Skip to main content

Dual Dopamine/Serotonin Releasers as Potential Medications for Stimulant and Alcohol Addictions

  • Chapter
Drug Addiction

Abstract

We have advocated the idea of agonist therapy for treating cocaine addiction. This strategy involves administration of stimulant-like medications (eg, monoamine releasers) to alleviate withdrawal symptoms and prevent relapse. A major limitation of this approach is that many candidate medicines possess significant abuse potential because of activation of mesolimbic dopamine (DA) neurons in central nervous system reward circuits. Previous data suggest that serotonin (5-HT) neurons can provide an inhibitory influence over mesolimbic DA neurons. Thus, it might be predicted that the balance between DA and 5-HT transmission is important to consider when developing medications with reduced stimulant side effects. In this article, we discuss several issues related to the development of dual DA/5-HT releasers for the treatment of substance use disorders. First, we discuss evidence supporting the existence of a dual deficit in DA and 5-HT function during withdrawal from chronic cocaine or alcohol abuse. Then we summarize studies that have tested the hypothesis that 5-HT neurons can dampen the effects mediated by mesolimbic DA. For example, it has been shown that pharmacological manipulations that increase extracellular 5-HT attenuate stimulant effects produced by DA release, such as locomotor stimulation and self-administration behavior. Finally, we discuss our recently published data about PAL-287 (naphthylisopropylamine), a novel non-amphetamine DA-/5-HT-releasing agent that suppresses cocaine self-administration but lacks positive reinforcing properties. It is concluded that DA/5-HT releasers might be useful therapeutic adjuncts for the treatment of cocaine and alcohol addiction, obesity, and even attention deficit disorder and depression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baumann MH, Ayestas MA, Dersch CM, Brockington A, Rice KC, Rothman RB. Effects of phentermine and fenfluramine on extracellular dopamine and serotonin in rat nucleus accumbens: therapeutic implications. Synapse. 2000;36:102-113.

    Article  PubMed  CAS  Google Scholar 

  2. Baumann MH, Ayestas MA, Dersch CM, Rothman RB. 1-(m-Chlorophenyl)piperazine (mCPP) dissociates in vivo serotonin release from long-term serotonin depletion in rat brain. Neuropsychopharmacology. 2001;24:492-501.

    Article  PubMed  CAS  Google Scholar 

  3. Rea WP, Rothman RB, Shippenberg TS. Evaluation of the conditioned reinforcing effects of phentermine and fenfluramine in the rat: concordance with clinical studies. Synapse. 1998;30: 107-111.

    Article  PubMed  CAS  Google Scholar 

  4. Rothman RB, Baumann MH, Dersch CM, et al. Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin. Synapse. 2001;39:32-41.

    Article  PubMed  CAS  Google Scholar 

  5. Rothman RB, Baumann MH. Monoamine transporters and psychostimulant drugs. Eur J Pharmacol. 2003;479:23-40.

    Article  PubMed  CAS  Google Scholar 

  6. Rothman RB, Baumann MH. Serotonin releasing agents, Neurochemical, therapeutic and adverse effects. Pharmacol Biochem Behav. 2002;71:825-836.

    Article  PubMed  CAS  Google Scholar 

  7. Rothman RB, Blough BE, Woolverton WL, et al. Development of a rationally designed, low abuse potential, biogenic amine releaser that suppresses cocaine self-administration. J Pharmacol Exp Ther. 2005;313:1361-1369.

    Article  PubMed  CAS  Google Scholar 

  8. Wee S, Anderson KG, Baumann MH, Rothman RB, Blough BE, Woolverton WL. Relationship between the serotonergic activity and reinforcing effects of a series of ampheta-mine analogs. J Pharmacol Exp Ther. 2005;313:848-854.

    Article  PubMed  CAS  Google Scholar 

  9. Wojnicki FHE, Rothman RB, Rice KC, Glowa JR. Effects of phentermine on responding maintained under multiple fixed-ratio schedules of food and cocaine presentation in the rhesus monkey. J Pharmacol Exp Ther. 1999;288:550-560.

    PubMed  CAS  Google Scholar 

  10. Castro FG, Barrington EH, Walton MA, Rawson RA. Cocaine and methamphetamine: differ-ential addiction rates. Psychol Addict Behav. 2000;14:390-396.

    Article  Google Scholar 

  11. Musto DF. Cocaine’s history, especially the American experience. Ciba Found Symp. 1992;166:7-14. discussion 14-19.

    PubMed  CAS  Google Scholar 

  12. Das G. Cocaine abuse in North America: a milestone in history. J Clin Pharmacol. 1993;33:296-310.

    PubMed  CAS  Google Scholar 

  13. Centers for Disease Control and Prevention (CDC). Increasing morbidity and mortality asso-ciated with abuse of methamphetamine—United States, 1991-1994. MMWR Morb Mortal Wkly Rep. 1995;44:882-886.

    Google Scholar 

  14. Amara SG, Kuhar MJ. Neurotransmitter transporters: recent progress. Annu Rev Neurosci. 1993;16:73-93.

    Article  PubMed  CAS  Google Scholar 

  15. Masson J, Sagne C, Hamon M, el Mestikawy S. Neurotransmitter transporters in the central nervous system. Pharmacol Rev. 1999;51:439-464.

    PubMed  CAS  Google Scholar 

  16. Blakely RD, De Felice LJ, Hartzell HC. Molecular physiology of norepinephrine and serot-onin transporters. J Exp Biol. 1994;196:263-281.

    PubMed  CAS  Google Scholar 

  17. Uhl GR, Johnson PS. Neurotransmitter transporters: three important gene families for neuro-nal function. J Exp Biol. 1994;196:229-236.

    PubMed  CAS  Google Scholar 

  18. Amara SG, Sonders MS. Neurotransmitter transporters as molecular targets for addictive drugs. Drug Alcohol Depend. 1998;51:87-96.

    Article  PubMed  CAS  Google Scholar 

  19. Rudnick G, Clark J. From synapse to vesicle: the reuptake and storage of biogenic amine neurotransmitters. Biochim Biophys Acta. 1993;1144:249-263.

    Article  PubMed  CAS  Google Scholar 

  20. Rudnick G. Mechanisms of biogenic amine transporters. In: Reith MEA, ed. Neurotransmitter Transporters: Structure, Function and Regulation. Totowa, NJ: Humana Press; 1997:73-100.

    Google Scholar 

  21. Blakely RD, Defelice LJ, Galli A. Biogenic amine neurotransmitter transporters: just when you thought you knew them. Physiology (Bethesda). 2005;20:225-231.

    CAS  Google Scholar 

  22. Sitte HH, Freissmuth M. Oligomer formation by Na+-Cl−-coupled neurotransmitter transporters. Eur J Pharmacol. 2003;479:229-236.

    Article  PubMed  CAS  Google Scholar 

  23. Sulzer D, Sonders MS, Poulsen NW, Galli A. Mechanisms of neurotransmitter release by amphetamines: a review. Prog Neurobiol. 2005;75:406-433.

    Article  PubMed  CAS  Google Scholar 

  24. Alexander M, Rothman RB, Baumann MH, Endres CJ, Brasic JR, Wong DF. Noradrenergic and dopaminergic effects of (+)-amphetamine-like stimulants in the baboon Papio anubis. Synapse. 2005;56:94-99.

    Article  PubMed  CAS  Google Scholar 

  25. Koob GF. Alcoholism: allostasis and beyond. Alcohol Clin Exp Res. 2003;27:232-243.

    Article  PubMed  CAS  Google Scholar 

  26. Volkow ND, Li TK. Drug addiction: the neurobiology of behaviour gone awry. Nat Rev Neurosci. 2004;5:963-970.

    Article  PubMed  CAS  Google Scholar 

  27. Hyman SE. Addiction: a disease of learning and memory. Am J Psychiatry. 2005;162:1414-1422.

    Article  PubMed  Google Scholar 

  28. Weiss F, Parsons LH, Schulteis G, et al. Ethanol self-administration restores withdrawal-associated deficiencies in accumbal dopamine and 5-hydroxytryptamine release in dependent rats. J Neurosci. 1996;16:3474-3485.

    PubMed  CAS  Google Scholar 

  29. Parsons LH, Koob GF, Weiss F. Serotonin dysfunction in the nucleus accumbens of rats during withdrawal after unlimited access to intravenous cocaine. J Pharmacol Exp Ther. 1995;274: 1182-1191.

    PubMed  CAS  Google Scholar 

  30. Baumann MH, Rothman RB. Alterations in serotonergic responsiveness during cocaine with-drawal in rats: similarities to major depression in humans. Biol Psychiatry. 1998;44:578-591.

    Article  PubMed  CAS  Google Scholar 

  31. Dackis CA, Gold MS. New concepts in cocaine addiction: the dopamine depletion hypothesis. Neurosci Biobehav Rev. 1985;9:469-477.

    Article  PubMed  CAS  Google Scholar 

  32. Gawin FH, Kleber HD. Abstinence symptomatology and psychiatric diagnosis in cocaine abusers. Arch Gen Psychiatry. 1986;43:107-113.

    PubMed  CAS  Google Scholar 

  33. Garlow SJ, Purselle D, D’Orio B. Cocaine use disorders and suicidal ideation. Drug Alcohol Depend. 2003;70:101-104.

    Article  PubMed  Google Scholar 

  34. Mann JJ. Neurobiology of suicidal behaviour. Nat Rev Neurosci. 2003;4:819-828.

    Article  PubMed  CAS  Google Scholar 

  35. Lesch KP. Alcohol dependence and gene x environment interaction in emotion regulation: is serotonin the link? Eur J Pharmacol. 2005;526:113-124.

    Article  PubMed  CAS  Google Scholar 

  36. Rothman RB, Elmer GI, Shippenberg TS, Rea W, Baumann MH. Phentermine and fenfluramine: preclinical studies in animal models of cocaine addiction. Ann N Y Acad Sci. 1998;844:59-74.

    Article  PubMed  CAS  Google Scholar 

  37. Baumann MH, Rothman RB. Serotonergic dysfunction during cocaine withdrawal: implica-tions for cocaine-induced depression. In: Karch SB, ed. Drug Abuse Handbook. Boca Raton, FL: CRC Press; 1998:463-484.

    Google Scholar 

  38. Lin D, Koob GF, Markou A. Differential effects of withdrawal from chronic amphetamine or fluoxetine administration on brain stimulation reward in the rat—interactions between the two drugs. Psychopharmacology (Berl). 1999;145:283-294.

    Article  CAS  Google Scholar 

  39. Markou A, Koob GF. Postcocaine anhedonia. An animal model of cocaine withdrawal. Neuropsychopharmacology. 1991;4:17-26.

    PubMed  CAS  Google Scholar 

  40. Levy AD, Baumann MH, Van de Kar LD. Monoaminergic regulation of neuroendocrine func-tion and its modification by cocaine. Front Neuroendocrinol. 1994;15:85-156.

    Article  PubMed  CAS  Google Scholar 

  41. Yu YL, Fisher H, Sekowski A, Wagner GC. Amphetamine and fenfluramine suppress ethanol intake in ethanol-dependent rats. Alcohol. 1997;14:45-48.

    Article  PubMed  CAS  Google Scholar 

  42. Halladay AK, Wagner GC, Hsu T, Sekowski A, Fisher H. Differential effects of monoamin-ergic agonists on alcohol intake in rats fed a tryptophan-enhanced diet. Alcohol. 1999;18: 55-64.

    Article  PubMed  CAS  Google Scholar 

  43. Hitzig P. Combined dopamine and serotonin agonists: a synergistic approach to alcoholism and other addictive behaviors. Md Med J. 1993;42:153-157.

    PubMed  CAS  Google Scholar 

  44. Rothman RB, Gendron TM, Hitzig P. Combined use of fenfluramine and phentermine in the treatment of cocaine addiction: a pilot case series. J Subst Abuse Treat. 1994;11:273-275.

    Article  PubMed  CAS  Google Scholar 

  45. Glowa JR, Wojnicki FHE, Matecka D, Rice KC, Rothman RB. Effects of dopamine reuptake inhibitors on food- and cocaine-maintained responding, II: comparisons with other drugs and repeated administrations. Exp Clin Psychopharmacol. 1995;3:232-239.

    Article  CAS  Google Scholar 

  46. Negus SS, Mello NK. Effects of chronic d-amphetamine treatment on cocaine- and food-maintained responding under a progressive-ratio schedule in rhesus monkeys. Psychopharmacology (Berl). 2003;167:324-332.

    CAS  Google Scholar 

  47. Grabowski J, Shearer J, Merrill J, Negus SS. Agonist-like, replacement pharmacotherapy for stimulant abuse and dependence. Addict Behav. 2004;29:1439-1464.

    Article  PubMed  Google Scholar 

  48. Rothman RB, Blough BE, Baumann MH. Appetite suppressants as agonist substitution thera-pies for stimulant dependence. Ann N Y Acad Sci. 2002;965:109-126.

    Article  PubMed  CAS  Google Scholar 

  49. McGregor A, Lacosta S, Roberts DC. L-tryptophan decreases the breaking point under a pro-gressive ratio schedule of intravenous cocaine reinforcement in the rat. Pharmacol Biochem Behav. 1993;44:651-655.

    Article  PubMed  CAS  Google Scholar 

  50. Smith FL, Yu DS, Smith DG, Leccese AP, Lyness WH. Dietary tryptophan supplements attenu-ate amphetamine self-administration in the rat. Pharmacol Biochem Behav. 1986;25:849-855.

    Article  PubMed  CAS  Google Scholar 

  51. Glowa JR, Rice KC, Matecka D, Rothman RB. Phentermine/fenfluramine decreases cocaine self-administration in rhesus monkeys. Neuroreport. 1997;8:1347-1351.

    Article  PubMed  CAS  Google Scholar 

  52. Glatz AC, Ehrlich M, Bae RS, et al. Inhibition of cocaine self-administration by fluoxetine or D-fenfluramine combined with phentermine. Pharmacol Biochem Behav. 2002;71:197-204.

    Article  PubMed  CAS  Google Scholar 

  53. Burmeister JJ, Lungren EM, Neisewander JL. Effects of fluoxetine and d-fenfluramine on cocaine-seeking behavior in rats. Psychopharmacology (Berl). 2003;168:146-154.

    Article  CAS  Google Scholar 

  54. Buydens-Branchey L, Branchey M, Hudson J, Rothman M, Fergeson P, McKernin C. Effect of fenfluramine challenge on cocaine craving in addicted male users. Am J Addict. 1998;7: 142-155.

    Article  PubMed  CAS  Google Scholar 

  55. Halladay AK, Wagner GC, Sekowski A, Rothman RB, Baumann MH, Fisher H. Alterations in alcohol consumption, withdrawal seizures, and monoamine transmission in rats treated with phentermine and 5-hydroxy-L-tryptophan. Synapse. 2006;59:277-289.

    Article  PubMed  CAS  Google Scholar 

  56. Gorelick DA. The rate hypothesis and agonist substitution approaches to cocaine abuse treat-ment. Adv Pharmacol. 1998;42:995-997.

    Article  PubMed  CAS  Google Scholar 

  57. Henningfield JE. Nicotine medications for smoking cessation. N Engl J Med. 1995;333: 1196-1203.

    Article  PubMed  CAS  Google Scholar 

  58. Kreek MJ. Opiates, opioids and addiction. Mol Psychiatry. 1996;1:232-254.

    PubMed  CAS  Google Scholar 

  59. Ling W, Rawson RA, Compton MA. Substitution pharmacotherapies for opioid addiction: from methadone to LAAM and buprenorphine. J Psychoactive Drugs. 1994;26:119-128.

    PubMed  CAS  Google Scholar 

  60. Grabowski J, Roache JD, Schmitz JM, Rhoades H, Creson D, Korszun A. Replacement medica-tion for cocaine dependence: methylphenidate. J Clin Psychopharmacol. 1997;17:485-488.

    Article  PubMed  CAS  Google Scholar 

  61. Grabowski J, Rhoades H, Schmitz J, et al. Dextroamphetamine for cocaine-dependence treat-ment: a double-blind randomized clinical trial. J Clin Psychopharmacol. 2001;21:522-526.

    Article  PubMed  CAS  Google Scholar 

  62. Kampman KM, Rukstalis M, Pettinati H, et al. The combination of phentermine and fenflu-ramine reduced cocaine withdrawal symptoms in an open trial. J Subst Abuse Treat. 2000;19: 77-79.

    Article  PubMed  CAS  Google Scholar 

  63. Walsh SL, Haberny KA, Bigelow GE. Modulation of intravenous cocaine effects by chronic oral cocaine in humans. Psychopharmacology (Berl). 2000;150:361-373.

    Article  CAS  Google Scholar 

  64. Alim TN, Jr, Rosse RB, Jr, Vocci FJ, Jr, Lindquist T, Deutsch SI. Diethylpropion pharmaco-therapeutic adjuvant therapy for inpatient treatment of cocaine dependence: a test of the cocaine-agonist hypothesis. Clin Neuropharmacol. 1995;18:183-195.

    Article  PubMed  CAS  Google Scholar 

  65. Daw ND, Kakade S, Dayan P. Opponent interactions between serotonin and dopamine. Neural Netw. 2002;15:603-616.

    Article  PubMed  Google Scholar 

  66. Burmeister JJ, Lungren EM, Kirschner KF, Neisewander JL. Differential roles of 5-HT receptor subtypes in cue and cocaine reinstatement of cocaine-seeking behavior in rats. Neuropsychopharmacology. 2004;29:660-668.

    Article  PubMed  CAS  Google Scholar 

  67. Carroll ME, Lac ST, Asencio M, Kragh R. Fluoxetine reduces intravenous cocaine self-administration in rats. Pharmacol Biochem Behav. 1990;35:237-244.

    Article  PubMed  CAS  Google Scholar 

  68. Howell LL, Byrd LD. Serotonergic modulation of the behavioral effects of cocaine in the squirrel monkey. J Pharmacol Exp Ther. 1995;275:1551-1559.

    PubMed  CAS  Google Scholar 

  69. Roberts DC, Phelan R, Hodges LM, et al. Self-administration of cocaine analogs by rats. Psychopharmacology (Berl). 1999;144:389-397.

    Article  CAS  Google Scholar 

  70. Higgins GA, Fletcher PJ. Serotonin and drug reward: focus on 5-HT2C receptors. Eur J Pharmacol. 2003;480:151-162.

    Article  PubMed  CAS  Google Scholar 

  71. Rothman RB, Baumann M. Therapeutic and adverse actions of serotonin transporter sub-strates. Pharmacol Ther. 2002;95:73-88.

    Article  PubMed  CAS  Google Scholar 

  72. Connolly HM, McGoon MD. Obesity drugs and the heart. Curr Probl Cardiol. 1999;24: 745-792.

    Article  PubMed  CAS  Google Scholar 

  73. Fitzgerald LW, Burn TC, Brown BS, et al. Possible role of valvular serotonin 5-HT2B recep-tors in the cardiopathy associated with fenfluramine. Mol Pharmacol. 2000;57:75-81.

    PubMed  CAS  Google Scholar 

  74. Rothman RB, Baumann MH, Savage JE, et al. Evidence for possible involvement of 5-HT2B receptors in the cardiac valvulopathy associated with fenfluramine and other serotonergic medications. Circulation. 2000;102:2836-2841.

    PubMed  CAS  Google Scholar 

  75. Setola V, Hufeisen SJ, Grande-Allen KJ, et al. 3,4-Methylenedioxymethamphetamine (MDMA, “ecstasy”) induces fenfluramine-like proliferative actions on human cardiac valvular interstitial cells in vitro. Mol Pharmacol. 2003;63:1223-1229.

    Article  PubMed  CAS  Google Scholar 

  76. Nichols DE, Brewster WK, Johnson MP, Oberlender R, Riggs RM. Nonneurotoxic tetralin and indan analogues of 3,4-(methylenedioxy)amphetamine (MDA). J Med Chem. 1990;33: 703-710.

    Article  PubMed  CAS  Google Scholar 

  77. Launay JM, Herve P, Peoc’h K, et al. Function of the serotonin 5-hydroxytryptamine 2B receptor in pulmonary hypertension. Nat Med. 2002;8:1129-1135.

    Article  PubMed  CAS  Google Scholar 

  78. Gurtner HP. Aminorex and pulmonary hypertension. Cor Vasa. 1985;27:160-171.

    PubMed  CAS  Google Scholar 

  79. Rothman RB, Baumann MH. Neurochemical mechanisms of phentermine and fenfluramine: therapeutic and adverse effects. Drug Dev Res. 2000;51:52-65.

    Article  CAS  Google Scholar 

  80. Vickers SP, Clifton PG, Dourish CT, Tecott LH. Reduced satiating effect of d-fenfluramine in serotonin5-HT(2C) receptor mutant mice. Psychopharmacology(Berl). 1999;143:309-314.

    Article  CAS  Google Scholar 

  81. Czoty PW, Ginsburg BC, Howell LL. Serotonergic attenuation of the reinforcing and neuro-chemical effects of cocaine in squirrel monkeys. J Pharmacol Exp Ther. 2002;300:831-837.

    Article  PubMed  CAS  Google Scholar 

  82. Michelakis ED, Weir EK. Anorectic drugs and pulmonary hypertension from the bedside to the bench. Am J Med Sci. 2001;321:292-299.

    Article  PubMed  CAS  Google Scholar 

  83. Negus SS, Mello NK. Effects of chronic d-amphetamine treatment on cocaine- and food-maintained responding under a second-order schedule in rhesus monkeys. Drug Alcohol Depend. 2003;70:39-52.

    Article  PubMed  CAS  Google Scholar 

  84. Grabowski J, Rhoades H, Stotts A, et al. Agonist-like or antagonist-like treatment for cocaine dependence with methadone for heroin dependence: two double-blind randomized clinical trials. Neuropsychopharmacology. 2004;29:969-981.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard B. Rothman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Rothman, R.B., Blough, B.E., Baumann, M.H. (2008). Dual Dopamine/Serotonin Releasers as Potential Medications for Stimulant and Alcohol Addictions. In: Rapaka, R.S., Sadée, W. (eds) Drug Addiction. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76678-2_19

Download citation

Publish with us

Policies and ethics