Recent Advancements in the Use of Antibody Drug Conjugates for Cancer Therapy

  • Peter D. Senter
Part of the Biotechnology: Pharmaceutical Aspects book series (PHARMASP, volume XI)


Monoclonal antibodies (mAbs) have demonstrated considerable utility in the clinical treatment of cancer (Reichert et al. 2005; Reichert and Valge-Archer 2007). While the activities of unmodified mAbs such as Rituxan® (rituximab) in non-Hodgkin’s lymphoma, Panorex® (edrecolomab) in colorectal carcinoma, Herceptin® (trastuzamab) for metastatic breast cancer and Avastin® (bevacizumab) for colorectal and lung cancer are substantial, these agents are rarely curative. As a result, considerable attention has turned to enhancing antibody activity by appending cytotoxic drugs to them, thereby generating antibody drug conjugates (ADCs) capable of site-selective drug delivery. The rationale for this approach is that by delivering cancer drugs to tumor cells, it may be possible to both enhance therapeutic efficacy and spare normal tissues from chemotherapeutic damage. In the past few years, significant progress has been made in this field of research (Damle 2004; Wu and Senter 2005; Kovtun and Goldmacher 2007; Carter and Senter 2008; Chari 2008). Critical parameters for ADC development have been identified which include the choice of target antigen, the ability of the ADC to get localized to target tissues, the fate of the antibody once bound to its cognate antigen, the stability of the linker used to attach the drug to the antibody both in the systemic circulation and inside the target cell, and the potency and mechanism of action of the released drug. Other important considerations include the methods used to generate ADCs, the composition and heterogeneity of the resulting product, and the effects that chemical modification have on such antibody properties as pharmacokinetics, biodistribution, antigen binding and effector functions. This review will describe several aspects of ADC development, with an emphasis on how addressing key parameters have led to promising agents that have advanced into clinical trials.


Drug Release Vinca Alkaloid Gemtuzumab Ozogamicin Linker Technology Spare Normal Tissue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aboukameel A, Goustin A-S, Mohammad R, Zuany-Amorim C, Bissery M-C, Al-Katib AM (2007) Superior anti-tumor activity of the CD19-directed immunotoxin, SAR3419 to rituximab in non-Hodgkin’s xenograft animal models: preclinical evaluation. Blood 110: Abstract 2339Google Scholar
  2. Afar DE, Bhaskar V, Ibsen E, Breinberg D, Henshall SM, Kench JG, Drobnjak M, Powers R, Wong M, Evangelista F et al (2004) Preclinical validation of anti-TMEFF2-auristatin E-conjugated antibodies in the treatment of prostate cancer. Mol Cancer Ther 3:921–932PubMedGoogle Scholar
  3. Alley SC, Benjamin DR, Jeffrey SC, Okeley NM, Meyer DL, Sanderson RJ, Senter PD (2008) The contribution of linker stability to the activities of anticancer immunoconjugates. Bioconjug Chem, 19, 759–765Google Scholar
  4. Benjamin D, Morris-Tilden C, Stone I, Jonas M, Sutherland MK, Miyamoto J, Brown L, Westendorf L, Meyer D, Carter P (2007) Humanized anti-CD19 auristatin antibody-drug conjugates display potent antitumor activity in preclinical models of B-cell malignancies. AACR-NCI-EORTC Conference on Molecular Targets and Cancer Therapeutics: Abstract B60Google Scholar
  5. Bhaskar V, Law DA, Ibsen E, Breinberg D, Cass KM, DuBridge RB, Evangelista F, Henshall SM, Hevezi P, Miller JC et al (2003) E-Selectin up-regulation allows for targeted drug delivery in prostate cancer. Cancer Res 63:6387–6394PubMedGoogle Scholar
  6. Binz HK, Amstutz P, Pluckthun A (2005) Engineering novel binding proteins from nonimmunoglobulin domains. Nat Biotechnol 23:1257–1268PubMedCrossRefGoogle Scholar
  7. Boghaert ER, Sridharan L, Armellino DC, Khandke KM, DiJoseph JF, Kunz A, Dougher MM, Jiang F, Kalyandrug LB, Hamann PR et al (2004) Antibody-targeted chemotherapy with the calicheamicin conjugate hu3S193-N-acetyl γ calicheamicin dimethyl hydrazide targets LewisY and eliminates LewisY-positive human carcinoma cells and xenografts. Clin Cancer Res 10:4538–4549PubMedCrossRefGoogle Scholar
  8. Boghaert ER, Khandke K, Sridharan L, Armellino D, Dougher M, Dijoseph JF, Kunz A, Hamann PR, Sridharan A, Jones S et al (2006) Tumoricidal effect of calicheamicin immuno-conjugates using a passive targeting strategy. Int J Oncol 28:675–684PubMedGoogle Scholar
  9. Boghaert ER, Khandke KM, Sridharan L, Dougher M, Dijoseph JF, Kunz A, Hamann PR, Moran J, Chaudhary I, Damle NK (2007) Determination of pharmacokinetic values of calicheamicin-antibody conjugates in mice by plasmon resonance analysis of small (5 mul) blood samples. Cancer Chemother Pharmacol, 61, 1027–1035Google Scholar
  10. Boghaert ER, Sridharan L, Khandke KM, Armellino D, Ryan MG, Myers K, Harrop R, Kunz A, Hamann PR, Marquette K et al (2008) The oncofetal protein, 5 T4, is a suitable target for antibody-guided anti-cancer chemotherapy with calicheamicin. Int J Oncol 32:221–234PubMedGoogle Scholar
  11. Bross PF, Beitz J, Chen G, Chen XH, Duffy E, Kieffer L, Roy S, Sridhara R, Rahman A, Williams G et al (2001) Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res 7:1490–1496PubMedGoogle Scholar
  12. Carter PJ, Senter PD (2008) Antibody–drug conjugates for cancer therapy. Cancer J 14:154–169PubMedCrossRefGoogle Scholar
  13. Chari RV (2008) Targeted cancer therapy: conferring specificity to cytotoxic drugs. Acc Chem Res 41:98–107PubMedCrossRefGoogle Scholar
  14. Chen Q, Millar HJ, McCabe FL, Manning CD, Steeves R, Lai K, Kellogg B, Lutz RJ, Trikha M, Nakada MT et al (2007a) αv Integrin-targeted immunoconjugates regress established human tumors in xenograft models. Clin Cancer Res 13:3689–3695PubMedCrossRefGoogle Scholar
  15. Chen Y, Clark S, Wong T, Dennis MS, Luis E, Zhong F, Bheddah S, Koeppen H, Gogineni A, Ross S et al (2007b) Armed antibodies targeting the mucin repeats of the ovarian cancer antigen, MUC16, are highly efficacious in animal tumor models. Cancer Res 67:4924–4932PubMedCrossRefGoogle Scholar
  16. Damle NK (2004) Tumour-targeted chemotherapy with immunoconjugates of calicheamicin. Expert Opin Biol Ther 4:1445–1452PubMedCrossRefGoogle Scholar
  17. Damle NK, Frost P (2003) Antibody-targeted chemotherapy with immunoconjugates of calicheamicin. Curr Opin Pharmacol 3:386–390PubMedCrossRefGoogle Scholar
  18. DiJoseph JF, Armellino DC, Boghaert ER, Khandke K, Dougher MM, Sridharan L, Kunz A, Hamann PR, Gorovits B, Udata C et al (2004a) Antibody-targeted chemotherapy with CMC-544: a CD22-targeted immunoconjugate of calicheamicin for the treatment of B-lymphoid malignancies. Blood 103:1807–1814PubMedCrossRefGoogle Scholar
  19. DiJoseph JF, Goad ME, Dougher MM, Boghaert ER, Kunz A, Hamann PR, Damle NK (2004b) Potent and specific antitumor efficacy of CMC-544, a CD22-targeted immunoconjugate of calicheamicin, against systemically disseminated B-cell lymphoma. Clin Cancer Res 10:8620–8629PubMedCrossRefGoogle Scholar
  20. DiJoseph JF, Popplewell A, Tickle S, Ladyman H, Lawson A, Kunz A, Khandke K, Armellino DC, Boghaert ER, Hamann P et al (2005) Antibody-targeted chemotherapy of B-cell lymphoma using calicheamicin conjugated to murine or humanized antibody against CD22. Cancer Immunol Immunother 54:11–24PubMedCrossRefGoogle Scholar
  21. Doronina SO, Toki BE, Torgov MY, Mendelsohn BA, Cerveny CG, Chace DF, DeBlanc RL, Gearing RP, Bovee TD, Siegall CB et al (2003) Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat Biotechnol 21:778–784PubMedCrossRefGoogle Scholar
  22. Doronina SO, Mendelsohn BA, Bovee TD, Cerveny CG, Alley SC, Meyer DL, Oflazoglu E, Toki BE, Sanderson RJ, Zabinski RF et al (2006) Enhanced activity of monomethylauristatin F through monoclonal antibody delivery: effects of linker technology on efficacy and toxicity. Bioconjug Chem 17:114–124PubMedCrossRefGoogle Scholar
  23. Dubowchik GM, Firestone RA (1998) Cathepsin B-sensitive dipeptide prodrugs. 1. A model study of structural requirements for efficient release of doxorubicin. Bioorg Med Chem Lett 8:3341–3346PubMedCrossRefGoogle Scholar
  24. Dubowchik GM, Mosure K, Knipe JO, Firestone RA (1998) Cathepsin B-sensitive dipeptide prodrugs. 2. Models of anticancer drugs paclitaxel (Taxol), mitomycin C and doxorubicin. Bioorg Med Chem Lett 8:3347–3352PubMedCrossRefGoogle Scholar
  25. Erickson HK, Park PU, Widdison WC, Kovtun YV, Garrett LM, Hoffman K, Lutz RJ, Goldmacher VS, Blättler WA (2006) Antibody–maytansinoid conjugates are activated in targeted cancer cells by lysosomal degradation and linker-dependent intracellular processing. Cancer Res 66:4426–4433PubMedCrossRefGoogle Scholar
  26. Francisco JA, Cerveny CG, Meyer DL, Mixan BJ, Klussman K, Chace DF, Rejniak SX, Gordon KA, DeBlanc R, Toki BE et al (2003) cAC10-Val-CitMMAE, an anti-CD30-monomethyl auristatin E conjugate with potent and selective antitumor activity. Blood 102:1458–1465PubMedCrossRefGoogle Scholar
  27. Hamann PR, Hinman LM, Hollander I, Beyer CF, Lindh D, Holcomb R, Hallett W, Tsou HR, Upeslacis J, Shochat D et al (2002) Gemtuzumab ozogamicin, a potent and selective anti-CD33 antibody–calicheamicin conjugate for treatment of acute myeloid leukemia. Bioconjug Chem 13:47–58PubMedCrossRefGoogle Scholar
  28. Hamann PR, Hinman LM, Beyer CF, Greenberger LM, Lin C, Lindh D, Menendez AT, Wallace R, Durr FE, Upeslacis J (2005) An anti-MUC1 antibody–calicheamicin conjugate for treatment of solid tumors. Choice of linker and overcoming drug resistance. Bioconjug Chem 16:346–353PubMedCrossRefGoogle Scholar
  29. Hamblett KJ, Senter PD, Chace DF, Sun MM, Lenox J, Cerveny CG, Kissler KM, Bernhardt SX, Kopcha AK, Zabinski RF et al (2004) Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res 10:7063–7070PubMedCrossRefGoogle Scholar
  30. Henry MD, Wen S, Silva MD, Chandra S, Milton M, Worland PJ (2004) A prostate-specific membrane antigen-targeted monoclonal antibody–chemotherapeutic conjugate designed for the treatment of prostate cancer. Cancer Res 64:7995–8001PubMedCrossRefGoogle Scholar
  31. Hollander I, Kunz A, Hamann PR (2008) Selection of reaction additives used in the preparation of monomeric antibody–calicheamicin conjugates. Bioconjug Chem 19:358–361PubMedCrossRefGoogle Scholar
  32. Jedema I, Barge RM, van der Velden VH, Nijmeijer BA, van Dongen JJ, Willemze R, Falkenburg JH (2004) Internalization and cell cycle-dependent killing of leukemic cells by Gemtuzumab Ozogamicin: rationale for efficacy in CD33-negative malignancies with endocytic capacity. Leukemia 18:316–325PubMedCrossRefGoogle Scholar
  33. Junutula JR, Bhakta S, Raab H, Ervin KE, Eigenbrot C, Vandlen R, Scheller RH, Lowman HB (2008a) Rapid identification of reactive cysteine residues for site-specific labeling of antibody-Fabs. J Immunol Methods 332:41–52PubMedCrossRefGoogle Scholar
  34. Junutula JR, Raab H, Clark S, Bhakta S, Leipold DD, Weir S, Chen Y, Simpson M, Tsai SP, Dennis MS et al (2008b) Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat Biotechnol 26:925–932PubMedCrossRefGoogle Scholar
  35. King HD, Dubowchik GM, Mastalerz H, Willner D, Hofstead SJ, Firestone RA, Lasch SJ, Trail PA (2002) Monoclonal antibody conjugates of doxorubicin prepared with branched peptide linkers: inhibition of aggregation by methoxytriethyleneglycol chains. J Med Chem 45:4336–4343PubMedCrossRefGoogle Scholar
  36. Kovtun YV, Goldmacher VS (2007) Cell killing by antibody–drug conjugates. Cancer Lett 255:232–240PubMedCrossRefGoogle Scholar
  37. Kovtun YV, Audette CA, Ye Y, Xie H, Ruberti MF, Phinney SJ, Leece BA, Chittenden T, Blättler WA, Goldmacher VS (2006) Antibody–drug conjugates designed to eradicate tumors with homogeneous and heterogeneous expression of the target antigen. Cancer Res 66:3214–3221PubMedCrossRefGoogle Scholar
  38. Larson RA, Sievers EL, Stadtmauer EA, Lowenberg B, Estey EH, Dombret H, Theobald M, Voliotis D, Bennett JM, Richie M et al (2005) Final report of the efficacy and safety of gemtuzumab ozogamicin (Mylotarg) in patients with CD33-positive acute myeloid leukemia in first recurrence. Cancer 104:1442–1452PubMedCrossRefGoogle Scholar
  39. Law CL, Cerveny CG, Gordon KA, Klussman K, Mixan BJ, Chace DF, Meyer DL, Doronina SO, Siegall CB, Francisco JA et al (2004) Efficient elimination of B-lineage lymphomas by anti-CD20-auristatin conjugates. Clin Cancer Res 10:7842–7851PubMedCrossRefGoogle Scholar
  40. Law CL, Gordon KA, Toki BE, Yamane AK, Hering MA, Cerveny CG, Petroziello JM, Ryan MC, Smith L, Simon R et al (2006) Lymphocyte activation antigen CD70 expressed by renal cell carcinoma is a potential therapeutic target for anti-CD70 antibody–drug conjugates. Cancer Res 66:2328–2337PubMedCrossRefGoogle Scholar
  41. Legrand O, Vidriales MB, Thomas X, Dumontet C, Vekhoff A, Morariu-Zamfir R, Lambert J, San Miguel JF, Marie J-P (2007) An open label, dose escalation study of AVE9633 administered as a single agent by intravenous (IV) infusion weekly for 2 weeks in 4-week cycle to patients with relapsed or refractory CD33-positive acute myeloid leukemia (AML). Blood 110: Abstract 1850Google Scholar
  42. Liu C, Tadayoni BM, Bourret LA, Mattocks KM, Derr SM, Widdison WC, Kedersha NL, Ariniello PD, Goldmacher VS, Lambert JM et al (1996) Eradication of large colon tumor xenografts by targeted delivery of maytansinoids. Proc Natl Acad Sci U S A 93:8618–8623PubMedCrossRefGoogle Scholar
  43. Ma D, Hopf CE, Malewicz AD, Donovan GP, Senter PD, Goeckeler WF, Maddon PJ, Olson WC (2006) Potent antitumor activity of an auristatin-conjugated, fully human monoclonal antibody to prostate-specific membrane antigen. Clin Cancer Res 12:2591–2596PubMedCrossRefGoogle Scholar
  44. Mao W, Luis E, Ross S, Silva J, Tan C, Crowley C, Chui C, Franz G, Senter P, Koeppen H et al (2004) EphB2 as a therapeutic antibody drug target for the treatment of colorectal cancer. Cancer Res 64:781–788PubMedCrossRefGoogle Scholar
  45. McDonagh CF, Turcott E, Westendorf L, Webster JB, Alley SC, Kim K, Andreyka J, Stone I, Hamblett KJ, Francisco JA et al (2006) Engineered antibody–drug conjugates with defined sites and stoichiometries of drug attachment. Protein Eng Des Sel 19:299–307PubMedCrossRefGoogle Scholar
  46. Pietersz GA, Rowland A, Smyth MJ, McKenzie IF (1994) Chemoimmunoconjugates for the treatment of cancer. Adv Immunol 56:301–387PubMedCrossRefGoogle Scholar
  47. Polson AG, Yu SF, Elkins K, Zheng B, Clark S, Ingle GS, Slaga DS, Giere L, Du C, Tan C et al (2007) Antibody–drug conjugates targeted to CD79 for the treatment of non-Hodgkin lymphoma. Blood 110:616–623PubMedCrossRefGoogle Scholar
  48. Reichert JM, Valge-Archer VE (2007) Development trends for monoclonal antibody cancer therapeutics. Nat Rev Drug Discov 6:349–356PubMedCrossRefGoogle Scholar
  49. Reichert JM, Rosensweig CJ, Faden LB, Dewitz MC (2005) Monoclonal antibody successes in the clinic. Nat Biotechnol 23:1073–1078PubMedCrossRefGoogle Scholar
  50. Ryan MC, Hering M, Peckham D, McDonagh CF, Brown L, Kim KM, Meyer DL, Zabinski RF, Grewal IS, Carter PJ (2007) Antibody targeting of B-cell maturation antigen on malignant plasma cells. Mol Cancer Ther 6:3009–3018PubMedCrossRefGoogle Scholar
  51. Saleh MN, Sugarman S, Murray J, Ostroff JB, Healey D, Jones D, Daniel CR, LeBherz D, Brewer H, Onetto N et al (2000) Phase I trial of the anti-Lewis Y drug immunoconjugate BR96-doxorubicin in patients with lewis Y-expressing epithelial tumors. J Clin Oncol 18:2282–2292PubMedGoogle Scholar
  52. Sanderson RJ, Hering MA, James SF, Sun MM, Doronina SO, Siadak AW, Senter PD, Wahl AF (2005) In vivo drug-linker stability of an anti-CD30 dipeptide-linked auristatin immunoconjugate. Clin Cancer Res 11:843–852PubMedGoogle Scholar
  53. Sun MM, Beam KS, Cerveny CG, Hamblett KJ, Blackmore RS, Torgov MY, Handley FG, Ihle NC, Senter PD, Alley SC (2005) Reduction-alkylation strategies for the modification of specific monoclonal antibody disulfides. Bioconjug Chem 16:1282–1290PubMedCrossRefGoogle Scholar
  54. Tassone P, Goldmacher VS, Neri P, Gozzini A, Shammas MA, Whiteman KR, Hylander-Gans LL, Carrasco DR, Hideshima T, Shringarpure R et al (2004a) Cytotoxic activity of the maytansinoid immunoconjugate B-B4-DM1 against CD138+ multiple myeloma cells. Blood 104:3688–3696PubMedCrossRefGoogle Scholar
  55. Tassone P, Gozzini A, Goldmacher V, Shammas MA, Whiteman KR, Carrasco DR, Li C, Allam CK, Venuta S, Anderson KC et al (2004b) In vitro and in vivo activity of the maytansinoid immunoconjugate huN901-N2′-deacetyl-N2′-(3-mercapto-1-oxopropyl)-maytansine against CD56+ multiple myeloma cells. Cancer Res 64:4629–4636PubMedCrossRefGoogle Scholar
  56. Thorpe PE, Wallace PM, Knowles PP, Relf MG, Brown AN, Watson GJ, Knyba RE, Wawrzynczak EJ, Blakey DC (1987) New coupling agents for the synthesis of immunotoxins containing a hindered disulfide bond with improved stability in vivo. Cancer Res 47:5924–5931PubMedGoogle Scholar
  57. Thorpe PE, Wallace PM, Knowles PP, Relf MG, Brown AN, Watson GJ, Blakey DC, Newell DR (1988) Improved antitumor effects of immunotoxins prepared with deglycosylated ricin A-chain and hindered disulfide linkages. Cancer Res 48:6396–6403PubMedGoogle Scholar
  58. Tolcher AW, Sugarman S, Gelmon KA, Cohen R, Saleh M, Isaacs C, Young L, Healey D, Onetto N, Slichenmyer W (1999) Randomized phase II study of BR96-doxorubicin conjugate in patients with metastatic breast cancer. J Clin Oncol 17:478–484PubMedGoogle Scholar
  59. Trail PA, Willner D, Lasch SJ, Henderson AJ, Hofstead S, Casazza AM, Firestone RA, Hellström I, Hellström KE (1993) Cure of xenografted human carcinomas by BR96-doxorubicin immunoconjugates. Science 261:212–215PubMedCrossRefGoogle Scholar
  60. Trail PA, Willner D, Knipe J, Henderson AJ, Lasch SJ, Zoeckler ME, TrailSmith MD, Doyle TW, King HD, Casazza AM et al (1997) Effect of linker variation on the stability, potency, and efficacy of carcinoma-reactive BR64-doxorubicin immunoconjugates. Cancer Res 57:100–105PubMedGoogle Scholar
  61. Trail PA, King HD, Dubowchik GM (2003) Monoclonal antibody drug immuno­conjugates for targeted treatment of cancer. Cancer Immunol Immunother 52:328–337PubMedGoogle Scholar
  62. Tse KF, Jeffers M, Pollack VA, McCabe DA, Shadish ML, Khramtsov NV, Hackett CS, Shenoy SG, Kuang B, Boldog FL et al (2006) CR011, a fully human monoclonal antibody–auristatin E conjugate, for the treatment of melanoma. Clin Cancer Res 12:1373–1382PubMedCrossRefGoogle Scholar
  63. Walker MA, Dubowchik GM, Hofstead SJ, Trail PA, Firestone RA (2002) Synthesis of an immunoconjugate of camptothecin. Bioorg Med Chem Lett 12:217–219PubMedCrossRefGoogle Scholar
  64. Walker MA, King HD, Dalterio RA, Trail P, Firestone R, Dubowchik GM (2004) Monoclonal antibody mediated intracellular targeting of tallysomycin S(10b). Bioorg Med Chem Lett 14:4323–4327PubMedCrossRefGoogle Scholar
  65. Widdison WC, Wilhelm SD, Cavanagh EE, Whiteman KR, Leece BA, Kovtun Y, Goldmacher VS, Xie H, Steeves RM, Lutz RJ et al (2006) Semisynthetic maytansine analogues for the targeted treatment of cancer. J Med Chem 49:4392–4408PubMedCrossRefGoogle Scholar
  66. Wu AM, Senter PD (2005) Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol 23:1137–1146PubMedCrossRefGoogle Scholar
  67. Younes A, Forero-Torres A, Bartlett N, Leonard JP, Rege B, Kennedy DA, Lorenz J, Sievers EL (2007) A novel antibody-drug conjugate, SGN-35 (anti-CD30-auristatin), induces objective responses in patients with relapsed or refractory Hodgkin lymphoma, preliminary results of a phase I tolerability study. 7th International Symposium on Hodgkin Lymphoma: Abstract PO99bisGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2010

Authors and Affiliations

  1. 1.Seattle Genetics, Inc.BothellUSA

Personalised recommendations