Advertisement

Computer Navigation with Posterior MIS Total Hip Arthroplasty

  • Aamer Malik
  • Zhinian Wan
  • Lawrence D. Dorr
Chapter

Abstract

The majority of literature on computer-assisted surgery of the hip shows how navigation assists the surgeon in more accurate component placement as compared with techniques that use mechanical guides or are freehand.15 Our work has been with imageless navigation technology, which allows real-time intraoperative knowledge of the quantitative direction and depth of reaming; adjustment during reaming for variations in the bony anatomy to allow for correct cup coverage with optimal inclination; and adjustment of the anteversion of a cup to a desired combined anteversion through knowledge of the fixed femoral anteversion.6

We have validated the results of the imageless computer navigation by comparison with postoperative computed tomography (CT) scans, which are considered the gold standard. We also compared the precision of the computer with postoperative radiographs and with the surgeons’ estimates of cup position.

Keywords

Minimally Invasive Surgery Acetabular Component Pelvic Tilt Computer Navigation Femoral Anteversion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Nogler M, Kessler O, Prassl A, et al. Reduced variability of acetabular cup positioning with use of an imageless navigation system. Clin Orthop Relat Res2004 Sep;(426):159–163CrossRefGoogle Scholar
  2. 2.
    Leenders T, Vandevelde D, Mahieu G, Nuyts R. Reduction in variability of acetabular cup abduction using computer assisted surgery: a prospective and randomized study. Comput Aided Surg 2002;7(2):99–106CrossRefPubMedGoogle Scholar
  3. 3.
    Kalteis T, Handel M, Herold T, Perlick L, Baethis H, Grifka J. Greater accuracy in positioning of the acetabular cup by using an image-free navigation system. Int Orthop 2005;29(5):272–276CrossRefPubMedGoogle Scholar
  4. 4.
    Jolles BM, Genoud P, Hoffmeyer P. Computer-assisted cup placement techniques in total hip arthroplasty improve accuracy of placement. Clin Orthop Relat Res 2004 Sep;(426):174–179CrossRefGoogle Scholar
  5. 5.
    DiGioia AM, Jaramaz B, Blackwell M, et al. The Otto Aufranc Award. Image guided navigation system to measure intraoperatively acetabular implant alignment. Clin Orthop Relat Res 1998 Oct;(355):8–22Google Scholar
  6. 6.
    Dorr LD, Hishiki Y, Wan Z, Newton D, Yun A. Development of imageless computer navigation for acetabular component position in total hip replacement. Iowa Orthop J 2005;25:1–9PubMedGoogle Scholar
  7. 7.
    Inaba Y, Dorr LD, Wan Z, Sirianni L, Boutary M. Operative and patient care techniques for posterior mini-incision total hip arthroplasty. Clin Orthop Relat Res 2005 Dec;(441):104–114CrossRefGoogle Scholar
  8. 8.
    Berry DJ, Berger RA, Callaghan JJ, et al. Minimally invasive total hip arthroplasty. Development, early results, and a critical analysis. Presented at the Annual Meeting of the American Orthopaedic Association, Charleston, South Carolina, USA, June 14, 2003. J Bone Joint Surg Am 2003;85-A(11):2235–2246PubMedGoogle Scholar
  9. 9.
    Dorr LD. Hip Arthroplasty Minimally Invasive Techniques and Computer Navigation. Saunders Elsevier, Philadelphia, PA; 2006Google Scholar
  10. 10.
    Murray DW. The definition and measurement of acetabular orientation. J Bone Joint Surg Br 1993;75(2):228–232PubMedGoogle Scholar
  11. 11.
    Widmer KH, Zurfluh B. Compliant positioning of total hip components for optimal range of motion. J Orthop Res 2004;22(4): 815–821CrossRefPubMedGoogle Scholar
  12. 12.
    Callaghan JJ, Salvati EA, Pellicci PM, Wilson PD Jr, Ranawat CS. Results of revision for mechanical failure after cemented total hip replacement, 1979 to 1982. A two to five-year follow-up. J Bone Joint Surg Am 1985;67(7):1074–1085PubMedGoogle Scholar
  13. 13.
    Wan Z, Dorr LD. Natural history of femoral focal osteolysis with proximal ingrowth smooth stem implant. J Arthroplasty 1996;11(6):718–725CrossRefPubMedGoogle Scholar
  14. 14.
    Tannast M, Langlotz U, Siebenrock KA, Wiese M, Bernsmann K, Langlotz F. Anatomic referencing of cup orientation in total hip arthroplasty. Clin Orthop Relat Res 2005 Jul;(436): 144–150CrossRefGoogle Scholar
  15. 15.
    Wixson RL, MacDonald MA. Total hip arthroplasty through a minimal posterior approach using imageless computer-assisted hip navigation. J Arthroplasty 2005;20(7 Suppl 3):51–56CrossRefPubMedGoogle Scholar
  16. 16.
    Ogonda L, Wilson R, Archbold P, et al. A minimal-incision technique in total hip arthroplasty does not improve early postoperative outcomes. A prospective, randomized, controlled trial. J Bone Joint Surg Am 2005;87(4):701–710CrossRefPubMedGoogle Scholar
  17. 17.
    Chimento GF, Pavone V, Sharrock N, Kahn B, Cahill J, Sculco TP. Minimally invasive total hip arthroplasty: a prospective randomized study. J Arthroplasty 2005;20(2):139–144CrossRefPubMedGoogle Scholar
  18. 18.
    Berger RA, Duwelius PJ. The two-incision minimally invasive total hip arthroplasty: technique and results. Orthop Clin North Am 2004;35(2):163–172CrossRefPubMedGoogle Scholar
  19. 19.
    Barrack RL, Lavernia C, Ries M, Thornberry R, Tozakoglou E. Virtual reality computer animation of the effect of component position and design on stability after total hip arthroplasty. Orthop Clin North Am 2001;32(4):569–577, viiCrossRefPubMedGoogle Scholar
  20. 20.
    Maruyama M, Feinberg JR, Capello WN, D’Antonio JA. The Frank Stinchfield Award: morphologic features of the acetabulum and femur: anteversion angle and implant positioning. Clin Orthop Relat Res 2001 Dec;(393):52–65CrossRefGoogle Scholar
  21. 21.
    Lewinnek GE, Lewis JL, Tarr R, Compere CL, Zimmerman JR. Dislocations after total hip-replacement arthroplasties. J Bone Joint Surg Am 1978;60(2):217–220PubMedGoogle Scholar
  22. 22.
    Siguier T, Siguier M, Brumpt B. Mini-incision anterior approach does not increase dislocation rate: a study of 1037 total hip replacements. Clin Orthop Relat Res 2004 Sep;(426):164–173CrossRefGoogle Scholar
  23. 23.
    Kennedy JG, Rogers WB, Soffe KE, Sullivan RJ, Griffen DG, Sheehan LJ. Effect of acetabular component orientation on recurrent dislocation, pelvic osteolysis, polyethylene wear, and component migration. J Arthroplasty 1998;13(5):530–534CrossRefPubMedGoogle Scholar
  24. 24.
    D’Lima DD, Urquhart AG, Buehler KO, Walker RH, Colwell CW Jr. The effect of the orientation of the acetabular and femoral components on the range of motion of the hip at different head-neck ratios. J Bone Joint Surg Am 2000;82(3):315–321PubMedGoogle Scholar
  25. 25.
    Robinson RP, Simonian PT, Gradisar IM, Ching RP. Joint motion and surface contact area related to component position in total hip arthroplasty. J Bone Joint Surg Br 1997;79(1):140–146CrossRefPubMedGoogle Scholar
  26. 26.
    Karachalios T, Hartofilakidis G, Zacharakis N, Tsekoura M. A 12- to 18-year radiographic follow-up study of Charnley low-friction arthroplasty. The role of the center of rotation. Clin Orthop Relat Res 1993 Nov;(296):140–147Google Scholar
  27. 27.
    Amiot LP, Poulin F. Computed tomography-based navigation for hip, knee, and spine surgery. Clin Orthop Relat Res 2004 Apr;(421): 77–86CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Dorr Arthritis InstituteLos AngelesUSA

Personalised recommendations