Skip to main content

Formulation and Delivery Issues for Monoclonal Antibody Therapeutics

  • Chapter
  • First Online:
Book cover Current Trends in Monoclonal Antibody Development and Manufacturing

Part of the book series: Biotechnology: Pharmaceutical Aspects ((PHARMASP,volume XI))

Abstract

Therapeutic and diagnostic antibodies have become the fastest growing area of biopharmaceutical applications. There are now 18 monoclonal antibodies on the market and over 100 in clinical trials, which highlights the significance of these therapeutics and the advances made in antibody engineering. Further, by 2008, engineered antibodies are projected to be the source of over a third of the revenues from biotechnology (Baker 2005; Reichert et al. 2005).

A few seminal events that have led to the current and projected prominence of antibodies as biopharmaceuticals include the identification of methods to generate murine monoclonal versions of antibodies (Kohler and Milstein 1975), the cloning of human antibody sequences to allow for humanization of murine monoclonal antibodies through complementary-determining region (CDR) grafting (Jones et al. 1986), and even the establishment of fully humanized systems to generate monoclonal antibodies (Peterson 2005). With the sequential identification of these technological advances, antibodies for therapeutic and prophylactic indications have moved from fully murine, to partially murine (mostly human), and to completely human constructions. Added to these events, dramatic advances in production have led to the ability to prepare monoclonal antibodies at scales that can provide sufficient material at costs that make this area appealing to pharmaceutical companies. One important outcome of these various advances is a greater potential to use antibody drugs in chronic settings, tremendously expanding their biopharmaceutical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams GP, Weiner LM (2005) Monoclonal antibody therapy of cancer. Nat Biotechnol 23(9):1147–1157

    PubMed  CAS  Google Scholar 

  • Al-Abdulla I et al (2003) Formulation of a liquid ovine Fab-based antivenom for the treatment of envenomation by the Nigerian carpet viper (Echis ocellatus). Toxicon 42(4):399–404

    PubMed  CAS  Google Scholar 

  • Andya JD et al (1999) The effect of formulation excipients on protein stability and aerosol performance of spray-dried powders of a recombinant humanized anti-IgE monoclonal antibody. Pharm Res 16(3):350–358

    PubMed  CAS  Google Scholar 

  • Andya JD, Hsu CC, Shire SJ (2003) Mechanisms of aggregate formation and carbohydrate excipient stabilization of lyophilized humanized monoclonal antibody formulations. AAPS PharmSci 5(2):E10

    Google Scholar 

  • Arakawa T, Kita Y, Carpenter JF (1991) Protein–solvent interactions in pharmaceutical formulations. Pharm Res 8(3):285–291

    PubMed  CAS  Google Scholar 

  • Atkinson EM, Klum W (2001) Formulations strategies for biopharmaceuticals – ensuring success to market. IDrugs 4(5):557–560

    PubMed  CAS  Google Scholar 

  • Baert F et al (2003) Influence of immunogenicity on the long-term efficacy of infliximab in Crohn’s disease. N Engl J Med 348(7):601–608

    PubMed  CAS  Google Scholar 

  • Baker M (2005) Upping the ante on antibodies. Nat Biotechnol 23(9):1065–1072

    PubMed  CAS  Google Scholar 

  • Balthasar S et al (2005) Preparation and characterisation of antibody modified gelatin nanoparticles as drug carrier system for uptake in lymphocytes. Biomaterials 26(15):2723–2732

    PubMed  CAS  Google Scholar 

  • Baynes BM, Trout BL (2004) Rational design of solution additives for the prevention of protein aggregation. Biophys J 87(3):1631–1639

    PubMed  CAS  Google Scholar 

  • Bazin R et al (1994) Use of hu-IgG-SCID mice to evaluate the in vivo stability of human monoclonal IgG antibodies. J Immunol Methods 172(2):209–217

    PubMed  CAS  Google Scholar 

  • Bitonti AJ et al (2004) Pulmonary delivery of an erythropoietin Fc fusion protein in non-human primates through an immunoglobulin transport pathway. Proc Natl Acad Sci U S A 101(26):9763–9768

    PubMed  CAS  Google Scholar 

  • Bogard WC Jr et al (1989) Practical considerations in the production, purification, and formulation of monoclonal antibodies for immunoscintigraphy and immunotherapy. Semin Nucl Med 19(3):202–220

    PubMed  Google Scholar 

  • Brannon-Peppas L, Blanchette JO (2004) Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 56(11):1649–1659

    PubMed  CAS  Google Scholar 

  • Breen ED et al (2001) Effect of moisture on the stability of a lyophilized humanized monoclonal antibody formulation. Pharm Res 18(9):1345–1353

    PubMed  CAS  Google Scholar 

  • Chang LL et al (2005) Effect of sorbitol and residual moisture on the stability of lyophilized antibodies: implications for the mechanism of protein stabilization in the solid state. J Pharm Sci 94(7):1445–1455

    PubMed  CAS  Google Scholar 

  • Chapman SA et al (2004) Acute renal failure and intravenous immune globulin: occurs with sucrose-stabilized, but not with d-sorbitol-stabilized, formulation. Ann Pharmacother 38(12):2059–2067

    PubMed  Google Scholar 

  • Chatenoud L (2003) CD3-specific antibody-induced active tolerance: from bench to bedside. Nat Rev Immunol 3(2):123–132

    PubMed  CAS  Google Scholar 

  • Cheifetz A, Mayer L (2005) Monoclonal antibodies, immunogenicity, and associated infusion reactions. Mt Sinai J Med 72(4):250–256

    PubMed  Google Scholar 

  • Cheifetz A et al (2003) The incidence and management of infusion reactions to infliximab: a large center experience. Am J Gastroenterol 98(6):1315–1324

    PubMed  CAS  Google Scholar 

  • Chelius D, Rehder DS, Bondarenko PV (2005) Identification and characterization of deamidation sites in the conserved regions of human immunoglobulin gamma antibodies. Anal Chem 77(18):6004–6011

    PubMed  CAS  Google Scholar 

  • Cleland JL, Powell MF, Shire SJ (1993) The development of stable protein formulations: a close look at protein aggregation, deamidation, and oxidation. Crit Rev Ther Drug Carrier Syst 10(4):307–377

    PubMed  CAS  Google Scholar 

  • Cleland JL et al (2001) A specific molar ratio of stabilizer to protein is required for storage stability of a lyophilized monoclonal antibody. J Pharm Sci 90(3):310–321

    PubMed  CAS  Google Scholar 

  • Cook-Bruns N (2001) Retrospective analysis of the safety of Herceptin immunotherapy in metastatic breast cancer. Oncology 61(Suppl 2):58–66

    PubMed  CAS  Google Scholar 

  • Cordoba AJ et al (2005) Non-enzymatic hinge region fragmentation of antibodies in solution. J Chromatogr B Analyt Technol Biomed Life Sci 818(2):115–121

    PubMed  CAS  Google Scholar 

  • Corthesy B (2003) Recombinant secretory immunoglobulin A in passive immunotherapy: linking immunology and biotechnology. Curr Pharm Biotechnol 4(1):51–67

    PubMed  CAS  Google Scholar 

  • Costantino HR et al (1998a) Effect of excipients on the stability and structure of lyophilized recombinant human growth hormone. J Pharm Sci 87(11):1412–1420

    PubMed  CAS  Google Scholar 

  • Costantino HR et al (1998b) Effect of mannitol crystallization on the stability and aerosol performance of a spray-dried pharmaceutical protein, recombinant humanized anti-IgE monoclonal antibody. J Pharm Sci 87(11):1406–1411

    PubMed  CAS  Google Scholar 

  • Crandall WV, Mackner LM (2003) Infusion reactions to infliximab in children and adolescents: frequency, outcome and a predictive model. Aliment Pharmacol Ther 17(1):75–84

    PubMed  CAS  Google Scholar 

  • Daugherty AL et al (1997) Pharmacological modulation of the tissue response to implanted polylactic-co-glycolic acid microspheres. Eur J Pharmacol Biopharm 44(1637):89–102

    CAS  Google Scholar 

  • Demarest SJ, Rogers J, Hansen G (2004) Optimization of the antibody C(H)3 domain by residue frequency analysis of IgG sequences. J Mol Biol 335(1):41–48

    PubMed  CAS  Google Scholar 

  • Dinauer N et al (2005) Selective targeting of antibody-conjugated nanoparticles to leukemic cells and primary T-lymphocytes. Biomaterials 26(29):5898–5906

    PubMed  CAS  Google Scholar 

  • Duddu SP, Dal Monte PR (1997) Effect of glass transition temperature on the stability of lyophilized formulations containing a chimeric therapeutic monoclonal antibody. Pharm Res 14(5):591–595

    PubMed  CAS  Google Scholar 

  • Dyba M, Tarasova NI, Michejda CJ (2004) Small molecule toxins targeting tumor receptors. Curr Pharm Des 10(19):2311–2334

    PubMed  CAS  Google Scholar 

  • Edwards DA et al (1997) Large porous particles for pulmonary drug delivery. Science 276(5320):1868–1871

    PubMed  CAS  Google Scholar 

  • Ewert S, Honegger A, Pluckthun A (2004) Stability improvement of antibodies for extracellular and intracellular applications: CDR grafting to stable frameworks and structure-based framework engineering. Methods 34(2):184–199

    PubMed  CAS  Google Scholar 

  • Ferro-Flores G, Lezama-Carrasco J (1994) A freeze dried kit formulation for the preparation of 99mTc-EHDP-MoAb-IOR CEA1 complex. Nucl Med Biol 21(7):1013–1016

    PubMed  CAS  Google Scholar 

  • Friedli HR (1987) Methodology and safety considerations in the production of an intravenous immunoglobulin preparation. Pharmacotherapy 7(2):S36–S40

    Google Scholar 

  • Gekko K (1981) Mechanism of polyol-induced protein stabilization: solubility of amino acids and diglycine in aqueous polyol solutions. J Biochem 90(6):1633–1641

    PubMed  CAS  Google Scholar 

  • Grainger DW (2004) Controlled-release and local delivery of therapeutic antibodies. Expert Opin Biol Ther 4(7):1029–1044

    PubMed  CAS  Google Scholar 

  • Granholm AC et al (1998) A non-invasive system for delivering neural growth factors across the blood–brain barrier: a review. Rev Neurosci 9(1):31–55

    PubMed  CAS  Google Scholar 

  • Griffiths HR (2000) Antioxidants and protein oxidation. Free Radic Res 33(Suppl):S47–S58

    Google Scholar 

  • Gupta S, Kaisheva E (2003) Development of a multidose formulation for a humanized monoclonal antibody using experimental design techniques. AAPS PharmSci 5(2):E8

    Google Scholar 

  • Gupta RK, Chang AC, Siber GR (1998) Biodegradable polymer microspheres as vaccine adjuvants and delivery systems. Dev Biol Stand 92:63–78

    PubMed  CAS  Google Scholar 

  • Hall CG, Abraham GN (1984) Reversible self-association of a human myeloma protein. Thermodynamics and relevance to viscosity effects and solubility. Biochemistry 23(22):5123–5129

    PubMed  CAS  Google Scholar 

  • Harris RJ (2005) Heterogeneity of recombinant antibodies: linking structure to function. Dev Biol (Basel) 122:117–127

    CAS  Google Scholar 

  • Harris RJ et al (2001) Identification of multiple sources of charge heterogeneity in a recombinant antibody. J Chromatogr B Biomed Sci Appl 752(2):233–245

    PubMed  CAS  Google Scholar 

  • Hasegawa G et al (2005) Synthesis and characterization of a novel reagent containing dansyl group, which specifically alkylates sulfhydryl group: an example of application for protein chemistry. J Biochem Biophys Methods 63(1):33–42

    PubMed  CAS  Google Scholar 

  • Heinis C, Alessi P, Neri D (2004) Engineering a thermostable human prolyl endopeptidase for antibody-directed enzyme prodrug therapy. Biochemistry 43(20):6293–6303

    PubMed  CAS  Google Scholar 

  • Hodoniczky J, Zheng YZ, James DC (2005) Control of recombinant monoclonal antibody effector functions by fc N-glycan remodeling in vitro. Biotechnol Prog 21(6):1644–1652

    PubMed  CAS  Google Scholar 

  • Holliger P, Hudson PJ (2005) Engineered antibody fragments and the rise of single domains. Nat Biotechnol 23(9):1126–1136

    PubMed  CAS  Google Scholar 

  • Horie K et al (2004) Suppressive effect of functional drinking yogurt containing specific egg yolk immunoglobulin on Helicobacter pylori in humans. J Dairy Sci 87(12):4073–4079

    PubMed  CAS  Google Scholar 

  • Hsu CC et al (1992) Determining the optimum residual moisture in lyophilized protein pharmaceuticals. Dev Biol Stand 74:255–270 discussion 271

    PubMed  CAS  Google Scholar 

  • Hsu CC et al (1996) Design and application of a low-temperature Peltier-cooling microscope stage. J Pharm Sci 85(1):70–74

    PubMed  CAS  Google Scholar 

  • Huang L et al (2005) In vivo deamidation characterization of monoclonal antibody by LC/MS/MS. Anal Chem 77(5):1432–1439

    PubMed  CAS  Google Scholar 

  • Idusogie EE et al (2001) Engineered antibodies with increased activity to recruit complement. J Immunol 166(4):2571–2575

    PubMed  CAS  Google Scholar 

  • Imai M et al (2005) Complement-mediated mechanisms in anti-GD2 monoclonal antibody therapy of murine metastatic cancer. Cancer Res 65(22):10562–10568

    PubMed  CAS  Google Scholar 

  • Jasin HE (1993) Oxidative modification of inflammatory synovial fluid immunoglobulin G. Inflammation 17(2):167–181

    PubMed  CAS  Google Scholar 

  • Javed Q et al (2002) Tumor necrosis factor-alpha antibody eluting stents reduce vascular smooth muscle cell proliferation in saphenous vein organ culture. Exp Mol Pathol 73(2):104–111

    PubMed  CAS  Google Scholar 

  • Jefferis R (2005) Glycosylation of recombinant antibody therapeutics. Biotechnol Prog 21(1):11–16

    PubMed  CAS  Google Scholar 

  • Jespers L et al (2004) Crystal structure of HEL4, a soluble, refoldable human V(H) single domain with a germ-line scaffold. J Mol Biol 337(4):893–903

    PubMed  CAS  Google Scholar 

  • Jones PT et al (1986) Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321(6069):522–525

    PubMed  CAS  Google Scholar 

  • Jones AJ et al (1997) Recombinant human growth hormone poly(lactic-co-glycolic acid) microsphere formulation development. Adv Drug Deliv Rev 28(1):71–84

    PubMed  Google Scholar 

  • Kawade Y (1985) Neutralization of activity of effector protein by monoclonal antibody: formulation of antibody dose-dependence of neutralization for an equilibrium system of antibody, effector, and its cellular receptor. Immunology 56(3):497–504

    PubMed  CAS  Google Scholar 

  • Kohler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256(5517):495–497

    PubMed  CAS  Google Scholar 

  • Kroon DJ, Baldwin-Ferro A, Lalan P (1992) Identification of sites of degradation in a therapeutic monoclonal antibody by peptide mapping. Pharm Res 9(11):1386–1393

    PubMed  CAS  Google Scholar 

  • Kuo PY, Sherwood JK, Saltzman WM (1998) Topical antibody delivery systems produce sustained levels in mucosal tissue and blood. Nat Biotechnol 16(2):163–167

    PubMed  CAS  Google Scholar 

  • Lackey CA et al (2002) A biomimetic pH-responsive polymer directs endosomal release and intracellular delivery of an endocytosed antibody complex. Bioconjug Chem 13(5):996–1001

    PubMed  CAS  Google Scholar 

  • Lam XM, Yang JY, Cleland JL (1997) Antioxidants for prevention of methionine oxidation in recombinant monoclonal antibody HER2. J Pharm Sci 86(11):1250–1255

    PubMed  CAS  Google Scholar 

  • Lavelle EC et al (1999) The stability and immunogenicity of a protein antigen encapsulated in biodegradable microparticles based on blends of lactide polymers and polyethylene glycol. Vaccine 17(6):512–529

    PubMed  CAS  Google Scholar 

  • Lencer WI, Blumberg RS (2005) A passionate kiss, then run: exocytosis and recycling of IgG by FcRn. Trends Cell Biol 15(1):5–9

    PubMed  CAS  Google Scholar 

  • Lonberg N (2005) Human antibodies from transgenic animals. Nat Biotechnol 23(9):1117–1125

    PubMed  CAS  Google Scholar 

  • Luzardo-Alvarez A et al (2005) Biodegradable microspheres alone do not stimulate murine macrophages in vitro, but prolong antigen presentation by macrophages in vitro and stimulate a solid immune response in mice. J Control Release 109(1–3):62–76

    PubMed  CAS  Google Scholar 

  • Ma JK et al (1998) Characterization of a recombinant plant monoclonal secretory antibody and preventive immunotherapy in humans. Nat Med 4(5):601–606

    PubMed  CAS  Google Scholar 

  • Ma X et al (2001) Characterization of murine monoclonal antibody to tumor necrosis factor (TNF-MAb) formulation for freeze-drying cycle development. Pharm Res 18(2):196–202

    PubMed  CAS  Google Scholar 

  • Mahler HC et al (2005) Induction and analysis of aggregates in a liquid IgG1-antibody formulation. Eur J Pharm Biopharm 59(3):407–417

    PubMed  CAS  Google Scholar 

  • Merluzzi S et al (2000) Humanized antibodies as potential drugs for therapeutic use. Adv Clin Path 4(2):77–85

    PubMed  CAS  Google Scholar 

  • Middaugh CR et al (1978) Physicochemical characterization of six monoclonal cryoimmunoglobulins: possible basis for cold-dependent insolubility. Proc Natl Acad Sci U S A 75(7):3440–3444

    PubMed  CAS  Google Scholar 

  • Mimura Y et al (1995) Microheterogeneity of mouse antidextran monoclonal antibodies. Electrophoresis 16(1):116–123

    PubMed  CAS  Google Scholar 

  • Mine Y, Kovacs-Nolan J (2002) Chicken egg yolk antibodies as therapeutics in enteric infectious disease: a review. J Med Food 5(3):159–169

    PubMed  CAS  Google Scholar 

  • Mire-Sluis AR (2001) Progress in the use of biological assays during the development of biotechnology products. Pharm Res 18(9):1239–1246

    PubMed  CAS  Google Scholar 

  • Moore JM, Patapoff TW, Cromwell ME (1999) Kinetics and thermodynamics of dimer formation and dissociation for a recombinant humanized monoclonal antibody to vascular endothelial growth factor. Biochemistry 38(42):13960–13967

    PubMed  CAS  Google Scholar 

  • Mordenti J et al (1999) Intraocular pharmacokinetics and safety of a humanized monoclonal antibody in rabbits after intravitreal administration of a solution or a PLGA microsphere formulation. Toxicol Sci 52(1):101–106

    PubMed  CAS  Google Scholar 

  • Morgan PE, Sturgess AD, Davies MJ (2005) Increased levels of serum protein oxidation and correlation with disease activity in systemic lupus erythematosus. Arthritis Rheum 52(7):2069–2079

    PubMed  CAS  Google Scholar 

  • Mueller BM, Wrasidlo WA, Reisfeld RA (1990) Antibody conjugates with morpholinodoxorubicin and acid-cleavable linkers. Bioconjug Chem 1(5):325–330

    PubMed  CAS  Google Scholar 

  • Nakamura T et al (2004) Antibody-targeted cell fusion. Nat Biotechnol 22(3):331–336

    PubMed  CAS  Google Scholar 

  • O’Hagan DT et al (1991) Biodegradable microparticles as controlled release antigen delivery systems. Immunology 73(2):239–242

    PubMed  Google Scholar 

  • Page M et al (1995) Fragmentation of therapeutic human immunoglobulin preparations. Vox Sang 69(3):183–194

    PubMed  CAS  Google Scholar 

  • Panka DJ (1997) Glycosylation is influential in murine IgG3 self-association. Mol Immunol 34(8–9):593–598

    PubMed  CAS  Google Scholar 

  • Park JW et al (1995) Development of anti-p185HER2 immunoliposomes for cancer therapy. Proc Natl Acad Sci U S A 92(5):1327–1331

    PubMed  CAS  Google Scholar 

  • Park JW, Benz CC, Martin FJ (2004) Future directions of liposome- and immunoliposome-based cancer therapeutics. Semin Oncol 31(6 Suppl 13):196–205

    PubMed  CAS  Google Scholar 

  • Peterson NC (2005) Advances in monoclonal antibody technology: genetic engineering of mice, cells, and immunoglobulins. ILAR J 46(3):314–319

    PubMed  CAS  Google Scholar 

  • Poelstra KA et al (2002) Prophylactic treatment of gram-positive and gram-negative abdominal implant infections using locally delivered polyclonal antibodies. J Biomed Mater Res 60(1):206–215

    PubMed  CAS  Google Scholar 

  • Presta LG (2002) Engineering antibodies for therapy. Curr Pharm Biotechnol 3(3):237–256

    PubMed  CAS  Google Scholar 

  • Radkiewicz JL et al (2001) Neighboring side chain effects on asparaginyl and aspartyl degradation: an ab initio study of the relationship between peptide conformation and backbone NH acidity. J Am Chem Soc 123(15):3499–3506

    PubMed  CAS  Google Scholar 

  • Reichert JM et al (2005) Monoclonal antibody successes in the clinic. Nat Biotechnol 23(9):1073–1078

    PubMed  CAS  Google Scholar 

  • Reilly RM, Domingo R, Sandhu J (1997) Oral delivery of antibodies. Future pharmacokinetic trends. Clin Pharmacokinet 32(4):313–323

    PubMed  CAS  Google Scholar 

  • Riggin A et al (1991) Solution stability of the monoclonal antibody-vinca alkaloid conjugate, KS1/4-DAVLB. Pharm Res 8(10):1264–1269

    PubMed  CAS  Google Scholar 

  • Robinson NE, Robinson AB (2001a) Prediction of protein deamidation rates from primary and three-dimensional structure. Proc Natl Acad Sci U S A 98(8):4367–4372

    PubMed  CAS  Google Scholar 

  • Robinson NE, Robinson AB (2001b) Deamidation of human proteins. Proc Natl Acad Sci U S A 98(22):12409–12413

    PubMed  CAS  Google Scholar 

  • Robinson NE, Robinson AB (2001c) Molecular clocks. Proc Natl Acad Sci U S A 98(3):944–949

    PubMed  CAS  Google Scholar 

  • Robinson NE, Robinson AB (2004) Prediction of primary structure deamidation rates of asparaginyl and glutaminyl peptides through steric and catalytic effects. J Pept Res 63(5):437–448

    PubMed  CAS  Google Scholar 

  • Robinson AB, McKerrow JH, Cary P (1970) Controlled deamidation of peptides and proteins: an experimental hazard and a possible biological timer. Proc Natl Acad Sci U S A 66(3):753–757

    PubMed  CAS  Google Scholar 

  • Robinson NE et al (2004) Structure-dependent nonenzymatic deamidation of glutaminyl and asparaginyl pentapeptides. J Pept Res 63(5):426–436

    PubMed  CAS  Google Scholar 

  • Rojas IA, Slunt JB, Grainger DW (2000) Polyurethane coatings release bioactive antibodies to reduce bacterial adhesion. J Control Release 63(1–2):175–189

    PubMed  CAS  Google Scholar 

  • Rudikoff S et al (1982) Single amino acid substitution altering antigen-binding specificity. Proc Natl Acad Sci U S A 79(6):1979–1983

    PubMed  CAS  Google Scholar 

  • Saito G, Swanson JA, Lee KD (2003) Drug delivery strategy utilizing conjugation via reversible disulfide linkages: role and site of cellular reducing activities. Adv Drug Deliv Rev 55(2):199–215

    PubMed  CAS  Google Scholar 

  • Saltzman WM et al (2000) Long-term vaginal antibody delivery: delivery systems and biodistribution. Biotechnol Bioeng 67(3):253–264

    PubMed  CAS  Google Scholar 

  • Sane SU, Wong R, Hsu CC (2004) Raman spectroscopic characterization of drying-induced structural changes in a therapeutic antibody: correlating structural changes with long-term stability. J Pharm Sci 93(4):1005–1018

    PubMed  CAS  Google Scholar 

  • Sarciaux JM et al (1999) Effects of buffer composition and processing conditions on aggregation of bovine IgG during freeze-drying. J Pharm Sci 88(12):1354–1361

    PubMed  CAS  Google Scholar 

  • Schnyder A, Huwyler J (2005) Drug transport to brain with targeted liposomes. NeuroRx 2(1):99–107

    PubMed  Google Scholar 

  • Sgouris JT (1970) Studies on immune serum globulin (IgG) and its modification for intravenous administration. Prog Immunobiol Stand 4:104–113

    PubMed  CAS  Google Scholar 

  • Shen FJ et al (1996) The application of tert-butylhydroperoxide oxidation to study sites of potential methionine oxidation in a recombinant antibody. In: Marshak D (ed) Techniques in protein chemistry VII. Academic, San Diego, pp 275–284

    Google Scholar 

  • Shields RL et al (2001) High resolution mapping of the binding site on human IgG1 for Fc gamma RI, Fc gamma RII, Fc gamma RIII, and FcRn and design of IgG1 variants with improved binding to the Fc gamma R. J Biol Chem 276(9):6591–6604

    PubMed  CAS  Google Scholar 

  • Siberil S et al (2005) Selection of a human anti-RhD monoclonal antibody for therapeutic use: impact of IgG glycosylation on activating and inhibitory Fc gamma R functions. Clin Immunol 118(2–3):170–179

    PubMed  Google Scholar 

  • Spiekermann GM et al (2002) Receptor-mediated immunoglobulin G transport across mucosal barriers in adult life: functional expression of FcRn in the mammalian lung. J Exp Med 196(3):303–310

    PubMed  CAS  Google Scholar 

  • Stockwin LH, Holmes S (2003) Antibodies as therapeutic agents: vive la renaissance!. Expert Opin Biol Ther 3(7):1133–1152

    PubMed  CAS  Google Scholar 

  • Stuart DD, Kao GY, Allen TM (2000) A novel, long-circulating, and functional liposomal formulation of antisense oligodeoxynucleotides targeted against MDR1. Cancer Gene Ther 7(3):466–475

    PubMed  CAS  Google Scholar 

  • Tian WM et al (2005) Hyaluronic acid hydrogel as Nogo-66 receptor antibody delivery system for the repairing of injured rat brain: in vitro. J Control Release 102(1):13–22

    PubMed  CAS  Google Scholar 

  • Tuncay M et al (2000) In vitro and in vivo evaluation of diclofenac sodium loaded albumin microspheres. J Microencapsul 17(2):145–155

    PubMed  CAS  Google Scholar 

  • Walsh S et al (2004) Extended nasal residence time of lysostaphin and an anti-staphylococcal monoclonal antibody by delivery in semisolid or polymeric carriers. Pharm Res 21(10):1770–1775

    PubMed  CAS  Google Scholar 

  • Wang CH, Sengothi K, Lee T (1999) Controlled release of human immunoglobulin G. 1. Release kinetics studies. J Pharm Sci 88(2):215–220

    PubMed  CAS  Google Scholar 

  • Wang J, Chua KM, Wang CH (2004) Stabilization and encapsulation of human immunoglobulin G into biodegradable microspheres. J Colloid Interface Sci 271(1):92–101

    PubMed  CAS  Google Scholar 

  • Wright A, Morrison SL (1994) Effect of altered CH2-associated carbohydrate structure on the functional properties and in vivo fate of chimeric mouse-human immunoglobulin G1. J Exp Med 180(3):1087–1096

    PubMed  CAS  Google Scholar 

  • Wu AM, Senter PD (2005) Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol 23(9):1137–1146

    PubMed  CAS  Google Scholar 

  • Yang MX et al (2003) Crystalline monoclonal antibodies for subcutaneous delivery. Proc Natl Acad Sci U S A 100(12):6934–6939

    PubMed  CAS  Google Scholar 

  • Yasui H, Ito W, Kurosawa Y (1994) Effects of substitutions of amino acids on the thermal stability of the Fv fragments of antibodies. FEBS Lett 353(2):143–146

    PubMed  CAS  Google Scholar 

  • Zhang W, Czupryn MJ (2003) Analysis of isoaspartate in a recombinant monoclonal antibody and its charge isoforms. J Pharm Biomed Anal 30(5):1479–1490

    PubMed  CAS  Google Scholar 

  • Zhu L et al (2005) Production of human monoclonal antibody in eggs of chimeric chickens. Nat Biotechnol 23(9):1159–1169

    PubMed  CAS  Google Scholar 

  • Zimmer AM et al (1989) Stability of radioiodinated monoclonal antibodies: in vitro storage and plasma analysis. Int J Rad Appl Instrum B 16(7):691–696

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments:

The authors wish to thank Reed Harris, Tom Patapoff, and Nancy Valente for their very insightful conversations and helpful suggestions. The review of the manuscript by Xanthe Lam, Brian Lobo, and Chung Hsu is appreciated. The references cited in this review were not intended to be inclusive of all of the seminal publications in the ever-expanding area of antibody stability and formulation. The relatively small numbers of references cited were selected to highlight specific aspects within the scope of this review. We regret that we could not cite many excellent publications that have made important contributions to this field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann L. Daugherty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Daugherty, A.L., Mrsny, R.J. (2010). Formulation and Delivery Issues for Monoclonal Antibody Therapeutics. In: Shire, S., Gombotz, W., Bechtold-Peters, K., Andya, J. (eds) Current Trends in Monoclonal Antibody Development and Manufacturing. Biotechnology: Pharmaceutical Aspects, vol XI. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76643-0_8

Download citation

Publish with us

Policies and ethics