Skip to main content

Characterizing High Affinity Antigen/Antibody Complexes by Kinetic and Equilibrium Based Methods

  • Chapter
  • First Online:
Book cover Current Trends in Monoclonal Antibody Development and Manufacturing

Part of the book series: Biotechnology: Pharmaceutical Aspects ((PHARMASP,volume XI))

Abstract

The development and application of monoclonal antibodies as drugs requires accurate and precise characterization of the antigen/antibody binding constants. Anticipating the required affinity for a therapeutically efficacious monoclonal antibody (mAb) is complex. Generally, the equilibrium dissociation constant for the antigen/mAb complex should be less than 100–1,000 picomolar (pM), depending upon the nature of the target, the desired function of the antibody, and the localized concentration of the antigen in the diseased tissue, among other factors. Measurement of the equilibrium dissociation constant (K D), association rate constant (k a), and dissociation rate constant (k d) for these high affinity antibodies is difficult because of three independent reasons: (1) the time for the antigen/antibody complex to reach equilibrium can be very long, on the order of days (2) usually, the k d for such a tight complex is extremely low, requiring long periods of data collection in order to discern enough information to predict complex stability, and (3) in cases where the k d is easily measurable (greater than 5×10−4s−1), the k a can be very fast, greater than 1×107M−1s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

pM:

picomolar

nM:

nanomolar

fM:

femtomolar

mAb:

monoclonal antibody

KD :

equilibrium dissociation constant

ka :

association rate constant

kd :

dissociation rate constant

Fc:

Flow cell

RU:

resonance units

Da:

Dalton

cy5:

Indodicarbocyanine

pAb:

polyclonal antibody

surfactant P-20:

poly(oxyethylene)(20)-sorbitane monolaureate

References

  • Babcook JS, Leslie KB, Olsen OA, Salmon RA, Schrader JW (1996) A novel strategy for generating monoclonal antibodies from single, isolated lymphocytes producing antibodies of defined specificities. Proc Natl Acad Sci USA 93:7843–7848

    Article  PubMed  CAS  Google Scholar 

  • Biacore, Inc. (1998) BIA applications handbook, version AB. Uppsala, Sweden

    Google Scholar 

  • Blake DA, Chakrabarti P, Khosraviani M, Hatcher FM, Westhoff CM, Goebel P, Wylie DE, Blake RC II (1996) Metal binding properties of a monoclonal antibody directed toward metal-chelate complexes. J Biol Chem 271:27677–27685

    Article  PubMed  CAS  Google Scholar 

  • Blake RC II, Pavlov AR, Blake DA (1999) Automated kinetic exclusion assays to quantify protein binding interactions in homogeneous solution. Anal Biochem 272:123–134

    Article  PubMed  CAS  Google Scholar 

  • Chiu Y-W, Li QX, Karu AE (2001) Selective binding of polychlorinated biphenyl congeners by a monoclonal antibody: analysis by kinetic exclusion fluorescence immunoassay. Anal Chem 73:5477–5484

    Article  PubMed  CAS  Google Scholar 

  • Davis CG, Jia X-C, Feng X, Haak-Frendscho M (2003) Production of human antibodies from transgenic mice. In: Lo BKC (ed) Methods in molecular biology. Humana Press, Totowa, NJ, pp 191–200

    Google Scholar 

  • Day YSN, Baird CL, Rich RL, Myszka DG (2002) Direct comparison of binding equilibrium, thermodynamic, and rate constants determined by surface- and solution-based biophysical methods. Protein Sci 11:1017–1025

    Article  PubMed  CAS  Google Scholar 

  • Fong C-C, Wong M-S, Fong W-F, Yang M (2002) Effect of hydrogel matrix on binding kinetics of protein-protein interactions on sensor surface. Anal Chim Acta 456:201–208

    Article  CAS  Google Scholar 

  • Jones RM, Yu H, Delehanty JB, Blake DA (2002) Monoclonal antibodies that recognize minimal differences in the three-dimensional structures of metal-chelate complexes. Bioconjug Chem 13:408–415

    Article  PubMed  CAS  Google Scholar 

  • Karlsson R, Fält A (1997) Experimental design for kinetic analysis of protein-protein interactions with surface plasmon resonance biosensors. J Immunol Methods 200:121–133

    Article  PubMed  CAS  Google Scholar 

  • Mendez MJ, Green LL, Corvalan JRF, Jia X-C, Maynard-Currie CE, Yang X-D, Gallo ML, Louie DM, Lee DV, Erickson KL et al (1997) Functional transplant of megabase human immunoglobulin loci recapitulates human antibody response in mice. Nat Genet 15:146–156

    Article  PubMed  CAS  Google Scholar 

  • Morton TA, Myszka DG (1998) Kinetic analysis of macromolecular interactions using surface plasmon resonance biosensors. Methods Enzymol 295:268–294

    Article  PubMed  CAS  Google Scholar 

  • Myszka DG (1997) Kinetic analysis of macromolecular interactions using surface plasmon resonance biosensors. Curr Opin Biotechnol 8:50–57

    Article  PubMed  CAS  Google Scholar 

  • Myszka DG (1999) Improving biosensor analysis. J Mol Recognit 12:279–284

    Article  PubMed  CAS  Google Scholar 

  • Myszka DG, He X, Dembo M, Morton TA, Goldstein B (1998) Extending the range of rate constants available from biacore: interpreting mass transport-influenced binding data. Biophys J 75:583–594

    Article  PubMed  CAS  Google Scholar 

  • Ohmura N, Lackie SJ, Saiki H (2001) An immunoassay for small analytes with theoretical detection limits. Anal Chem 73:3392–3399

    Article  PubMed  CAS  Google Scholar 

  • Rich RL, Myszka DG (2001) Survey of the year 2000 commercial optical biosensor literature. J Mol Recognit 14:273–294

    Article  PubMed  CAS  Google Scholar 

  • Rich RL, Myszka DG (2002) Survey of the year 2001 commercial optical biosensor literature. J Mol Recognit 15:352–376

    Article  PubMed  CAS  Google Scholar 

  • Roskos L, Klakamp S, Liang M, Arends R, Green L (2007) Molecular engineering II: antibody affinity. In: Dübel S (ed) Handbook of therapeutic antibodies. Wiley-VCH, Weinheim, Germany, pp 145–169

    Chapter  Google Scholar 

  • Sapidyne instruments, Inc. (1998) KinExA 3000 instrument manual. Boise, ID

    Google Scholar 

  • Schuck P (1996) Kinetics of ligand binding to receptor immobilized in a polymer matrix, as detected with an evanescent wave biosensor. I. A computer simulation of the influence of mass transport. Biophys J 70:1230–1249

    Article  PubMed  CAS  Google Scholar 

  • Yang X-D, Corvalan JRF, Wang P, Roy CMN, Davis CG (1999) Fully human anti-interleukin-8 monoclonal antibodies: potential therapeutics for the treatment of inflammatory disease states. J Leukoc Biol 66:1–10

    Google Scholar 

Download references

Acknowledgments.

The computer algorithm for the simulation of the time to equilibrium for a 1:1 reversible interaction was graciously provided to us by Steve Lackie and Tom Glass of Sapidyne, Inc, Boise, ID.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott L. Klakamp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Drake, A.W., Myszka, D.G., Klakamp, S.L. (2010). Characterizing High Affinity Antigen/Antibody Complexes by Kinetic and Equilibrium Based Methods. In: Shire, S., Gombotz, W., Bechtold-Peters, K., Andya, J. (eds) Current Trends in Monoclonal Antibody Development and Manufacturing. Biotechnology: Pharmaceutical Aspects, vol XI. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76643-0_11

Download citation

Publish with us

Policies and ethics