Nanobodies, Single-Domain Antigen-Binding Fragments of Camelid Heavy-Chain Antibodies

  • Gholamreza Hassanzadeh Ghassabeh
  • Serge Muyldermans
  • Dirk Saerens
Part of the Biotechnology: Pharmaceutical Aspects book series (PHARMASP, volume XI)


Antibodies or immunoglobulins are glycoproteins produced by B-cells and play a central role in host immune defense. Antibodies can be elicited virtually against any substance. Moreover, the immune response to any given antigen can be diverse, comprising different antibodies exhibiting different affinities and/or epitope specificities. Due to their antigen specificity, high affinity and almost the limitless repertoire diversity, antibodies have placed themselves among the most attractive reagents for both fundamental and applied sciences.

Conventional antibodies are multimers of heavy (H) and light (L) chains, each chain consisting of variable (V) and constant (C) domains (Porter 1973; Padlan 1994). Naturally, in a conventional antibody, the variable region of the light chain (VL) and the variable region of the heavy chain (VH) combine to make the antigen binding site, although, in some cases, the heavy chain alone can also bind antigen (Utsumi and Karush 1964). The constant domains of antibodies are not involved in antigen recognition; the heavy chain constant regions CH2 and CH3 (Fc) are responsible for effector functions, which trigger the elimination of antigens (Fig. 3-1a) (Dwek et al. 1984; Burton 1985).


Immobilize Metal Affinity Chromatography Recombination Signal Sequence Variant Surface Glycoprotein Conventional Antibody Versus Gene Segment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Constant domain of the heavy chain


Fragment antigen binding


Fragment variable


Heavy chain


Heavy-chain antibody


Light chain


Single chain fragment variable


Variable domain of the heavy chain of the conventional antibodies


Variable domain of the heavy chain of the heavy-chain antibodies


Variable domain of the light chain of the conventional antibodies


  1. Alvarez-Reuda N, Behar G, Ferré V, Pugnière M, Roquet F, Gastinel L, Jacquot C, Aubry J, Baty D, Barbet J, Birklè S (2007) Generation of llama single-domain antibodies against methotrexate, a prototypical hapten. Mol Immunol 44:1680–1690CrossRefGoogle Scholar
  2. Atarhouch T, Bendahman N, Hamers-Casterman C, Hamers R, Muyldermans S (1997) cDNA sequence coding for the constant region of the dromedary γ3 heavy chain antibody. J Camel Pract Res 4:177–182Google Scholar
  3. Baral TN, Magez S, Stijlemans B, Conrath K, Vanhollebeke B, Pays E, Muyldermans S, De Baetselier P (2006) Experimental therapy of African trypanomisis with a nanobody-conjugated human trypanolytic factor. Nat Med 12:580–584PubMedCrossRefGoogle Scholar
  4. Beckman RA, Weiner LM, Davis HM (2007) Antibody constructs in cancer therapy. Cancer 109:170–179PubMedCrossRefGoogle Scholar
  5. Bereta M, Hayhurst A, Gajda M, Chorobik P, Targosz M, Marcinkiewicz J, Kaufman HL (2007) Improving tumor targeting and therapeutic potential of Salmonella VNP20009 by displaying cell surface CEA-specific antibodies. Vaccine 25:4183–4192PubMedCrossRefGoogle Scholar
  6. Burton DR (1985) Immunoglobulin G: functional sites. Mol Immunol 22:161–206PubMedCrossRefGoogle Scholar
  7. Cai X, Garen A (1997) Comparison of fusion phage libraries displaying VH or single-chain Fv antibody fragments derived from the antibody repertoire of a vaccinated melanoma patient as a source of melanoma-specific targeting molecules. Proc Natl Acad Sci U S A 94:9261–9266PubMedCrossRefGoogle Scholar
  8. Carter PJ (2006) Potent antibody therapeutics by design. Nat Rev Immunol 6:343–357PubMedCrossRefGoogle Scholar
  9. Chapman AP (2002) PEGylated antibodies and antibody fragments for improved therapy: a review. Adv Drug Deliv Rev 54:531–545PubMedCrossRefGoogle Scholar
  10. Chapman AP, Antoniw P, Spitali M, West S, Stephens S, King DJ (1999) Therapeutic antibody fragments with prolonged in vivo half-lives. Nat Biotechnol 17:780–783PubMedCrossRefGoogle Scholar
  11. Chothia C, Novotny J, Bruccoleri R, Karplus M (1985) Domain association in immunoglobulin molecules. The packing of variable domains. J Mol Biol 186:651–663PubMedCrossRefGoogle Scholar
  12. Clauss MA, Jain RK (1990) Interstitial transport of rabbit and sheep antibodies in normal and neoplastic tissues. Cancer Res 50:3487–3492PubMedGoogle Scholar
  13. Cogne M, Preud’homme JL, Guglielmi P (1989) Immunoglobulins gene alterations in human heavy chain disease. Res Immunol 140:487–502PubMedCrossRefGoogle Scholar
  14. Conrath KE, Lauwereys M, Galleni M, Matagne A, Frere JM, Kinne J, Wyns L, Muyldermans S (2001) Beta-lactamase inhibitors derived from single-domain antibody fragments elicited in Camelidae. Antimicrob Agents Chemother 45:2807–2812PubMedCrossRefGoogle Scholar
  15. Conrath K, Vincke C, Stijlemans B, Schymkowitz J, Decanniere K, Wyns L, Muyldermans S, Loris R (2005) Antigen binding and solubility effects upon the veneering of a camel VHH in framework-2 to mimic VH. J Mol Biol 350:112–125PubMedCrossRefGoogle Scholar
  16. Coppieters K, Dreier T, Silence K, de Haard H, Lauwereys M, Casteels P, Beirnaert E, Jonckheere H, Van de Wiele C, Staelens L et al (2006) Formatted anti-tumor necrosis factor alpha VHH proteins derived from camelids show superior potency and targeting to inflamed joints in a murine model of collagen-induced arthritis. Arthritis Rheum 54:1856–1866PubMedCrossRefGoogle Scholar
  17. Cortez-Retamozo V, Lauwereys M, Hassanzadeh GG, Gobert M, Conrath K, Muyldermans S, de Baetselier P, Revets H (2002) Efficient tumor targeting by single-domain antibody fragments of camels. Int J Cancer 98:456–462PubMedCrossRefGoogle Scholar
  18. Cortez-Retamozo V, Backmann N, Senter PD, Wernery U, De baetselier P, Muyldermans S, Revets H (2004) Efficient cancer therapy with a nanobody-based conjugate. Cancer Res 64:2853–2857PubMedCrossRefGoogle Scholar
  19. Davies J, Riechmann L (1994) ‘Camelising’ human antibody fragments: NMR studies on VH domains. FEBS Lett 339:285–290PubMedCrossRefGoogle Scholar
  20. Davies J, Riechmann L (1995) Antibody VH domains as small recognition units. Biotechnology 13:475–479PubMedCrossRefGoogle Scholar
  21. Davies J, Riechmann L (1996) Single antibody domains as small recognition units: design and in vitro antigen selection of camelized, human VH domains with improved protein stability. Protein Eng 9:531–537PubMedCrossRefGoogle Scholar
  22. De Genst E, Silence K, Decanniere K, Conrath K, Loris R, Kinne J, Muyldermans S, Wyns L (2006) Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies. Proc Natl Acad Sci U S A 103:4586–4591PubMedCrossRefGoogle Scholar
  23. de Haard HJW, Bezemer S, Ledeboer AM, Müller WH, Boender PJ, Moineau S, Coppelmans M-C, Verkleij AJ, Frenken LGJ, Verrips CT (2005) Llama antibodies against a lactococcal protein located at the tip of the phage tailprevent phage infection. J Bacteriol 187:4531–4541PubMedCrossRefGoogle Scholar
  24. Decanniere K, Desmyter A, Lauwereys M, Ghahroudi MA, Muyldermans S, Wyns L (1999) A single-domain antibody fragment in complex with RNase A: non-canonical loop structures and nanomolar affinity using two CDR loops. Structure 7:361–370PubMedCrossRefGoogle Scholar
  25. Decanniere K, Muyldermans S, Wyns L (2000) Canonical antigen binding loop structures: more structures, more canonical classes? J Mol Biol 300:83–91PubMedCrossRefGoogle Scholar
  26. Dennis M, Zhang M, Meng YG, Kadkhodayan M, Kirchhofer D, Combs D, Damico LA (2002) Albumin binding as a general strategy for improving the pharmacokinetics of proteins. J Biol Chem 277:35035–35043PubMedCrossRefGoogle Scholar
  27. Desmyter A, Transue TR, Ghahroudi MA, Dao Thi MH, Poortmans F, Hamers R, Muyldermans S, Wyns L (1996) Crystal structure of a camel single-domain VH antibody fragment in complex with lysozyme. Nat Struct Biol 3:803–811PubMedCrossRefGoogle Scholar
  28. Desmyter A, Decanniere K, Muyldermans S, Wyns L (2001) Antigen specificity and high affinity binding provided by one single loop of a camel single-domain antibody. J Biol Chem 276:26285–26290PubMedCrossRefGoogle Scholar
  29. Desmyter A, Spinelli S, Payan F, Lauwereys M, Wyns L, Muyldermans S, Cambillau C (2002) Three cameli VHH domains in complex with porcine α-amylase. J Biol Chem 277:23645–23650PubMedCrossRefGoogle Scholar
  30. Dolk E, van der Vaart M, Hulsik DL, Vriend G, de Haard H, Spinelli S, Cambillau C, Frenken L, Verrips T (2005) Isolation of llama antibody fragments for prevention of dandruff by phage display in shampoo. Appl Environ Microbiol 71:442–450PubMedCrossRefGoogle Scholar
  31. Dufner P, Jermutus L, Minter RR (2006) Harnessing phage and ribosome display for antibody optimization. Trends Biotechnol 24:523–529PubMedCrossRefGoogle Scholar
  32. Dumoulin M, Conrath K, van Meirhaeghe A, Meersman F, Heremans K, Frenken LGJ, Muyldermans S, Wyns L, Matagne A (2002) Single-domain antibody fragments with high conformational stability. Protein Sci 11:500–515PubMedCrossRefGoogle Scholar
  33. Dumoulin M, Last AM, Desmyter A, Decanniere K, Canet D, Larsson G, Spencer A, Archer DB, Sasse J, Muyldermans S et al (2003) A camelid antibody fragment inhibits the formation of amyloid fibrils human lysozyme. Nature 424:783–788PubMedCrossRefGoogle Scholar
  34. Dwek RA, Sutton BJ, Perkins SJ, Rademacher TW (1984) Structure–function relationships in immunoglobulins. Biochem Soc Symp 49:123–136PubMedGoogle Scholar
  35. El Khattabi M, Adams H, Heezius E, Hermans P, Detmers F, Maassen B, van der Ley P, Tommassen J, Verrips T, Stam J (2006) Llama single-chain antibody that blocks lipopolysaccharide binding and signaling: prospects for therapeutic applications. Clin Vaccine Immunol 13:1079–1086PubMedCrossRefGoogle Scholar
  36. Ewert S, Cambillau C, Conrath K, Pluckthun A (2002) Biophysical properties of camelid V(HH) domains compared to those of human V(H)3 domains. Biochemistry 41:3628–3636PubMedCrossRefGoogle Scholar
  37. Fleischman JB, Pain RH, Porter RR (1962) Reduction of γ-globulins. Arch Biochem Biophys 1:174–180PubMedGoogle Scholar
  38. Franklin EC, Lowenstein J, Bigelow B, Meltzer M (1964) Heavy chain disease. A new disorder of serum γ-globulins: report of the first case. Am J Med 37:332–350PubMedCrossRefGoogle Scholar
  39. Frenken LG, van der Linden RH, Hermans PW, Bos JW, Ruuls RC, de Geus B, Verrips CT (2000) Isolation of antigen specific llama VHH antibody fragments and their high level secretion by Saccharomyces cerevisiae. J Biotechnol 78:11–21PubMedCrossRefGoogle Scholar
  40. Ghahroudi MA, Desmyter A, Wyns L, Hamers R, Muyldermans S (1997) Selection and identification of single domain antibody fragments from camel heavy-chain antibodies. FEBS Lett 414:521–526CrossRefGoogle Scholar
  41. Goldman ER, Anderson GP, Liu JL, Delehanty JB, Sherwood LJ, Osborn LE, Cummins LB, Hayhurst A (2006) Facile generation of heat-stable antiviral and antitoxin single domain antibodies from a semisynthetic llama library. Anal Chem 78:8245–8255PubMedCrossRefGoogle Scholar
  42. Graff CP, Wittrup KD (2003) Theoretical analysis of antibody targeting of tumor spheroids: importance of dosage for penetration, and affinity for retention. Cancer Res 63:1288–1296PubMedGoogle Scholar
  43. Greenberg AS, Avila D, Hughes M, Hughes A, Mckinney EC, Flajnik MF (1995) A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks. Nature 374:168–173PubMedCrossRefGoogle Scholar
  44. Groot AJ, Verheesen P, Westerlaken EJ, Gort EH, van der Groep P, Bovenschen N, van der Wall E, van Diest PJ, Shvarts A (2006) Identification by phage display of single-domain antibody fragments specific for the ODD domain in hypoxia-inducible factor 1alpha. Lab Invest 86:345–356PubMedCrossRefGoogle Scholar
  45. Gueorguieva D, Li S, Walsh N, Mukerji A, Tanha J, Pandey S (2006) Identification of single-domain, Bax-specific intrabodies that confer resistance to mammalian cells against oxidative-stress-induced apoptosis. FASEB J 20:2636–2638PubMedCrossRefGoogle Scholar
  46. Hamers R, Muyldermans S (1998) Immunology of the camels and llamas. In: Pastoret PP, Griebel P, Bazin H, Govaerts A (eds) Handbook of vertebrate immunology. Academic, San Diego, CA, pp 421–438Google Scholar
  47. Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Bajyana Songa E, Bendahman N, Hamers R (1993) Naturally occurring antibodies devoid of light chains. Nature 363:446448CrossRefGoogle Scholar
  48. Harmsen MM, Ruuls RC, Nijman IJ, Niewold TA, Frenken LGJ, de Geus B (2000) Llama heavy-chain V regions consist of at least four distinct subfamilies revealing novel sequence features. Mol Immunol 37:579–590PubMedCrossRefGoogle Scholar
  49. Harmsen MM, Van Slot CB, Fijten HP, Van Setten MC (2005) Prolonged in vivo residence times of llama single-domain antibody fragments in pigs by binding to porcine immunoglobulins. Vaccine 23:4926–4934PubMedCrossRefGoogle Scholar
  50. Harmsen MM, van Slot CB, Fijten HP, van Keulen L, Rosalia RA, Weerdmeester K, Cornelissen AH, De Bruin MG, Eblé PL, Dekker A (2007) Passive immunization of guinea pigs with llama single-domain antibody fragments against foot-and-mouth disease. Vet Microbiol 120:193–206PubMedCrossRefGoogle Scholar
  51. Hasegawa K, Nakamura T, Harvey M, Ikeda Y, Oberg A, Figini M, Canevari S, Hartmann LC, Peng KW (2006) The use of a tropism-modified measles virus in folate receptor-targeted virotherapy of ovarian cancer. Clin Cancer Res 12:6170–6178PubMedCrossRefGoogle Scholar
  52. Hendershot LM (1990) Immunoglobulin heavy chain and binding protein complexes are dissociated in vivo by light chain addition. J Cell Biol 111:829–837PubMedCrossRefGoogle Scholar
  53. Hendershot LM, Bole D, Köhler G, Kearney JF (1987) Assembly and secretion of heavy chains that do not associate posttranslationally with immunoglobulin heavy chain-binding protein. J Cell Biol 104:761–767PubMedCrossRefGoogle Scholar
  54. Hoogenboom HR, Chames P (2000) Natural and designer binding sites made by phage display technology. Immunol Today 21:371–378PubMedCrossRefGoogle Scholar
  55. Hoogenboom HR, de Bruine AP, Hufton SE, Hoet RMA, Arends JW, Roovers RC (1998) Antibody phage display technology and its applications. Immunotechnology 4:309–318CrossRefGoogle Scholar
  56. Huang L, Reekmans G, Saerens D, Friedt JM, Frederix F, Francis L, Muyldermans S, Campitelli A, Van Hoof C (2005a) Prostate-specific antigen immunosensing based on mixed self-assembled monolayers, camel antibodies and colloidal gold enhanced sandwich assays. Biosens Bioelectron 21:483–490PubMedCrossRefGoogle Scholar
  57. Huang Y, Verheesen P, Roussis A, Frankhuizen W, Ginjaar J, Haldane F, Laval S, Anderson LVB, Verrips T, Frants RR et al (2005b) Protein studies in dysferlinopathy patients using llama-derived antibody fragments selected by phage display. Eur J Hum Genet 13:721–730PubMedCrossRefGoogle Scholar
  58. Hulstein JJJ, de Groot PG, Silence K, Veyradier A, Fijnheer R, Lenting PJ (2005) A novel nanobody that detects the gain-of-function phenotype of von Willebrand factor in ADAMTS13 deficiency and von Willebrand disease type 2B. Blood 106:3035–3042PubMedCrossRefGoogle Scholar
  59. Ismaili A, Jalali-Javaran M, Rasaee MJ, Rahbarizadeh F, Forouzandeh-Moghadam M, Memari HR (2007) Production and characterization of anti-(mucin MUC1) single-domain antibody in tobacco (Nicotiana tabacum cultivar Xanthi). Biotechnol Appl Biochem 47:11–19PubMedCrossRefGoogle Scholar
  60. Jobling SA, Jarman C, Teh MM, Holmberg N, Blake C, Verhoeyen ME (2003) Immunomodulation of enzyme function in plants by single-domain antibody fragments. Nat Biotechnol 21:77–80PubMedCrossRefGoogle Scholar
  61. Joosten V, Roelofs MS, van den Dries N, Goosen T, Verrips CT, van den Hondel CA, Lokman BC (2005) Production of bifunctional proteins by Aspergillus awamori: llama variable heavy chain antibody fragment (VHH) R9 coupled to Arthromyces ramosus peroxidase (ARP). J Biotechnol 120:347–359PubMedCrossRefGoogle Scholar
  62. Klooster R, Maassen BTH, Stam JC, Hermans PW, ten Haaft MR, Detmers FJM, de Haard HJ, Post JA, Verrips CT (2007) Improved anti-IgG and HSA affinity ligands: clinical application of VHH antibody technology. J Immunol Methods 324:1–12PubMedCrossRefGoogle Scholar
  63. Koch-Nolte F, Reyelt J, Schössow B, Schwarz N, Scheuplein F, Rothenburg S, Haag F, Alzogaray V, Cauerhff A, Goldbaum FA (2007) Single domain antibodies from llama effectively and specifically block T cell ecto-ADP-ribosyltransferase ART2.2 in vivo. FASEB J 21:3490–3498PubMedCrossRefGoogle Scholar
  64. Kortt AA, Guthrie RE, Hinds MG, Power BE, Ivancic N, Caldwell JB, Gruen LC, Norton RS, Hudson PJ (1995) Solution properties of Escherichia coli-expressed VH domain of anti-neuraminidase antibody NC41. J Protein Chem 14:167–178PubMedCrossRefGoogle Scholar
  65. Krüger C, Hultberg A, Marcotte H, Hermans P, Bezemer S, Frenken LG, Hammarström L (2006) Therapeutic effect of llama derived VHH fragments against Streptococcus mutans on the development of dental caries. Appl Microbiol Biothecnol 72:732–737CrossRefGoogle Scholar
  66. Ladenson RC, Crimmins DL, Landt Y, Ladenson JH (2006) Isolation and characterization of a thermally stable recombinant anti-caffeine heavy-chain antibody fragment. Anal Chem 78:4501–4508PubMedCrossRefGoogle Scholar
  67. Lakowski RA, Luscombe NM, Swindells MB, Thornton JM (1996) Protein clefts in molecular recognition and function. Protein Sci 5:2438–2452Google Scholar
  68. Lauwereys M, Ghahroudi MA, Desmyter A, Kinne J, Hölzer W, De Genst E, Wyns L, Muyldermans S (1998) Potent enzyme inhibitors derived from dromedary heavy-chain antibodies. EMBO J 17:3512–3520PubMedCrossRefGoogle Scholar
  69. Ledeboer AM, Bezemer S, de Haard JJW, Schaffers IM, Verrips CT, van Vliet C, Düsterhöft E-M, Zoon P, Moineau S, Frenken LGJ (2002) Preventing phage lysis of Lactococcus lactis in cheese production using a neutralizing heavy-chain antibody fragment from llama. J Dairy Sci 85:1376–1382PubMedCrossRefGoogle Scholar
  70. Loris R, Marianovsky I, Lah J, Laeremans T, Engelberg-Kulka H, Glaser G, Muyldermans S, Wyns L (2003) Crystal structure of the intrinsically flexible addiction antidote MazE. J Biol Chem 278:28252–28257PubMedCrossRefGoogle Scholar
  71. Maass DR, Sepulveda J, Pernthaner A, Shoemaker CB (2007) Alpaca (Lama pacos) as a convenient source of recombinant camelid heavy chain antibodies (VHHs). J Immunol Methods 324:13–25PubMedCrossRefGoogle Scholar
  72. Magee AM, Coyne S, Murphy D, Horvath EM, Medgyesy P, Kavanagh TA (2004) T7 RNA polymerase-directed expression of an antibody fragment transgene in plastids causes a semi-lethal pale-green seedling phenotype. Transgenic Res 13:325–337PubMedCrossRefGoogle Scholar
  73. Magee AM, MacLean D, Gray JC, Kavanagh TA (2007) Disruption of essential plastid gene expression caused by T7 RNA polymerase-mediated transcription of plastid transgenes during early seedling development. Transgenic Res 16:415–428PubMedCrossRefGoogle Scholar
  74. Marquardt A, Muyldermans S, Przybylski M (2006) A synthetic camel anti-lysozyme peptide antibody (peptibody) with flexible loop structure identified by high-resolution affinity mass spectrometry. Chem Eur J 12:1915–1923PubMedCrossRefGoogle Scholar
  75. Martin F, Volpari C, Steinkuhler C, Dimasi N, Brunetti M, Biasiol G, Altamura S, Cortese R, De Francesco R, Sollazzo M (1997) Affinity selection of a camelized VH domain antibody inhibitor of hepatitis C virus NS3 protease. Protein Eng 10: 607–614PubMedCrossRefGoogle Scholar
  76. McManus S, Riechmann L (1991) Use of 2D NMR, protein engineering, and molecular modeling to study the hapten-binding site of an antibody Fv fragment against 2-phenyloxazolone. Biochemistry 30:5851–5857PubMedCrossRefGoogle Scholar
  77. Mengesha A, Dubois L, Chiu RK, Paesmans K, Wouters BG, Lambin P, Theys J (2007) Potential and limitations of bacterial-mediated cancer therapy. Front Biosci 12:3880–3891PubMedCrossRefGoogle Scholar
  78. Milenic DE, Yokota T, Filpula DR, Finkelman MA, Dodd SW, Wood JF, Whitlow M, Snoy P, Schlom J (1991) Construction, binding properties, metabolism, and tumor targeting of a single-chain Fv derived from the pancarcinoma monoclonal antibody CC49. Cancer Res 51:6363–6371PubMedGoogle Scholar
  79. Muyldermans S (2001) Single domain camel antibodies: current status. Rev Mol Biotechnol 74:277–302CrossRefGoogle Scholar
  80. Muyldermans S, Atarhouch T, Saldanha J, Barbosa JA, Hamers R (1994) Sequence and structure of VH domain from naturally occurring camel heavy chain immunoglobulins lacking light chains. Protein Eng 7:1129–1135PubMedCrossRefGoogle Scholar
  81. Nguyen VK, Muyldermans S, Hamers R (1998) The specific variable domain of camel heavy-chain antibodies is encoded in the germline. J Mol Biol 257:413–418CrossRefGoogle Scholar
  82. Nguyen VK, Hamers R, Wyns L, Muyldermans S (1999) Loss of splice consensus signal is responsible for the removal of the entire CH1 domain of the functional camel IgG2A heavy-chain antibodies. Mol Immunol 36:515–524PubMedCrossRefGoogle Scholar
  83. Nguyen VK, Hamers R, Wyns L, Muyldermans S (2000) Camel heavy-chain antibodies: diverse germline VHH and specific mechanisms enlarge the antigen-binding repertoire. EMBO J 19:921–931PubMedCrossRefGoogle Scholar
  84. Nguyen VK, Desmyter A, Muyldermans S (2001) Functional heavy-chain antibodies in camelidae. Adv Immunol 79:261–296PubMedCrossRefGoogle Scholar
  85. Nguyen VK, Su C, Muyldermans S, van der Loo W (2002) Heavy-chain antibodies in camelidae; a case of evolutionary innovation. Immunogenetics 54:39–47PubMedCrossRefGoogle Scholar
  86. Nieba L, Honegger A, Krebber C, Plückthun A (1997) Disrupting the hydrophobic patches at the antibody variable/constant domain interface: improved in vivo folding and physical characterization of an engineered scFv fragment. Protein Eng 10:435–444PubMedCrossRefGoogle Scholar
  87. Nugent LJ, Jain RK (1984) Extravascular diffusion in normal and neoplastic tissues. Cancer Res 44:238–244PubMedGoogle Scholar
  88. Nuttall SD, Krishnan UV, Hattarki M, De Gori R, Irving RA, Hudson PJ (2001) Isolation of the new antigen receptor from wobbegong sharks, and use as a scaffold for the display of protein loop libraries. Mol Immunol 38:313–326PubMedCrossRefGoogle Scholar
  89. Olichon A, Schweizer D, Muyldermans S, de Marco A (2007) Heating as a rapid purification method for recovering correctly-folded thermotolerant VH and VHH domains. BMC Biotechnol 7:7PubMedCrossRefGoogle Scholar
  90. Padlan EA (1994) Anatomy of the antibody molecule. Mol Immunol 31:169–217PubMedCrossRefGoogle Scholar
  91. Padlan EA (1996) X-ray crystallography of antibodies. Adv Protein Chem 49:57–133PubMedCrossRefGoogle Scholar
  92. Pant N, Hultberg A, Zhao Y, Svensson L, Pan-Hammarström Q, Johansen K, Pouwels PH, Ruggeri FM, Hermans P, Frenken L et al (2006) Lactobacilli expressing variable domain of llama heavy-chain antibody fragments (lactobodies) confer protection against rotavirus-induced diarrhea. J Infect Dis 194:1580–1588PubMedCrossRefGoogle Scholar
  93. Pawelek JM, Low KB, Bermudes D (2003) Bacteria as tumor-targeting vectors. Lancet Oncol 4:548–556PubMedCrossRefGoogle Scholar
  94. Perez JM, Renisio JG, Prompers JJ, van Platerink CJ, Cambillau C, Darbon H, Frenken LGJ (2001) Thermal unfolding of a llama antibody fragment: a two-state reversible process. Biochemistry 40:74–83PubMedCrossRefGoogle Scholar
  95. Pleschberger M, Saerens D, Weigert S, Sleytr UB, Muyldermans S, Sára M, Egelseer EM (2004) An S-layer heavy chain camel antibody fusion protein for generation of a nanopatterned sensing layer to detect the prostate-specific antigen by surface plasmon resonance technology. Bioconjug Chem 15:664–671PubMedCrossRefGoogle Scholar
  96. Pluen A, Boucher Y, Ramanujan S, McKee TD, Gohongi T, di Tomaso E, Brown EB, Izumi Y, Campbell RB, Berk DA et al (2001) Role of tumor-host interactions in interstitial diffusion of macromolecules: cranial versus subcutaneous tumors. Proc Natl Acad Sci U S A 98:4628–4633PubMedCrossRefGoogle Scholar
  97. Porter RR (1973) Structural studies of immunoglobulins. Science 180:713–716PubMedCrossRefGoogle Scholar
  98. Potter KN, Li Y, Capra JD (1996) Staphylococcal protein A simultaneously interacts with framework region 1, complementarity determining region 2 and framework region 3 on human VH3-encoded Igs. J Immunol 157:2982–2988PubMedGoogle Scholar
  99. Rahbarizadeh F, Rasaee MJ, Forouzandeh-Moghadam M, Allameh AA (2005) High expression and purification of the recombinant camelid anti-MUC1 single domain antibodies in Escherichia coli. Protein Expr Purif 44:32–38PubMedCrossRefGoogle Scholar
  100. Rajabi-Memari H, Jalali-Javaran M, Rasaee MJ, Rahbarizadeh F, Forouzandeh-Moghadam M, Esmaili A (2006) Expression and characterization of a recombinant single-domain monoclonal antibody against MUC1 mucin in tobacco plants. Hybridoma (Larchmt) 25:209–215CrossRefGoogle Scholar
  101. Rast JP, Amemiya CT, Litman RT, Strong SJ, Litman GW (1998) Distinct patterns of IgH structure and organization in a divergent lineage of chrondrichthyan fishes. Immunogenetics 47:234–245PubMedCrossRefGoogle Scholar
  102. Reiter Y, Schuck P, Boyd LF, Plaksin D (1999) An antibody single-domain phage display library of a native heavy chain variable region: isolation of functional single-domain VH molecules with a unique interface. J Mol Biol 290:685–698PubMedCrossRefGoogle Scholar
  103. Riechmann L, Cavanagh J, McManus S (1991) Uniform labeling of a recombinant antibody Fv-fragment with 15N and 13C for heteronuclear NMR spectroscopy. FEBS Lett 287:185–188PubMedCrossRefGoogle Scholar
  104. Roholt O, Onoue K, Pressman D (1964) Specific combination of H and L chains of rabbit γ-globulins. Proc Natl Acad Sci U S A 51:173–178PubMedCrossRefGoogle Scholar
  105. Roovers RC, Laeremans T, Huang L, de Taeye S, Verkleij AJ, Revets H, de Haard HJ, van Bergen en Henegouwen PMP (2007) Efficient inhibition of EGFR signaling and of tumor growth by antagonistic anti-EGFR Nanobodies. Cancer Immunol Immunother 56:303–317PubMedCrossRefGoogle Scholar
  106. Rothbauer U, Zolghadr K, Tillib S, Nowak D, Schermelleh L, Gahl A, Backman N, Conrath K, Muyldermans S, Cardoso MC, Leonhardt H (2006) Targeting and tracing antigens in live cells with fluorescent nanobodies. Nat Methods 3:887–889PubMedCrossRefGoogle Scholar
  107. Saerens D, Kinne J, Bosmans E, Wernery U, Muyldermans S, Conrath K (2004) Single domain antibodies derived from dromedary lymph node and peripheral blood lymphocytes sensing conformational variants of prostate-specific antigen. J Biol Chem 279:51965–51972PubMedCrossRefGoogle Scholar
  108. Saerens D, Frederix F, Reekmans G, Conrath K, Jans K, Brys L, Huang L, Bosmans E, Maes G, Borghs G, Muyldermans S (2005) Engineering camel single-domain antibodies and immobilization chemistry for human prostate-specific antigen sensing. Anal Chem 77:7547–7555PubMedCrossRefGoogle Scholar
  109. Sasso EH, Silverman GJ, Mannik M (1991) Human IgA and IgG F(ab′)2 that bind to staphylococcal protein A belong to the VHIII subgroup. J Immunol 147:1877–1883PubMedGoogle Scholar
  110. Seligmann M, Mihaesco E, Preud’homme JL, Danon F, Brouet JC (1979) Heavy chain diseases: current findings and concepts. Immunol Rev 48:145–167PubMedCrossRefGoogle Scholar
  111. Skerra A, Plückthun A (1988) Assembly of functional immunoglobulin Fv fragment in Escherichia coli. Science 240:1038–1041PubMedCrossRefGoogle Scholar
  112. Spinelli S, Frenken L, Bourgeois D, de Ron L, Bos W, Verrips T, Anguille C, Cambillau C, Tegoni M (1996) The crystal structure of a llama heavy chain variable domain. Nat Struct Biol 3:752–757PubMedCrossRefGoogle Scholar
  113. Spinelli S, Frenken LG, Hermans P, Verrips T, Brown K, Tegoni M, Cambillau C (2000) Camelid heavy-chain variable domains provide efficient combining sites to haptens. Biochemistry 39:1217–1222PubMedCrossRefGoogle Scholar
  114. Stewart CS, MacKenzie CR, Hall JC (2007) Isolation, characterization and pentamerization of α-cobrotoxin specific single-domain antibodies from a naïve phage display library: preliminary findings for antivenom development. Toxicon 49:699–709PubMedCrossRefGoogle Scholar
  115. Stijlemans B, Conrath K, Cortez-Retamozo V, Van Xong H, Wyns L, Senter P, Revets H, De Baetselier P, Muyldermans S, Magez S (2004) Efficient targeting of conserved cryptic epitopes of infectious agents by single domain antibodies. J Biol Chem 279:1256–1261PubMedCrossRefGoogle Scholar
  116. Szynol A, de Soet JJ, Sieben-van Tuyl E, Bos JW, Frenken LG (2004) Bactericidal effects of a fusion protein of llama heavy-chain antibodies coupled to glucose oxidase on oral bacteria. Antimicrob Agents Chemother 48:3390–3395PubMedCrossRefGoogle Scholar
  117. Tanaka T, Lobato MN, Rabbitts TH (2003) Single domain intracellular antibodies: a minimal fragment for direct in vivo selection of antigen-specific intrabodies. J Mol Biol 331:1109–1120PubMedCrossRefGoogle Scholar
  118. Tanha J, Xu P, Chen Z, Ni F, Kaplan H, Narang SA, MacKenzie CR (2001) Optimal design features of camelized human single-domain antibody libraries. J Biol Chem 276:24774–24780PubMedCrossRefGoogle Scholar
  119. Transue TR, De Genst E, Ghahroudi MA, Wyns L, Muyldermans S (1998) Camel single-domain antibody inhibits enzyme by mimicking carbohydrate substrate. Proteins Struct Funct Genet 32:515–522PubMedCrossRefGoogle Scholar
  120. Tunggal JK, Cowan DS, Shaikh H, Tannock IF (1999) Penetration of anticancer drugs through solid tissue: a factor that limits the effectiveness of chemotherapy for solid tumors. Clin Cancer Res 5:1583–1586PubMedGoogle Scholar
  121. Utsumi S, Karush F (1964) The subunits of purified rabbit antibody. Biochemistry 3:1329–1338PubMedCrossRefGoogle Scholar
  122. Van der Linden RHJ, Frenken L, de Gues B, Harmsen MM, Ruuls RC, Stok W, de Ron L, Wilson S, Davis P, Verrips T (1999) Comparison of physical chemical properties of llama VHH antibody fragments and mouse monoclonal antibodies. Biochim Biophys Acta 1431:37–46PubMedCrossRefGoogle Scholar
  123. Van der Linden R, de Geus B, Stok W, Bos W, van Wassenaar D, Verrips T, Frenken L (2000a) Induction of immune responses and molecular cloning of the heavy chain antibody repertoire of Lama glama. J Immunol Methods 240:185–195PubMedCrossRefGoogle Scholar
  124. Van der Linden R, de Geus B, Frenken L, Peters H, Verrips T (2000b) Improved production and function of llama heavy chain antibody fragments by molecular evolution. J Biotechnol 80:261–270PubMedCrossRefGoogle Scholar
  125. Van der Vaart JM, Pant N, Wolvers D, Bezemer S, Hermans PW, Bellamy K, Sarker SA, van der Logt CPE, Svensson L, Verrips CT et al (2006) Reduction in morbidity of rotavirus induced diarrhea in mice by yeast produced monovalent llama-derived antibody fragments. Vaccine 24:4130–4137PubMedCrossRefGoogle Scholar
  126. Veiga E, de Lorenzo V, Fernández LA (2004) Structural tolerance of bacterial autotransporters for folded passenger protein domains. Mol Microbiol 52:1069–1080PubMedCrossRefGoogle Scholar
  127. Verheesen P, de Kluijver A, van Koningsbruggen S, de Brij M, de Haard H, van Ommen CJB, van der Maarel SM, Verrips T (2006a) Prevention of oculopharyngeal muscular dystrophy-associated aggregation of nuclear poly(A)-binding protein with a single-domain intracellular antibody. Hum Mol Genet 15:105–111PubMedCrossRefGoogle Scholar
  128. Verheesen P, Roussis A, de Haard HJ, Groot AJ, Stam JC, den Dunnen JT, Frants RR, Verkleij AJ, Verrips CT, van der Maarel SM (2006b) Reliable and controllable antibody fragment selections from camelid non-immune libraries for target validation. Biochim Biophys Acta 1764:1307–1319PubMedCrossRefGoogle Scholar
  129. Vu KB, Ghahroudi MA, Wyns L, Muyldermans S (1997) Comparison of llama VH sequences from conventional and heavy chain antibodies. Mol Immunol 34:1121–1131PubMedCrossRefGoogle Scholar
  130. Ward ES, Güssow D, Griffiths AD, Jones PT, Winter G (1989) Binding activities of a repertoire of single immunoglobulin variable domains secreted from Escherichia coli. Nature 341:544–546PubMedCrossRefGoogle Scholar
  131. Webster DM, Henry AH, Rees AR (1994) Antibody–antigen interactions. Curr Opin Struct Biol 4:123–129CrossRefGoogle Scholar
  132. Winter G, Griffiths AD, Hawkins RE, Hoogenboom HR (1994) Making antibodies by phage display technology. Annu Rev Immunol 12:433–455PubMedCrossRefGoogle Scholar
  133. Woolven BP, Frenken L, van der Logt P, Nicholls PJ (1999) The structure of the llama heavy chain constant genes reveals a mechanism for heavy-chain antibody formation. Immunogenetics 50:98–101PubMedCrossRefGoogle Scholar
  134. Wu AM, Senter PD (2005) Arming antibodies: prospects and challenges for immunoconjugates. Nat Biothecnol 23:1137–1146CrossRefGoogle Scholar
  135. Wu TT, Johnson G, Kabat EA (1993) Length distribution of CDR H3 in antibodies. Proteins Struct Funct Genet 16:1–7PubMedCrossRefGoogle Scholar
  136. Yau KY, Groves MA, Li S, Sheedy C, Lee H, Tanha J, MacKenzie CR, Jermutus L, Hall JC (2003) Selection of hapten-specific single-domain antibodies from a non-immunized llama ribosome display library. J Immunol Methods 281:161–175PubMedCrossRefGoogle Scholar
  137. Yau KY, Dubuc G, Li S, Hirama T, MacKenzie CR, Jermutus L, Hall JC, Tanha J (2005) Affinity maturation of a V(H)H by mutational hotspot randomization. J Immunol Methods 297:213–224PubMedCrossRefGoogle Scholar
  138. Yokota T, Milenic DE, Whitlow M, Schlom J (1992) Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms. Cancer Res 52:3402–3408PubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2010

Authors and Affiliations

  • Gholamreza Hassanzadeh Ghassabeh
    • 1
  • Serge Muyldermans
    • 1
  • Dirk Saerens
    • 1
  1. 1.VIB, Flanders Institute for Biotechnology, Vrije Universiteit BrusselBrusselsBelgium

Personalised recommendations