biochem J. 1984;218:677-689.

    PubMed  CAS  Google Scholar 

  13. Stezowski JJ, Eckle E, Bajusz SA. Crystal-structure determination for Tyr-d-Nle-Gly-Phe-Nles [Nles=MetCH2CH2CH2CH(NH2)SO3H]: an active synthetic enkephalin analog. J Chem Soc Chem Comm. 1985;11:681-682.

    Article  Google Scholar 

  14. Deschamps JR, George C, Flippen-Anderson JL. [D-Ala2,D-Leu5]-enkephalin (DADLE). Acta Crystallogr. 1996;52:1583-1585.

    Google Scholar 

  15. Flippen-Anderson JL, Deschamps JR, Ward KB, George C, Houghten R. The crystal structure of deltakephalin: a δ-selective opioid peptide with a novel β-bend-like conformation. Int J Pept Protein Res. 1994;44:97-104.

    Article  PubMed  CAS  Google Scholar 

  16. Fournie-Zaluski M, Prange T, Pascard C, Roques BP. Enkephalin related fragments: conforma-tional studies of the tetrapeptides Tyr-Gly-Gly-Phe and Gly-Gly-Phe-X (X = Leu, Met) by X-ray and 1H NMR spectroscopy. Biochem Biophys Res Commun. 1977;79:1199-1206.

    Article  PubMed  CAS  Google Scholar 

  17. Flippen-Anderson JL, Deschamps JR, George C, Hruby VJ, Misicka A, Lipkowski AW. Crystal structure of biphalin - multireceptor opioid peptide. J Pept Res. 2002;59:123-133.

    Article  PubMed  CAS  Google Scholar 

  18. Flippen-Anderson JL, George C, Deschamps JR, Reddy PA, Lewin AH, Brine GA. X-ray structures of a potent δ-receptor selective opioid antagonist and a protected form of the δ-receptor antagonist ICI 174,864. Lett Pept Sci. 1994;1:107-115.

    Article  CAS  Google Scholar 

  19. Flippen-Anderson JL, Hruby VJ, Collins N, George C, Cudney B. X-ray structure of [D-Pen2,D-Pen5]enkephalin, a highly potent, delta-opioid receptor-selective compound: com-parisons with proposed solution conformations. J Am Chem Soc. 1994;116:7523-7531.

    Article  CAS  Google Scholar 

  20. Collins N, Flippen-Anderson JL, Haaseth R, et al. Conformational determinants of agonist versus antagonist properties of [D-Pen2,D-Pen5]-enkephalin (DPDPE) analogs at opioid recep-tors: comparison of x-ray crystallographic structure, solution 1H NMR data, and molecular dynamic simulations of [L-Ala3]DPDPE and [D-Ala3]DPDPE. J Am Chem Soc. 1996;118:2143-2152.

    Article  CAS  Google Scholar 

  21. Nikiforovich GV, Kover KE, Kolodziej SA, et al. Design and comprehensive conformational studies of Tyr1-cyclo(D-Pen2-Gly3-Phe5-l-3-Mpt5) and Tyr(1)-cyclo(Pen2-Gly3-Phe5-d-3-Mpt5): novel conformationally constrained opioid peptides. J Am Chem Soc. 1996;118:959-969.

    Article  CAS  Google Scholar 

  22. Lomize AL, Flippen-Anderson JL, George C, Mosberg HI. Conformational-analysis of the delta-receptor-selective, cyclic opioid peptide, Tyr-cyclo[D-Cys-Phe-D-Pen]OH (JOM-13): comparison of X-ray crystallographic structures, molecular mechanics simulation, and 1H-NMR data. J Am Chem Soc. 1994;116:429-436.

    Article  CAS  Google Scholar 

  23. Flippen-Anderson JL, Deschamps JR, George C, et al. X-ray structure of Tyr-D-Tic-Phe-Phe-NH2 (D-TIPP-NH2), a highly potent µ-receptor selective opioid agonist: comparisons with proposed model structures. J Pept Res. 1997;49:384-393.

    PubMed  CAS  Google Scholar 

  24. Ciajolo MR, Balboni G, Picone D, et al. A solution and solid-state structure of the diketopi-perazine of tyrosyl-tetrahydroisoquinoline-3-carboxylic acid. Int J Pept Protein Res. 1995;46:134-138.

    PubMed  CAS  Google Scholar 

  25. Deschamps JR, Flippen-Anderson JL, George C. 2-[N-(t-Butoxycarbonyl)tyrosyl]-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid nitromethane solvate. Acta Crystallogr. 2001;57E: o87-o90.

    Google Scholar 

  26. Deschamps JR, Flippen-Anderson JL, Moore C, Cudney R, George C. Tyrosyl-D-tetrahydroi-soquinoline-3-carboxylic acid and tyrosyl-D-tetrahydroisoquinoline-3-carboxamide. Acta Crystallogr. 1997;C53:1478-1482.

    CAS  Google Scholar 

  27. Bryant SD, George C, Flippen-Anderson JL, et al. Crystal structures of dipeptides containing the DMT-TIC pharmacophore. J Med Chem. 2002;45:5506-5513.

    Article  PubMed  CAS  Google Scholar 

  28. Petsko GA. On the other hand.… Science. 1992;256:1403-1404.

    CAS  Google Scholar 

  29. Milton RC, Milton SCF, Kent BBH. Total chemical synthesis of a D-enzyme: the enantiomers of HIV-1 protease show demonstration of reciprocal chiral substrate specificity. Science. 1992;256:1445-1448.

    Article  PubMed  CAS  Google Scholar 

  30. Coster D, Knol KS, Prins JA. Unterschiede in der intensität der röntgenstrahlen-feflexion an den beiden 111-flächen der zinkblende. Z Phys. 1930;63:345-369.

    Article  CAS  Google Scholar 

  31. Bijvoet JM, Peerdeman AF, van Bommel AJ. Determination of the absolute configuration of optically active compounds by means of X-rays. Nature. 1951;168:271-272.

    Article  CAS  Google Scholar 

  32. Flack HD. On enantiomorph-polarity estimation. Acta Crystallogr. 1983;A39:876-881.

    CAS  Google Scholar 

  33. Schiller PW, Nguyen TMD, Weltrowska G, et al. Differential stereochemical requirments of µ vs δ opioid receptors for ligand binding and signal transduction: development of a class of potent and highly δ-selective peptide antagonists. Proc Natl Acad Sci USA. 1992;89:11871-11875.

    Article  PubMed  CAS  Google Scholar 

  34. Balboni G, Guerrini R, Salvadori S, et al. Evaluation of the Dmt-Tic pharmacophore: conver-sion of a potent delta-opioid receptor antagonist into a potent delta agonist and ligands with mixed properties. J Med Chem. 2002;45:713-720.

    Article  PubMed  CAS  Google Scholar 

  35. Eddy NB, May EL. The search for a better analgesic. Science. 1973;181:407-414.

    Article  PubMed  CAS  Google Scholar 

  36. Schiller PW, Yam CF, Lis M. Evidence of topographical analogy between methionine-enkephalin and morphine derivatives. Biochemistry. 1977;16:1831-1838.

    Article  PubMed  CAS  Google Scholar 

  37. Gylbert L. The crystal and molecule structure of morphine hydrochloride trihydrate. Acta Crystallogr. 1973;B29:1630-1635.

    Google Scholar 

  38. Thomas G. Medicinal Chemistry: An Introduction. Chichester, UK: John Wiley & Sons; 2000.

    Google Scholar 

  39. Foye WO, Lemke TL, Williams DA. Principles of Medicinal Chemistry. Baltimore, MD: Williams & Wilkins; 1995.

    Google Scholar 

  40. Michel AG, Evrard G, Norberg B, Milchert E. Molecular-Structure of Opiate Alkaloids. 2. Crystal-Structures of4-Methylhomobenzomorphan Hydrobromide(I) and4,12-beta- Dimethylhomobenzomorphan (II). Can J Chem. 1988;66:1763-1769.

    Article  CAS  Google Scholar 

  41. Thomas JB, Zheng XL, Mascarella SW, et al. N-substituted 9β-methyl-5-(3-hyroxyphenyl)morphans are opioid receptor pure antagonists. J Med Chem. 1998;41:4143-4149.

    Article  PubMed  CAS  Google Scholar 

  42. Hashimoto A, Jabobson AE, Rothman RB, et al. Probes for narcotic receptor mediated phe-nomena. 28. New opioid antagonists from enantiomeric analogues of m-hydroxyphenyl-N-phenylethylmorphan. Bioorg Med Chem. 2002;10:3319-3329.

    Article  PubMed  CAS  Google Scholar 

  43. Flippen-Anderson JL, George C, Bertha CM, Rice KC. X-ray crystal structures of potent opi-oid receptor ligands: etonitazene, cis-(+)-3-methylfentanyl, etorphine, diprenorphine, and buprenorphine. Heterocycles. 1994;39:751-766.

    Article  CAS  Google Scholar 

  44. Hruby VJ, Gehrig CA. Recent developments in the design of receptor specifico-peptides. Med Res Rev. 1989;9:343-401.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey R. Deschamps .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Deschamps, J.R. (2008). The Role of Crystallography in Drug Design. In: Rapaka, R.S., Sadée, W. (eds) Drug Addiction. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76678-2_21

Download citation

Publish with us

Policies and ethics