Skip to main content

Computer Navigation in the Foot and Ankle Surgery

  • Chapter
  • First Online:
Minimally Invasive Surgery in Orthopedics

Abstract

Foot and ankle surgery at the end of the 20th century was characterized by the use of sophisticated computerized preoperative and postoperative diagnostic and planning procedures.13 However, intraoperative computerized tools that assist the surgeon during his or her struggle for the planned optimal operative result are missing. This results in an intraoperative “black box” without optimal visualization, guidance, and biomechanical assessment.2 The future will be characterized by breaking up this intraoperative “black box.” We will have more intraoperative tools to achieve the planned result.2,3 Intraoperative three-dimensional (3D) imaging (ISO-C-3D), computer-assisted surgery (CAS), and intraoperative pedography (IP) are three possible innovations to realize the planned procedure intraoperatively.3 These devices might be especially helpful for minimally invasive surgery.

These novel methods are in clinical use at our institution for further development. This chapter especially analyzes the feasibility and potential clinical benefit of navigation for foot and ankle surgery. Because ISO-C-3D and IP are two other innovations that are closely connected to navigation, these two methods are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dahlen C, Zwipp H. [Computer-assisted surgical planning. 3-D software for the PC]. Unfallchirurg 2001; 104(6):466–479.

    Article  CAS  PubMed  Google Scholar 

  2. Richter M. Foot and Ankle Surgery: Today and in the Future. In: 5th Congress of the European Foot and Ankle Society (EFAS), Montpellier, 29 April–01 May 2004, Abstracts, 2004.

    Google Scholar 

  3. Richter M. Computer based systems in foot and ankle surgery at the beginning of the 21st century. Fuss Sprungg 2006; 4(1):59–71.

    Article  Google Scholar 

  4. Euler E, Wirth S, Linsenmaier U, Mutschler W, Pfeifer KJ, Hebecker A. [Comparative study of the quality of C-arm based 3D imaging of the talus]. Unfallchirurg 2001; 104(9):839–846.

    Article  CAS  PubMed  Google Scholar 

  5. Kotsianos D, Rock C, Euler E, Wirth S, Linsenmaier U, Brandl R et al. [3-D imaging with a mobile surgical image enhancement equipment (ISO-C-3D). Initial examples of fracture diagnosis of peripheral joints in comparison with spiral CT and conventional radiography]. Unfallchirurg 2001; 104(9):834–838.

    Article  CAS  PubMed  Google Scholar 

  6. Kotsianos D, Rock C, Wirth S, Linsenmaier U, Brandl R, Fischer T et al. [Detection of tibial condylar fractures using 3D imaging with a mobile image amplifier (Siemens ISO-C-3D): comparison with plain films and spiral CT]. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 2002; 174(1):82–87.

    Article  CAS  PubMed  Google Scholar 

  7. Kotsianos D, Wirth S, Fischer T, Euler E, Rock C, Linsenmaier U et al. 3D imaging with an isocentric mobile C-arm comparison of image quality with spiral CT. Eur Radiol 2004; 14(9):1590–1595.

    Article  PubMed  Google Scholar 

  8. Rock C, Kotsianos D, Linsenmaier U, Fischer T, Brandl R, Vill F et al. [Studies on image quality, high contrast resolution and dose for the axial skeleton and limbs with a new, dedicated CT system (ISO-C-3 D)]. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 2002; 174(2):170–176.

    Article  CAS  PubMed  Google Scholar 

  9. Rock C, Linsenmaier U, Brandl R, Kotsianos D, Wirth S, Kaltschmidt R et al. [Introduction of a new mobile C-arm/CT combination equipment (ISO-C-3D). Initial results of 3-D sectional imaging]. Unfallchirurg 2001; 104(9):827–833.

    Article  CAS  PubMed  Google Scholar 

  10. Richter M, Geerling J, Zech S, Goesling T, Krettek C. Intraoperative three-dimensional imaging with a motorized mobile C-arm (SIREMOBIL ISO-C-3D) in foot and ankle trauma care: a preliminary report. J Orthop Trauma 2005; 19(4):259–266.

    Article  PubMed  Google Scholar 

  11. Richter M, Geerling J, Kendoff D, Hufner T, Krettek C. Intraoperative 3-D Imaging with a Mobile Image Amplifier (ISO-C 3D) in Foot and Ankle Trauma Care. In: American Orthopaedic Foot and Ankle Society, 19th Annual Summer Meeting, Final Program 78, 2003.

    Google Scholar 

  12. Adelaar RS. The treatment of complex fractures of the talus. Orthop Clin North Am 1989; 20(4):691–707.

    CAS  PubMed  Google Scholar 

  13. Amon K. Luxationsfraktur der kuneonavikularen Gelenklinie. Klinik, Pathomechanismus und Therapiekonzept einer sehr seltenen Fussverletzung. Unfallchirurg 1990; 93(9):431–434.

    CAS  PubMed  Google Scholar 

  14. Brutscher R. Frakturen und Luxationen des Mittel- und Vorfusses. Orthopäde 1991; 20(1):67–75.

    CAS  PubMed  Google Scholar 

  15. Hansen STJ. Functional reconstruction of the foot and ankle. Philadelphia, PA: Lippincott Williams & Wilkins, 2000.

    Google Scholar 

  16. Hildebrand KA, Buckley RE, Mohtadi NG, Faris P. Functional outcome measures after displaced intra-articular calcaneal fractures. J Bone Joint Surg Br 1996; 78(1):119–123.

    Google Scholar 

  17. Richter M, Wippermann B, Krettek C, Schratt E, Hufner T, Thermann H. Fractures and fracture dislocations of the midfoot - occurrence, causes and long-term results. Foot Ankle Int 2001; 22(5):392–398.

    CAS  PubMed  Google Scholar 

  18. Suren EG, Zwipp H. Luxationsfrakturen im Chopart- und Lisfranc-Gelenk. Unfallchirurg 1989; 92(3):130–139.

    CAS  PubMed  Google Scholar 

  19. Zwipp H. Chirurgie des Fusses, 1st edn. Berlin Heidelberg New York: Springer, 1994.

    Google Scholar 

  20. Zwipp H, Dahlen C, Randt T, Gavlik JM. Komplextrauma des Fusses. Orthopäde 1997; 26(12):1046–1056.

    CAS  PubMed  Google Scholar 

  21. Adelaar RS, Kyles MK. Surgical correction of resistant talipes equinovarus: observations and analysis - preliminary report. Foot Ankle 1981; 2(3):126–137.

    CAS  PubMed  Google Scholar 

  22. Coetzee JC, Hansen ST. Surgical management of severe deformity resulting from posterior tibial tendon dysfunction. Foot Ankle Int 2001; 22(12):944–949.

    CAS  PubMed  Google Scholar 

  23. Koczewski P, Shadi M, Napiontek M. Foot lengthening using the Ilizarov device: the transverse tarsal joint resection versus osteotomy. J Pediatr Orthop B 2002; 11(1):68–72.

    Article  PubMed  Google Scholar 

  24. Marti RK, de Heus JA, Roolker W, Poolman RW, Besselaar PP. Subtalar arthrodesis with correction of deformity after fractures of the os calcis. J Bone Joint Surg Br 1999; 81(4):611–616.

    Article  CAS  PubMed  Google Scholar 

  25. Mosier-LaClair S, Pomeroy G, Manoli A. Operative treatment of the difficult stage 2 adult acquired flatfoot deformity. Foot Ankle Clin 2001; 6(1):95–119.

    Article  CAS  PubMed  Google Scholar 

  26. Sammarco GJ, Conti SF. Surgical treatment of neuroarthropathic foot deformity. Foot Ankle Int 1998; 19(2):102–109.

    CAS  PubMed  Google Scholar 

  27. Stephens HM, Walling AK, Solmen JD, Tankson CJ. Subtalar repositional arthrodesis for adult acquired flatfoot. Clin Orthop Relat Res 1999 Aug; (365):69–73.

    Google Scholar 

  28. Toolan BC, Sangeorzan BJ, Hansen ST Jr. Complex reconstruction for the treatment of dorsolateral peritalar subluxation of the foot. Early results after distraction arthrodesis of the calcaneocuboid joint in conjunction with stabilization of, and transfer of the flexor digitorum longus tendon to, the midfoot to treat acquired pes planovalgus in adults. J Bone Joint Surg Am 1999; 81(11):1545–1560.

    CAS  PubMed  Google Scholar 

  29. Wei SY, Sullivan RJ, Davidson RS. Talo-navicular arthrodesis for residual midfoot deformities of a previously corrected clubfoot. Foot Ankle Int 2000; 21(6):482–485.

    CAS  PubMed  Google Scholar 

  30. Bailey EJ, Waggoner SM, Albert MJ, Hutton WC. Intraarticular calcaneus fractures: a biomechanical comparison or two fixation methods. J Orthop Trauma 1997; 11(1):34–37.

    Article  CAS  PubMed  Google Scholar 

  31. Trnka HJ, Easley ME, Lam PW, Anderson CD, Schon LC, Myerson MS. Subtalar distraction bone block arthrodesis. J Bone Joint Surg Br 2001; 83(6):849–854.

    Article  CAS  PubMed  Google Scholar 

  32. Bargar WL, Bauer A, Borner M. Primary and revision total hip replacement using the Robodoc system. Clin Orthop Relat Res 1998 Sep; (354):82–91.

    Google Scholar 

  33. Claes J, Koekelkoren E, Wuyts FL, Claes GM, Van Den HL, Van De Heyning PH. Accuracy of computer navigation in ear, nose, throat surgery: the influence of matching strategy. Arch Otolaryngol Head Neck Surg 2000; 126(12):1462–1466.

    CAS  PubMed  Google Scholar 

  34. Delp SL, Stulberg SD, Davies B, Picard F, Leitner F. Computer assisted knee replacement. Clin Orthop Relat Res 1998 Sep; (354):49–56.

    Google Scholar 

  35. DiGioia AM III, Jaramaz B, Colgan BD. Computer assisted orthopaedic surgery. Image guided and robotic assistive technologies. Clin Orthop Relat Res 1998 Sep; (354):8–16.

    Google Scholar 

  36. DiGioia AM III, Jaramaz B, Plakseychuk AY, Moody JE Jr, Nikou C, Labarca RS et al. Comparison of a mechanical acetabular alignment guide with computer placement of the socket. J Arthroplasty 2002; 17(3):359–364.

    Article  PubMed  Google Scholar 

  37. Hassfeld S, Muhling J. Navigation in maxillofacial and craniofacial surgery. Comput Aided Surg 1998; 3(4):183–187.

    Article  CAS  PubMed  Google Scholar 

  38. Jaramaz B, DiGioia AM III, Blackwell M, Nikou C. Computer assisted measurement of cup placement in total hip replacement. Clin Orthop Relat Res 1998 Sep; (354):70–81.

    Google Scholar 

  39. Kamimura M, Ebara S, Itoh H, Tateiwa Y, Kinoshita T, Takaoka K. Accurate pedicle screw insertion under the control of a computer-assisted image guiding system: laboratory test and clinical study. J Orthop Sci 1999; 4(3):197–206.

    Article  CAS  PubMed  Google Scholar 

  40. Kato A, Yoshimine T, Hayakawa TM et al. [Computer assisted neurosurgery: development of a frameless and armless navigation system (CNS navigator)]. No Shinkei Geka 1991; 19(2):137–142.

    CAS  PubMed  Google Scholar 

  41. Kerschbaumer F. [“Numerical imaging, operation planning, simulation, navigation, robotics”. Do the means determine the end? (editorial)]. Orthopade 2000; 29(7):597–598.

    Article  CAS  PubMed  Google Scholar 

  42. Klos TV, Banks SA, Habets RJ, Cook FF. Sagittal plane imaging parameters for computer-assisted fluoroscopic anterior cruciate ligament reconstruction. Comput Aided Surg 2000; 5(1):28–34.

    Article  CAS  PubMed  Google Scholar 

  43. Klos TV, Habets RJ, Banks AZ, Banks SA, Devilee RJ, Cook FF. Computer assistance in arthroscopic anterior cruciate ligament reconstruction. Clin Orthop Relat Res 1998 Sep; (354):65–69.

    Google Scholar 

  44. Laine T, Lund T, Ylikoski M, Lohikoski J, Schlenzka D. Accuracy of pedicle screw insertion with and without computer assistance: a randomised controlled clinical study in 100 consecutive patients. Eur Spine J 2000; 9(3):235–240.

    Article  CAS  PubMed  Google Scholar 

  45. Langlotz F, Bachler R, Berlemann U, Nolte LP, Ganz R. Computer assistance for pelvic osteotomies. Clin Orthop Relat Res 1998 Sep; (354):92–102.

    Article  PubMed  Google Scholar 

  46. Merloz P, Tonetti J, Cinquin P, Lavallee S, Troccaz J, Pittet L. [Computer-assisted surgery: automated screw placement in the vertebral pedicle]. Chirurgie 1998; 123(5):482–490.

    Article  CAS  PubMed  Google Scholar 

  47. Merloz P, Tonetti J, Pittet L, Coulomb M, Lavallee S, Troccaz J et al. Computer-assisted spine surgery. Comput Aided Surg 1998; 3(6):297–305.

    Article  CAS  PubMed  Google Scholar 

  48. Ploder O, Wagner A, Enislidis G, Ewers R. [Computer-assisted intraoperative visualization of dental implants. Augmented reality in medicine]. Radiologe 1995; 35(9):569–572.

    CAS  PubMed  Google Scholar 

  49. Radermacher K, Portheine F, Anton M, Zimolong A, Kaspers G, Rau G et al. Computer assisted orthopaedic surgery with image based individual templates. Clin Orthop Relat Res 1998 Sep; (354):28–38.

    Google Scholar 

  50. Schlenzka D, Laine T, Lund T. Computer-assisted spine surgery. Eur Spine J 2000; 9(Suppl 1):S57–S64.

    Article  PubMed  Google Scholar 

  51. Tonetti J, Carrat L, Blendea S, Merloz P, Troccaz J, Lavallee S et al. Clinical results of percutaneous pelvic surgery. Computer assisted surgery using ultrasound compared to standard fluoroscopy. Comput Aided Surg 2001; 6(4):204–211.

    Article  CAS  PubMed  Google Scholar 

  52. Tonetti J, Carrat L, Lavallee S, Pittet L, Merloz P, Chirossel JP. Percutaneous iliosacral screw placement using image guided techniques. Clin Orthop Relat Res 1998 Sep; (354):103–110.

    Google Scholar 

  53. Weihe S, Wehmoller M, Schliephake H, Hassfeld S, Tschakaloff A, Raczkowsky J et al. Synthesis of CAD/CAM, robotics and biomaterial implant fabrication: single-step reconstruction in computer aided frontotemporal bone resection. Int J Oral Maxillofac Surg 2000; 29(5):384–388.

    Article  CAS  PubMed  Google Scholar 

  54. Birkfellner W, Huber K, Larson A, Hanson D, Diemling M, Homolka P et al. A modular software system for computer-aided surgery and its first application in oral implantology. IEEE Trans Med Imaging 2000; 19(6):616–620.

    Article  CAS  PubMed  Google Scholar 

  55. Schiffers N, Schkommodau E, Portheine F, Radermacher K, Staudte HW. [Planning and performance of orthopedic surgery with the help of individual templates]. Orthopade 2000; 29(7):636–640.

    CAS  PubMed  Google Scholar 

  56. Schlenzka D, Laine T, Lund T. [Computer-assisted spine surgery: principles, technique, results and perspectives]. Orthopade 2000; 29(7):658–669.

    Article  CAS  PubMed  Google Scholar 

  57. Thoma W, Schreiber S, Hovy L. [Computer-assisted implant positioning in knee endoprosthetics. Kinematic analysis for optimization of surgical technique]. Orthopade 2000; 29(7):614–626.

    CAS  PubMed  Google Scholar 

  58. Bechtold JE, Powless SH. The application of computer graphics in foot and ankle surgical planning and reconstruction. Clin Podiatr Med Surg 1993; 10(3):551–562.

    CAS  PubMed  Google Scholar 

  59. Richter M. Experimental comparison between computer assisted surgery (CAS) based and C-Arm based correction of hind- and midfoot deformities. Osteo Trauma Care 2003; 11:29–34.

    Article  Google Scholar 

  60. Foley KT, Smith MM. Image-guided spine surgery. Neurosurg Clin N Am 1996; 7(2):171–186.

    CAS  PubMed  Google Scholar 

  61. Richter M, Geerling J, Zech S, Krettek C. ISO-C-3D based computer assisted surgery (CAS) guided retrograde drilling in a osteochondrosis dissecans of the talus: a case report. Foot 2005; 15(2):107–113.

    Article  Google Scholar 

  62. Berndt AL., Harty M. Transchondral fractures (osteochondritis dissecans) of the talus. Am J Orthop 1959; 41-A:988–1020.

    CAS  Google Scholar 

  63. Alexander AH, Lichtman DM. Surgical treatment of transchondral talar-dome fractures (osteochondritis dissecans). Long-term follow-up. J Bone Joint Surg Am 1980; 62(4):646–652.

    CAS  PubMed  Google Scholar 

  64. Tol JL, Struijs PA, Bossuyt PM, Verhagen RA, van Dijk CN. Treatment strategies in osteochondral defects of the talar dome: a systematic review. Foot Ankle Int 2000; 21(2):119–126.

    CAS  PubMed  Google Scholar 

  65. Taranow WS, Bisignani GA, Towers JD, Conti SF. Retrograde drilling of osteochondral lesions of the medial talar dome. Foot Ankle Int 1999; 20(8):474–480.

    CAS  PubMed  Google Scholar 

  66. Fink C, Rosenberger RE, Bale RJ, Rieger M, Hackl W, Benedetto KP et al. Computer-assisted retrograde drilling of osteochondral lesions of the talus. Orthopade 2001; 30(1):59–65.

    Article  CAS  PubMed  Google Scholar 

  67. Seil R, Rupp S, Pape D, Dienst M, Kohn D. [Approach to open treatment of osteochondral lesions of the talus]. Orthopade 2001; 30(1):47–52.

    Article  CAS  PubMed  Google Scholar 

  68. Rosenberger RE, Bale RJ, Fink C, Rieger M, Reichkendler M, Hackl W et al. [Computer-assisted drilling of the lower extremity. Technique and indications]. Unfallchirurg 2002; 105(4):353–358.

    Article  CAS  PubMed  Google Scholar 

  69. Richter M, Geerling J, Frink M, Zech S, Knobloch K, Dammann F et al. Computer assisted surgery based (CAS) based correction of posttraumatic ankle and hindfoot deformities - preliminary results. Foot Ankle Surg 2006; 12:113–119.

    Article  Google Scholar 

  70. Zwipp H. Biomechanik der Sprunggelenke. Unfallchirurg 1989; 92(3):98–102.

    CAS  PubMed  Google Scholar 

  71. Rosenbaum D, Becker HP, Sterk J, Gerngross H, Claes L. Functional evaluation of the 10-year outcome after modified Evans repair for chronic ankle instability. Foot Ankle Int 1997; 18(12):765–771.

    CAS  PubMed  Google Scholar 

  72. Richter M, Frink M, Zech S, Droste P, Knobloch K, Krettek C. Technique for intraoperative use of pedography. Tech Foot Ankle 2006; 5(2):88–100.

    Article  Google Scholar 

  73. Richter M, Frink M, Zech S, Vanin N, Geerling J, Droste P et al. Intraoperative pedography - a new validated method for intra­operative biomechanical assessment. Foot Ankle Int 2006; 27(10):833–842.

    PubMed  Google Scholar 

  74. Duranti R, Galletti R, Pantaleo T. Electromyographic observations in patients with foot pain syndromes. Am J Phys Med 1985; 64(6):295–304.

    CAS  PubMed  Google Scholar 

  75. Kawakami O, Sudoh H, Watanabe S. Effects of linear movements on upright standing position. Environ Med 1996; 40(2):193–196.

    CAS  PubMed  Google Scholar 

  76. Trepman E, Gellman RE, Solomon R, Murthy KR, Micheli LJ, De Luca CJ. Electromyographic analysis of standing posture and demi-plie in ballet and modern dancers. Med Sci Sports Exerc 1994; 26(6):771–782.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author thanks Christian Krettek, MD, FRACS, Director or Trauma, Stefan Zech, MD, Jens Geerling, MD, Michael Frink, MD, Tobias Huefner, MD, Daniel Kendoff, MD, Musa Citak, MD, Nicolas Vanin, Patricia Droste, Claudia Schultz-Blum, Alke Bretzke, Carolina Böse, Angelika Heinrich, and Vital Karch, Trauma Department, Hannover Medical School, Hannover Germany for their valuable contribution in carrying out the surgical procedures and the handling of the introduced technical devices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martinus Richter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Richter, M. (2010). Computer Navigation in the Foot and Ankle Surgery. In: Scuderi, G., Tria, A. (eds) Minimally Invasive Surgery in Orthopedics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76608-9_79

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-76608-9_79

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-76607-2

  • Online ISBN: 978-0-387-76608-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics