Advertisement

Minimally Invasive Total Knee Arthroplasty with Image-Free Navigation

  • S. David Stulberg
Chapter

Abstract

Computer-assisted surgery (CAS) is beginning to emerge as one of the most important technologies in orthopedic surgery. Many of the initial applications of this technology have focused on adult reconstructive surgery of the knee. The value of CAS in total knee arthroplasty (TKA) has been established in many studies. Minimally invasive surgical (MIS) techniques for performing TKA are also receiving extensive and intensive attention. The goals of this chapter are to (1) present the rationale for the use of image-free CAS in knee surgery, (2) explain the rationale for combining CAS with MIS techniques, (3) describe the basic components of an image-free navigation system, (4) illustrate a typical CAS MIS technique, and (5) present the initial results using this technique.

Keywords

Total Knee Arthroplasty Minimally Invasive Surgical Total Knee Arthroplasty Patient Knee Reconstruction Posterior Condylar Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aglietti P, Buzzi R. Posteriorly stabilized total-condylar knee replacement. J Bone Joint Surg 1988; 70-B(2): 211–216Google Scholar
  2. 2.
    Ayers DC, Dennis DA, Johanson NA, et al. Common complications of total knee arthroplasty. J Bone J Surg 1997; 2(79A): 278–311Google Scholar
  3. 3.
    Bargren JH, Blaha JD, Freeman MAR. Alignment in total knee arthroplasty: correlated biomechanical and clinical observations. Clin Orthop Relat Res 1983 Mar;(173): 178–183Google Scholar
  4. 4.
    Berger RA, Crosset LS, Jacobs JJ. Malrotation causing patellofe-moral complications after total knee arthroplasty. Clin Orthop Relat Res 1998 Nov;(356): 144–153CrossRefGoogle Scholar
  5. 5.
    Cartier P, Sanouillier JL, Frelsamer RP. Unicompartmental knee arthroplasty surgery. 10-year minimum follow-up period. J Arthro-plasty 1996; 11: 782–788PubMedCrossRefGoogle Scholar
  6. 6.
    Dorr LD, Boiardo RA. Technical considerations in total knee arthroplasty. Clin Orthop Relat Res 1986 Apr;(205): 5–11Google Scholar
  7. 7.
    Ecker ML, Lotke PA, Windsor RE, et al. Long-term results after total condylar knee arthroplasty. Significance of radiolucent lines. Clin Orthop Relat Res 1987 Mar;(216): 151–158Google Scholar
  8. 8.
    Fehring TK, Odum S, Griffin WL, Mason JB, Naduad M. Early failures in total knee arthroplasty. Clin Orthop Relat Res 2001 Nov;(392): 315–318CrossRefGoogle Scholar
  9. 9.
    Feng EL, Stulberg SD, Wixson RL. Progressive subluxation and polyethylene wear in total knee replacements with flat articular surfaces. Clin Orthop Relat Res 1994 Feb;(299): 60–71Google Scholar
  10. 10.
    Goodfellow JW, O’Connor JJ. Clinical results of the Oxford knee. Clin Orthop Relat Res 1986 Apr;(205): 21–24Google Scholar
  11. 11.
    Hsu HP, Garg A, Walker PS, Spector M, Ewald FC. Effect on knee component alignment on tibial load distribution with clinical correlation. Clin Orthop Relat Res 1989 Nov;(248): 135–144Google Scholar
  12. 12.
    Insall JW. Surgical approaches to the knee. In Insall JN (ed), Surgery of the Knee, Churchill Livingston, New York, 1984, pp. 41–54Google Scholar
  13. 13.
    Insall JN, Binzzir R, Soudry M, Mestriner LA. Total knee arthroplasty. Clin Orthop Relat Res 1985 Jan-Feb;(192): 13–22Google Scholar
  14. 14.
    Insall JN, Ranawat CS, Aglietti P, Shine J. A comparison of four models of total knee-replacement prosthesis. J Bone Joint Surg 1976; 58A: 754–765Google Scholar
  15. 15.
    Jeffcote B, Shakespeare D. Varus/valgus alignment of the tibial component in total knee arthroplasty. Knee 2003; 10(3): 243–247PubMedCrossRefGoogle Scholar
  16. 16.
    Jeffery RS, Morris RW, Denham RA. Coronal alignment after total knee replacement. J Bone Joint Surg 1991; 73B: 709–714Google Scholar
  17. 17.
    Jiang CC, Insall JN. Effect of rotation on the axial alignment of the femur. Clin Orthop Relat Res 1989 Nov;(248): 50–56Google Scholar
  18. 18.
    Laskin RS. Alignment of the total knee components. Orthopedics 1984; 7: 62Google Scholar
  19. 19.
    Laskin RS. Total condylar knee replacement in patients who have rheumatoid arthritis. A ten year follow-up study. J Bone Joint Surg 1990; 72A: 529–535Google Scholar
  20. 20.
    Laskin RS, Turtel A. The use of an intramedullary tibial alignment guide in total knee replacement arthroplasty. Am J Knee Surg 1989; 2: 123Google Scholar
  21. 21.
    Nuno-Siebrecht N, Tanzer M, Bobyn JD. Potential errors in axial alignment using intramedullary instrumentation for total knee arthroplasty. J Arthroplasty 2000; 15: 228–230PubMedCrossRefGoogle Scholar
  22. 22.
    Oswald MH, Jacob RP, Schneider E, Hoogewoud H. Radiological analysis of normal axial alignment of femur and tibia in view of total knee arthroplasty. J Arthroplasty 1993; 8: 419–426PubMedCrossRefGoogle Scholar
  23. 23.
    Petersen TL, Engh GA. Radiographic assessment of knee alignment after total knee arthroplasty. J Arthroplasty 1988; 3: 67–72PubMedCrossRefGoogle Scholar
  24. 24.
    Piazza SJ, Delp SL, Stulberg, SD, Stern SJ. Posterior tilting of the tibial component decreases femoral rollback in posterior-substituting knee replacement. J Orthop Res 1998; 16: 264–270PubMedCrossRefGoogle Scholar
  25. 25.
    Ranawat CS, Boachie-Adjei O. Survivorship analysis and results of total condylar knee arthroplasty. Clin Orthop Relat Res 1988 Jan;(226): 6–13Google Scholar
  26. 26.
    Rand JA, Coventry MB. Ten-year evaluation of geometric total knee arthroplasty. Clin Orthop Relat Res 1988 Jul;(232): 168–173Google Scholar
  27. 27.
    Ritter MA, Faris PM, Keating EM, Meding JB. Postoperative alignment of total knee replacement. Its effect on survival. Clin Orthop Relat Res 1994 Feb;(299): 153–156Google Scholar
  28. 28.
    Ritter M, Merbst WA, Keating EM, Faris PM. Radiolucency at the bone-cement interface in total knee replacement. J Bone Joint Surg 1991; 76A: 60–65Google Scholar
  29. 29.
    Sharkey PF, Hozack WJ, Rothman RH, et al. Why are total knee arthroplasties failing today? Clin Orthop Relat Res 2002 Nov;(404): 7–13CrossRefGoogle Scholar
  30. 30.
    Stern SH, Insall JN. Posterior stabilized prosthesis: results after follow-up of 9–12 years. J Bone Joint Surg 1992; 74A: 980–986Google Scholar
  31. 31.
    Teter KE, Bergman D, Colwell CW. Accuracy of intramedullary versus extramedullary tibial alignment cutting systems in total knee arthroplasty. Clin Orthop Relat Res 1995 Dec;(321): 106–110Google Scholar
  32. 32.
    Tew M, Waugh W. Tibiofemoral alignment and the results of knee replacement. J Bone Joint Surg 1985; 67B: 551–556Google Scholar
  33. 33.
    Townley CD. The anatomic total knee: instrumentation and alignment technique. The Knee: papers of the First Scientific Meeting of the Knee Society. Baltimore University Press, Baltimore, MD, 1985, pp. 39–54Google Scholar
  34. 34.
    Vince KIG, Insall JN, Kelly MA. The total condylar prosthesis. 10 to 12 year results of a cemented knee replacement. J Bone Joint Surg 1989; 71B: 93–797Google Scholar
  35. 35.
    Wasielewski RC, Galante JO, Leighty R, Natarajan RN, Rosenberg AG. Wear patterns on retrieved polyethylene tibial inserts and their relationship to technical considerations during total knee arthroplasty. Clin Orthop Relat Res 1994 Feb;(299): 31–43Google Scholar
  36. 36.
    Hungerford DS, Kenna RV. Preliminary experience with a total knee prosthesis with porous coating used without cement. Clin Orthop Relat Res 1983 Jun;(176):95–107Google Scholar
  37. 37.
    Currie J, Varshney A, Stulberg SD, Adams A, Woods O. The reliability of anatomic landmarks for determining femoral implant = rotation in TKA surgery: implications for CAOS TKA. Presented at the Annual Meeting of Mid-America Orthopaedic Association, Amelia Island, FL, 2005Google Scholar
  38. 38.
    Delp SL, Stulberg SD, Davies B, Picard F, Leitner F. Computer assisted knee replacement. Clin Orthop Relat Res 1998 Sep; (354): 49–56CrossRefGoogle Scholar
  39. 39.
    Eichorn H.-J. Image-free navigation in ACL replacement with the OrthoPilot System. In Steihl JB, Konermann WH, Haaker RG (eds), Navigation and Robotics in Total Joint and Spine Surgery, Springer, Berlin, 2004, pp. 387–396Google Scholar
  40. 40.
    Ellis RE, Rudan JF, Harrison, MM. Computer-assisted high tibial osteotomies. In DiGioia AM, Jaramaz B, Picard R, Nolte PL (eds), Computer and Robotic Assisted Knee and Hip Surgery, Oxford University Press, Oxford, 2004, pp. 197–212Google Scholar
  41. 41.
    Fadda M, Bertelli D, Martelli S, et al. Computer assisted planning for total knee arthroplasty. Proceedings of the First Joint Conference on Computer Vision, Virtual Reality and Robotics in Medicine and Medial Robotics and Computer Assisted Surgery, Grenoble, France. Springer, Berlin, 1997, pp. 619–628Google Scholar
  42. 42.
    Froemel M, Portheine F, Ebner M, Radermacher K. Computer assisted template based navigation for total knee replacement. North American Program on Computer Assisted Orthopaedic Surgery, 6–8 July 2001, Pittsburgh, PAGoogle Scholar
  43. 43.
    Garbini JL, Kaiura RG, Sidles JA, Larson RV, Matsen FA. Robotic instrumentation in total knee arthroplasty. 33rd Annual Meeting, Orthopaedic Research Society, 19–22 January 1987, San Francisco, CAGoogle Scholar
  44. 44.
    Garg A, Walker PS. Prediction of total knee motion using a three-dimensional computer graphics model. J Biochem 1990; 23: 45–58Google Scholar
  45. 45.
    Jenny JY, Boeri C. Low reproducibility of the intra-operative measurement of the transepicondylar axis during total knee replacement. Acta Orthop Scand 2004; 75(1): 74–77PubMedCrossRefGoogle Scholar
  46. 46.
    Julliard R, Lavallee S, Dessenne V. Computer assisted anterior cruciate ligament reconstruction of the anterior cruciate ligament. Clin Orthop Relat Res 1998 Sep;(354): 57–64CrossRefGoogle Scholar
  47. 47.
    Julliard R, Plaweski S, Lavallee S. ACL surgetics: an efficient computer-assisted technique for ACL reconstruction. In Steihl JB, Konermann WH, Haaker RG (eds), Navigation and Robotics in Total Joint and Spine Surgery, Springer, Berlin, 2004, pp. 405–411Google Scholar
  48. 48.
    Kaiura RG. Robot assisted total knee arthroplasty investigation of the feasibility and accuracy of the robotic process. Master’s Thesis, Mechanical Engineering, University of Washington, Seattle, WA, 1986Google Scholar
  49. 49.
    Kienzle TC, Stulberg SD, Peshkin M, et al. A computer-assisted total knee replacement surgical system using a calibrated robot. Orthopaedics. In Taylor RH, et al. (eds), Computer Integrated Surgery. MIT Press, Cambridge, MA 1996, pp. 409–416Google Scholar
  50. 50.
    Kinzel V, Scaddan M, Bradley B, Shakespeare D. Varus/valgus alignment of the femur in total knee arthroplasty. Can accuracy be improved by pre-operative CT scanning? Knee 2004; 11(3): 197–201PubMedCrossRefGoogle Scholar
  51. 51.
    Klos TVS, Habets RJE, Banks AZ, Banks SA, Devilee RJJ, Cook FF. Computer assistance in arthroscopic anterior cruciate ligament reconstruction. In DiGioia AM, Jaramaz B, Picard R, Nolte PL (eds), Computer and Robotic Assisted Knee and Hip Surgery, Oxford University Press, Oxford, 2004, pp. 229–234Google Scholar
  52. 52.
    Krackow K, Serpe L, Phillips MJ, et al. A new technique for determining proper mechanical axis alignment during total knee arthroplasty. Orthopedics 1999; 22(7): 698–701PubMedGoogle Scholar
  53. 53.
    Kuntz M, Sati M, Nolte LP, et al. Computer assisted total knee arthroplasty. International symposium on CAOS: 2000, February 17–19, Davos, SwitzerlandGoogle Scholar
  54. 54.
    Leitner F, Picard F, Minfelde R, et al. Computer-assisted knee surgical total replacement. First Joint Conference of CVRMed and MRCAS, Grenoble, France. Springer, Berlin, 1997, pp. 629–638Google Scholar
  55. 55.
    Leitner F, Picard F, Minfelde R, et al. Computer assisted knee surgical total replacement. Proceedings of the First Joint Conference on Computer Vision, Virtual Reality and Robotics in Medicine and Medical Robotics and Computer Assisted Surgery, Grenoble, France.. Springer, Berlin, 1997, pp. 630–638Google Scholar
  56. 56.
    Martelli M, Marcacci M, Nofrini L, LA Palombara F, Malvisi A, Iacono F, Vendruscolo P, Pierantoni M. Computer- and robot-assisted total knee replacement: analysis of a new surgical procedure. Ann Biomed Eng 2000; 28(9): 1146–1153PubMedCrossRefGoogle Scholar
  57. 57.
    Matsen FA, Garbini JL, Sidles JA. Robotic assistance in orthopaedic surgery. A proof of principle using distal femoral arthroplasty. Clin Orthop Relat Res 1993 Nov;(296): 178–186Google Scholar
  58. 58.
    Nizard R. Computer assisted surgery for total knee arthroplasty. Acta Orthop Belg 2002; 68(3): 215–230. [Review]PubMedGoogle Scholar
  59. 59.
    Noble PC, Sugano N, Johnston JD, Thompson MT, Conditt MA, Engh CA Sr, Mathis KB. Computer simulation: how can it help the surgeon optimize implant position? Clin Orthop Relat Res 2003 Dec;(417): 242–252. [Review]Google Scholar
  60. 60.
    Peterman J, Kober R, Heinze R, Frolich JJ, Heeckt PF, Gotzen L. Computer-assisted planning and robot assisted surgery in anterior cruciate ligament reconstruction. Oper Techn Orthop 2000; 10: 50–55CrossRefGoogle Scholar
  61. 61.
    Picard F, Leitner F, Raoult O, Saragaglia D. Computer assisted knee replacement. Location of a rotational center of the knee. Total knee arthroplasty. International Symposium on CAOS, February 2000Google Scholar
  62. 62.
    Picard F, Moody JE, DiGioia AM, Jaramaz B, Plakseychuk AY, Sell D. Knee reconstructive surgery: preoperative model system. In DiGioia AM, Jaramaz B, Picard R, Nolte PL (eds), Computer and Robotic Assisted Knee and Hip Surgery, Oxford University Press, Oxford, 2004, pp. 139–156Google Scholar
  63. 63.
    Picard F, Moody JE, DiGioia AM, Martinek V, Fu FH, Rytel MJ, Nikou C, LaVarca RS, Jaramaz B. ACL reconstruction-preoperative model system. In DiGioia AM, Jaramaz B, Picard R, Nolte PL (eds), Computer and Robotic Assisted Knee and Hip Surgery, Oxford University Press, Oxford, 2004, pp. 213–228Google Scholar
  64. 64.
    Radermacher K, Staudte HW, Rau G. Computer assisted orthopaedic surgery with image-based individual templates. Clin Orthop Relat Res 1998 Sep;(354): 28–38CrossRefGoogle Scholar
  65. 65.
    Saragaglia D, Picard F. Computer-assisted implantation of total knee endoprosthesis with no pre-operative imaging: the kinematic model. In Steihl JB, Konermann WH, Haaker RG (eds), Navigation and Robotics in Total Joint and Spine Surgery, Springer, Berlin, 2004, pp. 226–233Google Scholar
  66. 66.
    Sati M, Staubli HU, Bourquin Y, Kunz M, Nolte LP. CRA hip and knee reconstructive surgery: ligament reconstructions in the knee-intra-operative model system (non-image based). In DiGioia AM, Jaramaz B, Picard R, Nolte PL (eds), Computer and Robotic Assisted Knee and Hip Surgery, Oxford University Press, Oxford, 2004, pp. 235–256Google Scholar
  67. 67.
    Siebert W, Mai S, Kober R, Heeckt PF. Technique and first clinical results of robot-assisted total knee replacement. Knee 2002; 9(3): 173–180PubMedCrossRefGoogle Scholar
  68. 68.
    Stulberg SD, Eichorn J, Saragaglia D, Jenny J-Y. The rationale for and initial experience with a knee suite of computer assisted surgical applications. Third International CAOS Meeting, June, 2003, Marbella, SpainGoogle Scholar
  69. 69.
    Stulberg SD, Picard F, Saragaglia D. Computer assisted total knee arthroplasty. Operative techniques. Orthopaedics 2000; 10(1): 25–39Google Scholar
  70. 70.
    Stulberg SD, Saragaglia D, Miehlke R. Total knee replacement: navigation technique intra-operative model system. In DiGioia AM, Jaramaz B, Picard R, Nolte PL (eds), Computer and Robotic Assisted Knee and Hip Surgery, Oxford University Press, Oxford, 2004, pp. 157–178Google Scholar
  71. 71.
    Stulberg SD, Sarin V, Loan P. X-ray vs. computer assisted measurement techniques to determine pre and post-operative limb alignment in TKR surgery. Proceedings of the Fourth Annual American CAOS meeting, July 2001, Pittsburgh, PAGoogle Scholar
  72. 72.
    Tibbles L, Lewis C, Reisine S, Rippey R, Donald M. Computer assisted instruction for preoperative and postoperative patient education in joint replacement surgery. Comput Nurs 1992; 10(5): 208–212PubMedGoogle Scholar
  73. 73.
    Koyonos L, Granieri M, Stulberg SD. At what steps in performance of a TKA do errors occur when manual instrumentation is Used. Presented at the Annual Meeting of American Academy of Orthopaedic Surgeons, 2005, Washington, DCGoogle Scholar
  74. 74.
    Stulberg SD, Koyonos L, McClusker S, Granieri M. Factors affec-ting the accuracy of minimally invasive TKA. Presented at the Annual Meeting of American Academy of Orthopaedic Surgeons, 2005, Washington, DCGoogle Scholar
  75. 75.
    Tria AJ Jr. Minimally invasive total knee arthroplasty: the importance of instrumentation. Orthop Clin North Am 2004; 35(2): 227–234PubMedCrossRefGoogle Scholar
  76. 76.
    Briard JL, Stindel E, Plaweski S, et al. CT free navigation with the LCS surgetics station: a new way of balancing the soft tissues in TKA based on bone morphing. In Steihl JB, Konermann WH, Haaker RG (eds), Navigation and Robotics in Total Joint and Spine Surgery, Springer, Berlin, 2004, pp. 274–280Google Scholar
  77. 77.
    Konermann WH, Kistner S. CT-free navigation including soft-tissue balancing: LCS-TKA and vector vision systems. In Steihl JB, Konermann WH, Haaker RG (eds), Navigation and Robotics in Total Joint and Spine Surgery, Springer, Berlin, 2004, pp. 256–265Google Scholar
  78. 78.
    Strauss JM, Ruther W. Navigation and soft tissue balancing of LCS total knee arthroplasty. In Steihl JB, Konermann WH, Haaker RG (eds), Navigation and Robotics in Total Joint and Spine Surgery, Springer, Berlin, 2004, pp. 266–273Google Scholar
  79. 79.
    Bathis H, Perlick L, Tingart M, Luring C, Perlick C, Grifka J.Radiological results of image-based and non-image-based computer-assisted total knee arthroplasty. Int Orthop 2004; 28(2): 87–90PubMedCrossRefGoogle Scholar
  80. 80.
    Bohler M, Messner M, Glos W, Riegler ML. Computer navigated implantation of total knee prostheses: a radiological study. Acta Chir Aust 2000; 33(Suppl): 63Google Scholar
  81. 81.
    Clemens U, Konermann WH, Kohler S, Kiefer H, Jenny JY, Miehlke RK. Computer-assisted navigation with the OrthoPilot System using the search evolution TKA prosthesis. In Steihl JB, Konermann WH, Haaker RG (eds), Navigation and Robotics in Total Joint and Spine Surgery, Springer, Berlin, 2004, pp. 236–241Google Scholar
  82. 82.
    Jenny JY, Boeri C. Computer-assisted total knee prosthesis implantation without preoperative imaging. A comparison with classical instrumentation. Presented at the Fourth Annual North American Program on Computer Assisted Orthopaedic Surgery, 2000, Pittsburgh, PAGoogle Scholar
  83. 83.
    Jenny JY, Boeri C. Implantation d’une prothese totale de genou assistee par ordinateur. Etude comparative cas-temoin avec une instrumentaiton traditionnelle. Rev Chir Orthop 2001; 87: 645–652PubMedGoogle Scholar
  84. 84.
    Jenny JY, Boeri C. Navigated implantation of total knee prostheses: a comparison with conventional techniques. Z Orthop Ihre Grenzgeb 2001; 139: 117–119PubMedCrossRefGoogle Scholar
  85. 85.
    Jenny JY, Boeri C. Unicompartmental knee prosthesis. A case-control comparative study of two types of instrumentation with a five year follow-up. J Arthroplasty 2002; 17: 1016–1020PubMedCrossRefGoogle Scholar
  86. 86.
    Jenny JY, Boeri C. Unicompartmental knee prosthesis implantation with a non-image based navigation system. In DiGioia AM, Jaramaz B, Picard R, Nolte PL (eds), Computer and Robotic Assisted Knee and Hip Surgery, Oxford University Press, Oxford, 2004, pp. 179–188Google Scholar
  87. 87.
    Konermann WH, Sauer MA. Postoperative alignment of conventional and navigated total knee arthroplasty. In Steihl JB, Konermann WH, Haaker RG (eds), Navigation and Robotics in Total Joint and Spine Surgery, Springer, Berlin, 2004, pp. 219–225Google Scholar
  88. 88.
    Lampe F, Hille E. Navigated implantation of the Columbus total knee arthroplasty with the OrthoPilot System: Version 4.0. In Steihl JB, Konermann WH, Haaker RG (eds), Navigation and Robotics in Total Joint and Spine Surgery, Springer, Berlin, 2004, pp. 248–253Google Scholar
  89. 89.
    Mattes T, Puhl W. Navigation in TKA with the Navitrack System. In Steihl JB, Konermann WH, Haaker RG (eds), Navigation and Robotics in Total Joint and Spine Surgery, Springer, Berlin, 2004, pp. 293–300Google Scholar
  90. 90.
    Miehlke RK, Clemens U, Jens J-H, Kershally S. Navigation in knee arthroplasty: preliminary clinical experience and prospective comparative study in comparison with conventional technique. Z Orthop Ihre Grenzgeb 2001; 139: 1109–1129Google Scholar
  91. 91.
    Miehlke RK, Clemens U, Kershally S. Computer integrated instrumentation in knee arthroplasty: a comparative study of conventional and computerized technique. Fourth Annual North American Program on Computer Assisted Orthopaedic Surgery, Pittsburgh, PA, 2000, pp. 93–96Google Scholar
  92. 92.
    Nishihara S, Sugano N, Ikai M, Sasama T, Tamura Y, Tamura S, Yoshikawa H, Ochi T. Accuracy evaluation of a shape-based registration method for a computer navigation system for total knee arthroplasty. J Knee Surg 2003; 16(2): 98–105PubMedGoogle Scholar
  93. 93.
    Perlick L, Bathis H, Luring C, Tingart M, Grifka J. CT based and CT-free navigation with the brainLAB vector vision system in total knee arthroplasty. In Steihl JB, Konermann WH, Haaker RG (eds), Navigation and Robotics in Total Joint and Spine Surgery, Springer, Berlin, 2004, pp. 304–310Google Scholar
  94. 94.
    Perlick L, Bathis H, Tingart M, Perlick C, Grifka J. Navigation in total-knee arthroplasty: CT-based implantation compared with the conventional technique. Acta Orthop Scand 2004; 75(4): 464–470PubMedCrossRefGoogle Scholar
  95. 95.
    Perlick L, Bathis H, Tingart M, Kalteis T, Grifka J. [Usability of an image based navigation system in reconstruction of leg alignment in total knee arthroplasty - results of a prospective study] Biomed Tech (Berl) 2003; 48(12): 339–343. [German]CrossRefGoogle Scholar
  96. 96.
    Picard F. Leitner F, Raoult O, Saragaglia D, Cinquin P. Clinical evaluation of computer assisted total knee arthroplasty. Second Annual North American Program on Computer Assisted Ortho-paedic Surgery, Pittsburgh, PA, 1998, pp. 239–249.Google Scholar
  97. 97.
    Saragaglia D, Picard F, Chaussard C, et al. Computer-assisted knee arthroplasty: comparison with a conventional procedure: results of 50 cases in a prospective randomized study. Rev Chir Orthop Reparatrice Appar Mot 2001; 87: 215–220PubMedGoogle Scholar
  98. 98.
    Saragagaglia D, Picard F, Chaussard D, Montbarbon E, Leitner F, Cinquin P. Computer assisted total knee arthroplasty: comparison with a conventional procedure. Results of 50 cases prospective randomized study. Presented at the First Annual Meeting of Computer Assisted Orthopaedic Surgery, Davos, Switzerland, 2001Google Scholar
  99. 99.
    Sparmann M, Wolke B. Knee endoprosthesis navigation with the Stryker System. In Steihl JB, Konermann WH, Haaker RG (eds), Navigation and Robotics in Total Joint and Spine Surgery, Springer, Berlin, 2004, pp. 319–323Google Scholar
  100. 100.
    Sparmann M, Wolke B. [Value of navigation and robot-guided surgery in total knee arthroplasty]. Orthopade 2003; 32(6): 498–505. [German]PubMedGoogle Scholar
  101. 101.
    Stockl B, Nogler M, Rosiek R, Fischer M, Krismer M, Kessler O. Navigation improves accuracy of rotational alignment in total knee arthroplasty. Clin Orthop Relat Res 2004 Sep;(426): 180–186CrossRefGoogle Scholar
  102. 102.
    Stulberg SD. CAS-TKA reduces the occurrence of functional outliers. Presented at the Annual Meeting of Mid-America Orthopaedic Association, Amelia Island, FL, 2005Google Scholar
  103. 103.
    Stulberg SD, Loan P, Sarin V. Computer-assisted navigation in total knee replacement: results of an initial experience in thirty-five patients. J Bone Joint Surg 2002; 84-A(Suppl 2): 90–98.PubMedGoogle Scholar
  104. 104.
    Wiese M, Rosenthal A. Bernsmann K. Clinical experience using the SurgiGATE System. In Steihl JB, Konermann WH, Haaker RG (eds), Navigation and Robotics in Total Joint and Spine Surgery, Springer, Berlin, 2004, pp. 400–404Google Scholar
  105. 105.
    Wixson RL. Extra-medullary computer assisted total knee replacement: towards lesser invasive surgery. In Steihl JB, Konermann WH, Haaker RG (eds), Navigation and Robotics in Total Joint and Spine Surgery, Springer, Berlin, 2004, pp. 311–318Google Scholar
  106. 106.
    Bathis H, Perlick L, Luring C, Kalteis T, Grifka J. [CT-based and CT-free navigation in knee prosthesis implantation. Results of a prospective study] Unfallchirurg 2003; 106(11): 935–940. [German]PubMedGoogle Scholar
  107. 107.
    Insall J, Scott N, Surgery of the knee, Chapter 95. Elsevier, Philadelphia, 2006, pp. 1675–1688Google Scholar
  108. 108.
    Mahfouz MR, Hoff WA, Komistek RD, Dennis DA. A robust method for registration of three-dimensional knee implant models to two-dimensional fluoroscopy images. IEEE Trans Med Imaging 2003; 22(12): 1561–1574PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Orthopaedic SurgeryFeinberg School of Medicine, Northwestern UniversityChicagoUSA

Personalised recommendations