Impact of Fc Glycosylation on Monoclonal Antibody Effector Functions and Degradation by Proteases

  • T. Shantha Raju
Part of the Biotechnology: Pharmaceutical Aspects book series (PHARMASP, volume XI)


IgGs are required to be N-glycosylated in the CH2 domain of the Fc to exhibit effector functions including antibody dependent cellular cytotoxicity (ADCC) and complement dependent cytotoxicity (CDC). This is because Fc glycosylation impacts antibody binding to Fc receptors and complement activating protein, C1q. Glycans found in the Fc are mainly complex biantennary structures with a high degree of heterogeneity containing different terminal sugars including sialic acid, galactose, N-acetylglucosamine and core fucose. Different terminal sugars may dramatically affect ADCC and CDC activities of antibodies. For example, absence of terminal sialic acid and/or core fucose results in significant increase in ADCC activity. Similarly, presence of bisecting N-acetylglucosamine residues also results in increased ADCC activity. Further, increase in terminal galactose content increases CDC activity but does not appear to affect ADCC activity. Additionally, Fc glycans may also affect antibody resistance to proteases. For example, glycosylated IgGs have been shown to be more resistant to papain digestions when compared to their aglycosylated or deglycosylated counterparts. In addition, presence or the absence of specific terminal sugars may also impact IgGs resistance to proteases. More recent data revealed that IgGs containing terminal N-acetylglucosamine residues are more resistant to papain digestions than the IgGs containing terminal sialic acid residues or terminal galactose residues. Hence, it appears that Fc glycans may play important roles in antibody stability and affect resistance to proteases in addition to impacting antibody effector functions.


Antibody Dependent Cellular Cytotoxicity Sialic Acid Residue GlcNAc Residue Terminal Sugar Papain Digestion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alavi A, Axford J (1995) Evaluation of beta 1,4-galactosyltransferase in rheumatoid arthritis and its role in the glycosylation network associated with this disease. Glycoconj J 12:206–210PubMedCrossRefGoogle Scholar
  2. Andersen DC, Bridges T, Gawlitzek M, Hoy C (2000) Multiple cell culture factors can affect the glycosylation of Asn-184 in CHO-produced tissue-type plasminogen activator. Biotechnol Bioeng 70(1):25–31PubMedCrossRefGoogle Scholar
  3. Arnold JN, Wormald MR, Sim RB, Rudd PM, Dwek RA (2007) The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol 25:21–50PubMedCrossRefGoogle Scholar
  4. Bennett KL, Smith SV, Truscott RJ, Sheil MM (1997) Monitoring papain digestion of a monoclonal antibody by electrospray ionization mass spectrometry. Anal Biochem 245:17–27PubMedCrossRefGoogle Scholar
  5. Braisted AC, Wells JA (1996) Minimizing a binding domain from protein A. Proc Natl Acad Sci USA 93(12):5688–5692PubMedCrossRefGoogle Scholar
  6. Burton DR, Boyd J, Brampton AD, Easterbrook S, Emanuel EJ, Novotny J, Rademacher TW, van Schravendijk MR, Sternberg MJ, Dwek RA (1980) The Clq receptor site on immunoglobulin G. Nature 288(5789):338–344PubMedCrossRefGoogle Scholar
  7. Campbell C, Stanley P (1984) A dominant mutation to ricin resistance in chinese hamster ovary cells induces UDP-GlcNAc: Glycopeptide beta-4-N-acetylglucosaminyltransferase-III activity. J Biol Chem 259(21):13370–13378PubMedGoogle Scholar
  8. Chuang PD, Morrison SL (1997) Elimination of N-linked glycosylation sites from the human IgA1 constant region: Effects on structure and function. J Immunol 158:724–732PubMedGoogle Scholar
  9. Corper AL, Sohi MK, Bonagura VR, Steinitz M, Jefferis R, Feinstein A, Beale D, Taussig MJ, Sutton BJ (1997) Structure of human IgM rheumatoid factor Fab bound to its autoantigen IgG Fc reveals a novel topology of antibody–antigen interaction. Nat Struct Biol 4(5):374–381PubMedCrossRefGoogle Scholar
  10. Davies J, Jiang L, Pan LZ, LaBarre MJ, Anderson D, Reff M (2001) Expression of GnT-III in a recombinant anti-CD20 CHO production cell line: Expression of antibodies with altered glycoforms leads to an increase in ADCC through higher affinity for Fc gamma RIII. Biotechnol Bioeng 74(4):288–294PubMedCrossRefGoogle Scholar
  11. Deisenhofer J (1981) Crystallographic refinement and atomic models of a human Fc fragment and its complex with fragment B of Protein A from Staphylococcus aureus at 2.9Å and 2.8Å resolution. Biochemistry 20(9):2361–2370PubMedCrossRefGoogle Scholar
  12. Dorai H, Li K, Huang CC, Bittner A, Galindo J, Carmen A (2007) Genome-wide analysis of mouse myeloma cell lines expressing therapeutic antibodies. Biotechnol Prog 33(4):911–920Google Scholar
  13. Duncan AR, Winter G (1988) The binding site for C1q on IgG. Nature 332(6166):738–740PubMedCrossRefGoogle Scholar
  14. Edelman GM, Cunningham BA, Gall WE, Gottlieb PD, Rutishauser U, Waxdal MJ (1969) The covalent structure of an entire gammaG Immunoglobulin molecule. Proc Natl Acad Sci USA 63(1):78–85PubMedCrossRefGoogle Scholar
  15. Endo T, Oda O, Yamanaka N, Maeda K, Yoshida M, Kobata A (1993) Alterations in the carbohydrate structures of an abnormal protein from sera of patients with rheumatoid arthritis. Arch Biochem Biophys 307(1):119–125PubMedCrossRefGoogle Scholar
  16. Field MC, Amatayakul C, Rademacher TW, Rudd PM, Dwek RA (1994) Structural analysis of the N-glycans from human immunoglobulin A1: Comparison of normal human serum immunoglobulin A1 with that isolated from patients with rheumatoid arthritis. Biochem J 299(Pt 1):261–275PubMedGoogle Scholar
  17. Galili U (1999) Evolution of alpha 1,3-galactosyltransferase and of the alpha-gal epitope. Subcell Biochem 32:1–23PubMedCrossRefGoogle Scholar
  18. Ghirlando R, Lund J, Goodall M, Jefferis R (1999) Glycosylation of human IgG-Fc: Influences on structure revealed by differential scanning micro-calorimetry. Immunol Lett 68(1):47–52PubMedCrossRefGoogle Scholar
  19. Gilhespy M, Partridge J, Jefferis R, Homans SW (1994) A novel 13C isotopic labeling strategy for probing the structure and dynamics of glycan chains in situ on glycoproteins. Glycobiology 4(4):485–489CrossRefGoogle Scholar
  20. Hamako J, Matsui T, Ozeki Y, Mizuochi T, Titani K (1993) Comparative studies of asparagine-linked sugar chains of immunoglobulin G from eleven mammalian species. Comp Biochem Physiol B 106(4):949–954PubMedGoogle Scholar
  21. Hess JL, Porsch EA, Shertz CA, Boyle MD (2007) Immunoglobulin cleavage by the streptococcal cysteine protease IdeS can be detected using Protein G capture and mass spectrometry. J Microbiol Methods 70(2):284–291PubMedCrossRefGoogle Scholar
  22. Hodoniczky J, Zheng YZ, James DC (2005) Control of recombinant monoclonal antibody effector functions by Fc N-glycan remodeling in vitro. Biotechnol Prog 21(6):1644–1652PubMedCrossRefGoogle Scholar
  23. Jassal R, Jenkins N, Charlwood J, Camilleri P, Jefferis R, Lund J (2001) Sialylation of human IgG-Fc carbohydrate by transfected rat alpha2, 6-sialyltransferase. Biochem Biophys Res Commun 286(2):243–249PubMedCrossRefGoogle Scholar
  24. Jefferis R (1991) Structure–function relationships in human immunoglobulins. Neth J Med 39(3–4):188–198PubMedGoogle Scholar
  25. Jefferis R (1993) The glycosylation of antibody molecules: Functional significance. Glycoconj J 10(5):358–361PubMedGoogle Scholar
  26. Kageyama Y, Miyamoto S, Ozeki T, Hiyohsi M, Suzuki M, Nagano A (2000) Levels of rheumatoid factor isotypes, metalloproteinase-3 and tissue inhibitor of metalloproteinase-1 in synovial fluid from various arthritides. Clin Rheumatol 19:14–20PubMedCrossRefGoogle Scholar
  27. Kelley RF, O’Connell MP, Carter P, Presta L, Eigenbrot C, Covarrubias M, Snedecor B, Bourell JH, Vetterlein D (1992) Antigen binding thermodynamics and antiproliferative effects of chimeric and humanized anti-P185HER2 antibody Fab fragments. Biochemistry 31(24):5434–5441PubMedCrossRefGoogle Scholar
  28. Keusch J, Lydyard PM, Isenberg DA, Delves PJ (1995) β1,4-Galactosyltransferase activity in B cells detected using a simple ELISA-based assay. Glycobiology 5:365–370PubMedCrossRefGoogle Scholar
  29. Kobata A (2000) A journey to the world of glycobiology. Glycoconj J 17:443–464PubMedCrossRefGoogle Scholar
  30. Kornfeld R, Kornfeld S (1985) Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 54:631–664PubMedCrossRefGoogle Scholar
  31. Kotajima L, Aotsuka S, Fujimani M, Okawa-Takatsuji M, Kinoshita M, Sumiya M, Obata K (1998) Increased levels of matrix metalloproteinase-3 in sera from patients with active lupus nephritis. Clin Exp Rheumatol 16:409–415PubMedGoogle Scholar
  32. Krapp S, Mimura Y, Jefferis R, Huber R, Sondermann P (2003) Structural analysis of human IgG-Fc glycoforms reveals a correlation between glycosylation and structural integrity. J Mol Biol 325(5):979–989PubMedCrossRefGoogle Scholar
  33. Laskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thornton JM (1996) AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8(4):477–486PubMedCrossRefGoogle Scholar
  34. Liu AY, Robinson RR, Hellstrom KE, Murray ED, Chang CP, Hellstrom I (1987) Chimeric mouse-human IgG1 antibody that can mediate lysis of cancer cells. Proc Natl Acad Sci USA 84(10):3439–3443PubMedCrossRefGoogle Scholar
  35. Malhotra R, Wormald MR, Rudd PM, Fischer PB, Dwek RA, Sim RB (1995) Glycosylation changes of IgG associated with rheumatoid arthritis can activate complement via the mannose-binding protein. Nat Med 1(3):237–243PubMedCrossRefGoogle Scholar
  36. Mimura Y, Lund J, Church S, Dong S, Li J, Goodall M, Jefferis R (2001a) Butyrate increases production of human chimeric IGg in CHO-K1 cells whilst maintaining function and glycoform profile. J Immunol Methods 247(1–2):205–216PubMedCrossRefGoogle Scholar
  37. Mimura Y, Ghirlando R, Sondermann P, Lund J, Jefferis R (2001b) The molecular specificity of IgG-Fc interactions with Fc gamma receptors. Adv Exp Med Biol 495:49–53PubMedCrossRefGoogle Scholar
  38. Mizuochi T, Taniguchi T, Shimizu A, Kobata A (1982) Structural and numerical variations of the carbohydrate moiety of immunoglobulin G. J Immunol 129(5):2016–2020PubMedGoogle Scholar
  39. Morrison SL, Mohammed MS, Wims LA, Trinh R, Etches R (2002) Sequences in antibody molecules important for receptor-mediated transport into the chicken egg yolk. Mol Immunol 38(8):619–625PubMedCrossRefGoogle Scholar
  40. Opdenakker G, Dillen C, Fiten P, Martens E, Van Aelst I, Van den Steen PE, Nelissen I, Starckx S, Descamps FJ, Hu J, Piccard H, Van Damme J, Wormald MR, Rudd PM, Dwek RA (2006) Remnant epitopes, autoimmunity and glycosylation. Biochim Biophys Acta 1760(4):610–615PubMedCrossRefGoogle Scholar
  41. Parekh RB, Dwek RA, Rudd PM, Thomas JR, Rademacher TW, Warren T, Wun TC, Hebert B, Reitz B, Palmier M, Ramabhadran T, Tiemeier DC (1989) N-Glycosylation and in vitro enzymatic activity of human recombinant tissue plasminogen activator expressed in chinese hamster ovary cells and a murine cell line. Biochemistry 28(19):7670–7679PubMedCrossRefGoogle Scholar
  42. Pollock DP, Kutzko JP, Birck-Wilson E, Williams JL, Echelard Y, Meade HM (1999) Transgenic milk as a method for the production of recombinant antibodies. J Immunol Methods 231(1–2):147–157PubMedCrossRefGoogle Scholar
  43. Popko J, Marciniak J, Zalewska A, Maldyk P, Rogalski M, Zwierz K (2006) The activity of exoglycosidases in the synovial membrane and knee fluid of patients with rheumatoid arthritis and juvenile idiopathic arthritis. Scand J Rheumatol 35(3):189–192PubMedCrossRefGoogle Scholar
  44. Presta LG (2002) Engineering antibodies for therapy. Curr Pharm Biotechnol 3(3):237–256PubMedCrossRefGoogle Scholar
  45. Presta LG (2006) Engineering of therapeutic antibodies to minimize immunogenicity and optimize function. Adv Drug Deliv Rev 58(5–6):640–656PubMedCrossRefGoogle Scholar
  46. Presta L (2007) Evolving an anti-toxin antibody. Nat Biotechnol 25(1):63–65PubMedCrossRefGoogle Scholar
  47. Rademacher TW, Homans SW, Parekh RB, Dwek RA (1986) Immunoglobulin G as a glycoprotein. Biochem Soc Symp 51:131–148PubMedGoogle Scholar
  48. Rademacher TW, Jones RH, Williams PJ (1995) Significance and molecular basis for IgG glycosylation changes in rheumatoid arthritis. Adv Exp Med Biol 376:193–204PubMedCrossRefGoogle Scholar
  49. Raju TS (2003) Glycosylation variations with expression systems and their impact on biological activity of therapeutic immunoglobulins. BioProcess Int 1(4):44–53Google Scholar
  50. Raju TS (2008) Terminal sugars of Fc glycans influence antibody effector functions of IgGs. Curr Opin Immunol 20(4):471–478PubMedCrossRefGoogle Scholar
  51. Raju TS, Scallon BJ (2006) Glycosylation in the Fc domain of IgG increases resistance to proteolytic cleavage by papain. Biochem Biophys Res Commun 341(3):797–803PubMedCrossRefGoogle Scholar
  52. Raju TS, Scallon B (2007) Fc glycans terminated with N-acetylglucosamine residues increase antibody resistance to papain. Biotechnol Prog 33(4):964–971Google Scholar
  53. Raju TS, Lerner L, O’Connor JV (1996) Glycopinion: Biological significance and methods for the analysis of complex carbohydrates of recombinant glycoproteins. Biotechnol Appl Biochem 24(Pt 3):191–194PubMedGoogle Scholar
  54. Raju TS, Briggs JB, Borge SM, Jones AJ (2000) Species-specific variation in glycosylation of IgG: Evidence for the species-specific sialylation and branch-specific galactosylation and importance for engineering recombinant glycoprotein therapeutics. Glycobiology 10(5):477–486PubMedCrossRefGoogle Scholar
  55. Raju TS, Briggs JB, Chamow SM, Winkler ME, Jones AJ (2001) Glycoengineering of therapeutic glycoproteins: In vitro galactosylation and sialylation of glycoproteins with terminal N-acetylglucosamine and galactose residues. Biochemistry 40(30):8868–8876PubMedCrossRefGoogle Scholar
  56. Rifai A, Fadden K, Morrison SL, Chintalacharuvu KR (2000) The N-Glycans determine the differential blood clearance and hepatic uptake of human immunoglobulin (Ig)A1 and IgA2 isotypes. J Exp Med 191(12):2171–2182PubMedCrossRefGoogle Scholar
  57. Ritchie GE, Moffatt BE, Sim RB, Morgan BP, Dwek RA, Rudd PM (2002) Glycosylation and the complement system. Chem Rev 102(2):305–319PubMedCrossRefGoogle Scholar
  58. Routier FH, Davies MJ, Bergemann K, Hounsell EF (1997) The glycosylation pattern of humanized IgGI antibody (D1.3) expressed in CHO cells. Glycoconj J 14(2):201–207PubMedCrossRefGoogle Scholar
  59. Routier FH, Hounsell EF, Rudd PM, Takahashi N, Bond A, Hay FC, Alavi A, Axford JS, Jefferis R (1998) Quantitation of the oligosaccharides of human serum IgG from patients with rheumatoid arthritis: A critical evaluation of different methods. J Immunol Methods 213(2):113–130PubMedCrossRefGoogle Scholar
  60. Rudd PM, Leatherbarrow RJ, Rademacher TW, Dwek RA (1991) Diversification of the IgG molecule by oligosaccharides. Mol Immunol 28(12):1369–1378PubMedCrossRefGoogle Scholar
  61. Sauer E, Kleywegt GJ, Uhlen M, Jones TA (1995) Crystal structure of the C2 fragment of streptococcal Protein G in complex with the Fc domain of human IgG. Structure 3(3):265–278CrossRefGoogle Scholar
  62. Scallon BJ, Tam SH, McCarthy SG, Cai AN, Raju TS (2007a) Higher levels of sialylated Fc glycans in immunoglobulin G molecules can adversely impact functionality. Mol Immunol 44(7):1524–1534PubMedCrossRefGoogle Scholar
  63. Scallon B, McCarthy S, Radewonuk J, Cai A, Naso M, Raju TS, Capocasale R (2007b) Quantitative in vivo comparisons of the Fc gamma receptor-dependent agonist activities of different fucosylation variants of an immunoglobulin G antibody. Int Immunopharmacol 7(6):761–772PubMedCrossRefGoogle Scholar
  64. Schachter H (1974) The subcellular sites of glycosylation. Biochem Soc Symp 40:57–71PubMedGoogle Scholar
  65. Schachter H (1984) Glycoproteins: Their structure, biosynthesis and possible clinical implications. Clin Biochem 17(1):3–14PubMedCrossRefGoogle Scholar
  66. Schachter H (1986a) Biosynthetic controls that determine the branching and microheterogeneity of protein-bound oligosaccharides. Adv Exp Med Biol 205:53–85PubMedCrossRefGoogle Scholar
  67. Schachter H (1986b) Biosynthetic controls that determine the branching and microheterogeneity of protein-bound oligosaccharides. Biochem Cell Biol 64(3):163–181PubMedCrossRefGoogle Scholar
  68. Schachter H (2000) The joys of HexNAc. The synthesis and function of N- and O-glycan branches. Glycoconj J 17(7–9):465–483PubMedCrossRefGoogle Scholar
  69. Shah P, Reece-Ford M, Dong S, Goodall M, Pidaparthi S, Jefferis R, Jenkins N (1998) Physiological influences on recombinant IgG glycosylation. Biochem Soc Trans 26(2):S114Google Scholar
  70. Shields RL, Lai J, Keck R, Connell LY, Hong K, Meng YG, Weikert SH, Presta LG (2002) Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J Biol Chem 277(30):26733–26740PubMedCrossRefGoogle Scholar
  71. Simonson T, Brunger AT (1992) Thermodynamics of protein-peptide interactions in the ribonuclease-S system studied by molecular dynamics and free energy calculations. Biochemistry 31(36):8661–8674PubMedCrossRefGoogle Scholar
  72. Spiegelberg HL, Dainer PM (1979) Fc receptors for IgG, IgM and IgE on human leukaemic lymphocytes. Clin Exp Immunol 35(2):286–295PubMedGoogle Scholar
  73. Stanley P, Raju TS, Bhaumik M (1996) CHO cells provide access to novel Nglycans and developmentally regulated glycosyltransferases. Glycobiology 6(7):695–699PubMedCrossRefGoogle Scholar
  74. Starovasnik MA, Braisted AC, Wells JA (1997) Structural mimicry of a native protein by a minimized binding domain. Proc Natl Acad Sci USA 94(19):10080–10085PubMedCrossRefGoogle Scholar
  75. Takahashi N, Ishii I, Ishihara H, Mori M, Tejima S, Jefferis R, Endo S, Arata Y (1987) Comparative structural study of the N-linked oligosaccharides of human normal and pathological immunoglobulin G. Biochemistry 26(4):1137–1144PubMedCrossRefGoogle Scholar
  76. Tao MH, Morrison SL (1989) Studies of aglycosylated chimeric mouse-human IgG. Role of carbohydrate in the structure and effector functions mediated by the human IgG constant region. J Immunol 143(8):2595–2601PubMedGoogle Scholar
  77. Tishchenko VM (1998) Effect of immunoglobulin G1 Pro 290 residue on structural and biological characteristics of its SH2 domain. Bioorg Khim 24(6):465–467PubMedGoogle Scholar
  78. Tsuchiya N, Endo T, Shiota M, Kochibe N, Ito K, Kobata A (1994) Distribution of glycosylation abnormality among serum IgG subclasses from patients with rheumatoid arthritis. Clin Immunol Immunopathol 70(1):47–50PubMedCrossRefGoogle Scholar
  79. Umana P, Jean M, Bailey JE (1999a) Tetracycline-regulated over expression of glycosyltransferases in chinese hamster ovary cells. Biotechnol Bioeng 65(5):542–549PubMedCrossRefGoogle Scholar
  80. Umana P, Jean M, Moudry R, Amstutz H, Bailey JE (1999b) Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nat Biotechnol 17(2):176–180PubMedCrossRefGoogle Scholar
  81. Vanhove B, Charreau B, Cassard A, Pourcel C, Soulillou JP (1998) Intracellular expression in pig cells of anti-alpha1, 3-galactosyltransferase single-chain FV antibodies reduces Gal alpha1, 3-Gal expression and inhibits cytotoxicity mediated by anti-Gal xenoantibodies. Transplantation 66(11):1477–1485PubMedCrossRefGoogle Scholar
  82. Varki A (1996) “Unusual” modifications and variations of vertebrate oligosaccharides: Are we missing the flowers for the trees? Glycobiology 6(7):707–710PubMedCrossRefGoogle Scholar
  83. Wormald MR, Rudd PM, Harvey DJ, Chang SC, Scragg IG, Dwek RA (1997) Variations in oligosaccharide–protein interactions in immunoglobulin G determine the site-specific glycosylation profiles and modulate the dynamic motion of the Fc oligosaccharides. Biochemistry 36(6):1370–1380PubMedCrossRefGoogle Scholar
  84. Wright A, Morrison SL (1994) Effect of altered CH2-associated carbohydrate structure on the functional properties and in vivo fate of chimeric mouse–human immunoglobulin G1. J Exp Med 180(3):1087–1096PubMedCrossRefGoogle Scholar
  85. Wright A, Morrison SL (1997) Effect of glycosylation on antibody function: Implications for genetic engineering. Trends Biotechnol 15(1):26–32PubMedCrossRefGoogle Scholar
  86. Wright A, Sato Y, Okada T, Chang K, Endo T, Morrison S (2000) In vivo trafficking and catabolism of IgG1 antibodies with Fc associated carbohydrates of differing structure. Glycobiology 10(12):1347–1355PubMedCrossRefGoogle Scholar
  87. Yamada E, Tsukamoto Y, Sasaki R, Yagyu K, Takahashi N (1997) Structural changes of immunoglobulin G oligosaccharides with age in healthy human serum. Glycoconj J 14(3):401–405PubMedCrossRefGoogle Scholar
  88. Yamaguchi Y, Kato K, Shindo M, Aoki S, Furusho K, Koga K, Takahashi N, Arata Y, Shimada I (1998) Dynamics of the carbohydrate chains attached to the Fc Portion of immunoglobulin g as studied by NMR spectroscopy assisted by selective 13C labeling of the glycans. J Biomol NMR 12(3):385–394PubMedCrossRefGoogle Scholar
  89. Zhou Q, Park SH, Boucher S, Higgins E, Lee K, Edmunds T (2004) N-Linked oligosaccharide analysis of glycoprotein bands from isoelectric focusing gels. Anal Biochem 335(1):10–16PubMedCrossRefGoogle Scholar
  90. Zhu J, Yu DT (2006) Matrix metalloproteinase expression in the spondyloarthropathies. Curr Opin Rheumatol 18:364–368PubMedCrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2010

Authors and Affiliations

  1. 1.Discovery Research, Centocor R&D Inc.RadnorUSA

Personalised recommendations