Skip to main content

Minimally Invasive Transforaminal Lumbar Interbody Fusion

  • Chapter
  • First Online:
Minimally Invasive Surgery in Orthopedics

Abstract

During the past 75 years, surgical technique, spinal instruments and instrumentation, and molecular biology have advanced the notion of lumbar interbody fusion from what Mercer1 described, in 1936, as perhaps “technically impossible” to a routine operation with a high rate of success. Pedicle screw augmentation of the posterior lateral interbody fusion (PLIF) described by Cloward2 made possible a decompressive operation and arthrodesis with “360°” of stabilization from a single posterior approach. The transforaminal lumbar interbody fusion (TLIF) described by Harms and Rolinger3 in 1982 offered the same biomechanical result as the PLIF but has gained more widespread popularity because it requires less manipulation of neural structures during graft placement. Although both the PLIF and TLIF are viable using minimally invasive techniques, the minimally invasive TLIF (miTLIF) has become the dominant minimally invasive lumbar fusion procedure.

Retrospective surgical series have reported high rates of efficacy for both open PLIF and open TLIF in terms of fusion rates and clinical outcome for a variety of indications.412 These results have been supported by the majority of Class I data.1318 Although debate continues over whether the theoretical advantages of an instrumented 360° fusion have translated into a clinical benefit over noninstrumented fusions or posterior lateral onlay fusions (PLF),19,20 posterior interbody grafting and percutaneous pedicle screw placement has enabled the development of minimally invasive lumbar fusion procedures that would not otherwise be possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mercer R. Spondylolisthesis with a description of a new method of operative treatment and notes of ten cases. Edinb Med J 1936;43: 545–572

    Google Scholar 

  2. Cloward RB. The treatment of ruptured lumbar intervertebral discs by vertebral body fusion. I. Indications, operative technique, after care. J Neurosurg 1953;10:154–168

    Article  CAS  PubMed  Google Scholar 

  3. Harms J, Rolinger H. [A one-stager procedure in operative treatment of spondylolistheses: dorsal traction-reposition and anterior fusion (author’s transl)]. Z Orthop Ihre Grenzgeb 1982;120:343–347

    Article  CAS  PubMed  Google Scholar 

  4. Chastain CA, Eck JC, Hodges SD, et al. Transforaminal lumbar interbody fusion: a retrospective study of long-term pain relief and fusion outcomes. Orthopedics 2007;30:389–392

    PubMed  Google Scholar 

  5. Gill K, Blumenthal SL. Posterior lumbar interbody fusion. A 2-year follow-up of 238 patients. Acta Orthop Scand Suppl 1993;251: 108–110

    CAS  PubMed  Google Scholar 

  6. Hackenberg L, Halm H, Bullmann V, et al. Transforaminal lumbar interbody fusion: a safe technique with satisfactory three to five year results. Eur Spine J 2005;14:551–558

    Article  PubMed  Google Scholar 

  7. Haid RW Jr, Branch CL Jr, Alexander JT, et al. Posterior lumbar interbody fusion using recombinant human bone morphogenetic protein type 2 with cylindrical interbody cages. Spine J 2004;4:527–538; discussion 38–39

    Article  PubMed  Google Scholar 

  8. Lauber S, Schulte TL, Liljenqvist U, et al. Clinical and radiologic 2–4-year results of transforaminal lumbar interbody fusion in degenerative and isthmic spondylolisthesis grades 1 and 2. Spine 2006;31:1693–1698

    Article  PubMed  Google Scholar 

  9. Okuda S, Miyauchi A, Oda T, et al. Surgical complications of posterior lumbar interbody fusion with total facetectomy in 251 patients. J Neurosurg Spine 2006;4:304–309

    Article  PubMed  Google Scholar 

  10. Okuda S, Oda T, Miyauchi A, et al. Surgical outcomes of posterior lumbar interbody fusion in elderly patients. J Bone Joint Surg Am 2006;88:2714–2720

    Article  PubMed  Google Scholar 

  11. Potter BK, Freedman BA, Verwiebe EG, et al. Transforaminal lumbar interbody fusion: clinical and radiographic results and complications in 100 consecutive patients. J Spinal Disord Tech 2005;18:337–346

    Article  PubMed  Google Scholar 

  12. Rosenberg WS, Mummaneni PV. Transforaminal lumbar interbody fusion: technique, complications, and early results. Neurosurgery 2001;48:569–575

    Article  CAS  PubMed  Google Scholar 

  13. Blumenthal S, McAfee PC, Guyer RD, et al. A prospective, randomized, multicenter Food and Drug Administration investigational device exemptions study of lumbar total disc replacement with the CHARITE artificial disc versus lumbar fusion: part I: evaluation of clinical outcomes. Spine 2005;30:1565–1575; discussion E387-E391

    Article  PubMed  Google Scholar 

  14. Fritzell P, Hagg O, Wessberg P, et al. 2001 Volvo Award Winner in Clinical Studies: Lumbar fusion versus nonsurgical treatment for chronic low back pain: a multicenter randomized controlled trial from the Swedish Lumbar Spine Study Group. Spine 2001;26:2521–2532; discussion 32–34

    Article  CAS  PubMed  Google Scholar 

  15. Glassman S, Gornet MF, Branch C, et al. MOS short form 36 and Oswestry Disability Index outcomes in lumbar fusion: a multicenter experience. Spine J 2006;6:21–26

    Article  PubMed  Google Scholar 

  16. Polly DW Jr, Glassman SD, Schwender JD, et al. SF-36 PCS benefit-cost ratio of lumbar fusion comparison to other surgical interventions: a thought experiment. Spine 2007;32:S20–S26

    Article  PubMed  Google Scholar 

  17. Weinstein JN, Lurie JD, Tosteson TD, et al. Surgical versus nonsurgical treatment for lumbar degenerative spondylolisthesis. N Engl J Med 2007;356:2257–2270

    Article  CAS  PubMed  Google Scholar 

  18. Zigler J, Delamarter R, Spivak JM, et al. Results of the prospective, randomized, multicenter Food and Drug Administration investigational device exemption study of the ProDisc-L total disc replacement versus circumferential fusion for the treatment of 1-level degenerative disc disease. Spine 2007;32:1155–1162; discussion 63

    Article  PubMed  Google Scholar 

  19. Ekman P, Moller H, Tullberg T, et al. Posterior lumbar interbody fusion versus posterolateral fusion in adult isthmic spondylolisthesis. Spine 2007;32:2178–2183

    Article  PubMed  Google Scholar 

  20. Videbaek TS, Christensen FB, Soegaard R, et al. Circumferential fusion improves outcome in comparison with instrumented posterolateral fusion: long-term results of a randomized clinical trial. Spine 2006;31:2875–2880

    Article  PubMed  Google Scholar 

  21. Fessler RG. Minimally invasive percutaneous posterior lumbar interbody fusion. Neurosurgery 2003;52:1512

    Article  PubMed  Google Scholar 

  22. Foley KT, Holly LT, Schwender JD. Minimally invasive lumbar fusion. Spine 2003;28:S26–S35

    Article  PubMed  Google Scholar 

  23. Holly LT, Schwender JD, Rouben DP, et al. Minimally invasive transforaminal lumbar interbody fusion: indications, technique, and complications. Neurosurg Focus 2006;20:E6

    Article  PubMed  Google Scholar 

  24. Kim KT, Lee SH, Lee YH, et al. Clinical outcomes of 3 fusion methods through the posterior approach in the lumbar spine. Spine 2006;31:1351–1357; discussion 8

    Article  PubMed  Google Scholar 

  25. Scheufler KM, Dohmen H, Vougioukas VI. Percutaneous transforaminal lumbar interbody fusion for the treatment of degenerative lumbar instability. Neurosurgery 2007;60:203–212; discussion 12–13

    Article  PubMed  Google Scholar 

  26. Schwender JD, Holly LT, Rouben DP, et al. Minimally invasive transforaminal lumbar interbody fusion (TLIF): technical feasibility and initial results. J Spinal Disord Tech 2005;18(Suppl):S1–S6

    Article  PubMed  Google Scholar 

  27. Cloward RB. Posterior lumbar interbody fusion updated. Clin Orthop Relat Res 1985;Mar(193):16–19

    Google Scholar 

  28. Hutter CG. Spinal stenosis and posterior lumbar interbody fusion. Clin Orthop Relat Res 1985;Mar(193):103–114

    Google Scholar 

  29. Trouillier H, Birkenmaier C, Rauch A, et al. Posterior lumbar interbody fusion (PLIF) with cages and local bone graft in the treatment of spinal stenosis. Acta Orthop Belg 2006;72:460–466

    PubMed  Google Scholar 

  30. Ekman P, Moller H, Hedlund R. The long-term effect of posterolateral fusion in adult isthmic spondylolisthesis: a randomized controlled study. Spine J 2005;5:36–44

    Article  PubMed  Google Scholar 

  31. Miyakoshi N, Abe E, Shimada Y, et al. Outcome of one-level posterior lumbar interbody fusion for spondylolisthesis and postoperative intervertebral disc degeneration adjacent to the fusion. Spine 2000;25:1837–1842

    Article  CAS  PubMed  Google Scholar 

  32. Molinari RW, Sloboda JF, Arrington EC. Low-grade isthmic spondylolisthesis treated with instrumented posterior lumbar interbody fusion in U.S. servicemen. J Spinal Disord Tech 2005;18(Suppl): S24–S29

    Article  PubMed  Google Scholar 

  33. Moller H, Hedlund R. Instrumented and noninstrumented posterolateral fusion in adult spondylolisthesis - a prospective randomized study: part 2. Spine 2000;25:1716–1721

    Article  CAS  PubMed  Google Scholar 

  34. Thomsen K, Christensen FB, Eiskjaer SP, et al. 1997 Volvo Award winner in clinical studies. The effect of pedicle screw instrumentation on functional outcome and fusion rates in posterolateral lumbar spinal fusion: a prospective, randomized clinical study. Spine 1997;22:2813–2822

    Article  CAS  PubMed  Google Scholar 

  35. Duggal N, Mendiondo I, Pares HR, et al. Anterior lumbar interbody fusion for treatment of failed back surgery syndrome: an outcome analysis. Neurosurgery 2004;54:636–643; discussion 43–44

    Article  PubMed  Google Scholar 

  36. Markwalder TM, Battaglia M. Failed back surgery syndrome. Part II: Surgical techniques, implant choice, and operative results in 171 patients with instability of the lumbar spine. Acta Neurochir (Wien) 1993;123:129–134

    Article  CAS  Google Scholar 

  37. Skaf G, Bouclaous C, Alaraj A, et al. Clinical outcome of surgical treatment of failed back surgery syndrome. Surg Neurol 2005;64:483–488; discussion 8–9

    Article  PubMed  Google Scholar 

  38. Chitnavis B, Barbagallo G, Selway R, et al. Posterior lumbar interbody fusion for revision disc surgery: review of 50 cases in which carbon fiber cages were implanted. J Neurosurg 2001;95:190–195

    Article  CAS  PubMed  Google Scholar 

  39. Choi JY, Choi YW, Sung KH. Anterior lumbar interbody fusion in patients with a previous discectomy: minimum 2-year follow-up. J Spinal Disord Tech 2005;18:347–352

    Article  PubMed  Google Scholar 

  40. Lee SH, Kang BU, Jeon SH, et al. Revision surgery of the lumbar spine: anterior lumbar interbody fusion followed by percutaneous pedicle screw fixation. J Neurosurg Spine 2006;5:228–233

    Article  PubMed  Google Scholar 

  41. Vishteh AG, Dickman CA. Anterior lumbar microdiscectomy and interbody fusion for the treatment of recurrent disc herniation. Neurosurgery 2001;48:334–337

    Article  CAS  PubMed  Google Scholar 

  42. Folman Y, Lee SH, Silvera JR, et al. Posterior lumbar interbody fusion for degenerative disc disease using a minimally invasive B-twin expandable spinal spacer: a multicenter study. J Spinal Disord Tech 2003;16:455–460

    Article  PubMed  Google Scholar 

  43. Leufven C, Nordwall A. Management of chronic disabling low back pain with 360 degrees fusion. Results from pain provocation test and concurrent posterior lumbar interbody fusion, posterolateral fusion, and pedicle screw instrumentation in patients with chronic disabling low back pain. Spine 1999;24:2042–2045

    Article  CAS  PubMed  Google Scholar 

  44. Dimar JR, Glassman SD, Burkus KJ, et al. Clinical outcomes and fusion success at 2 years of single-level instrumented posterolateral fusions with recombinant human bone morphogenetic protein-2/compression resistant matrix versus iliac crest bone graft. Spine 2006;31:2534–2539; discussion 40

    Article  PubMed  Google Scholar 

  45. Mirza SK, Deyo RA. Systematic review of randomized trials comparing lumbar fusion surgery to nonoperative care for treatment of chronic back pain. Spine 2007;32:816–823

    Article  PubMed  Google Scholar 

  46. Fairbank J, Frost H, Wilson-MacDonald J, et al. Randomised controlled trial to compare surgical stabilisation of the lumbar spine with an intensive rehabilitation programme for patients with chronic low back pain: the MRC spine stabilisation trial. BMJ 2005;330:1233

    Article  PubMed  Google Scholar 

  47. Brox JI, Reikeras O, Nygaard O, et al. Lumbar instrumented fusion compared with cognitive intervention and exercises in patients with chronic back pain after previous surgery for disc herniation: a prospective randomized controlled study. Pain 2006;122:145–155

    Article  PubMed  Google Scholar 

  48. Brox JI, Sorensen R, Friis A, et al. Randomized clinical trial of lumbar instrumented fusion and cognitive intervention and exercises in patients with chronic low back pain and disc degeneration. Spine 2003;28:1913–1921

    Article  PubMed  Google Scholar 

  49. Hagg O, Fritzell P. Re: Brox JI, Sorensen R, Friis A, et al. Randomized clinical trial of lumbar instrumented fusion and cognitive intervention and exercises in patients with chronic low back pain and disc degeneration. Spine. 2003; 28:1913–1921. Spine 2004;29:1160–1161

    Article  PubMed  Google Scholar 

  50. Moller H, Hedlund R. Surgery versus conservative management in adult isthmic spondylolisthesis - a prospective randomized study: part 1. Spine 2000;25:1711–1715

    Article  CAS  PubMed  Google Scholar 

  51. Isaacs RE, Podichetty VK, Santiago P, et al. Minimally invasive microendoscopy-assisted transforaminal lumbar interbody fusion with instrumentation. J Neurosurg Spine 2005;3:98–105

    Article  PubMed  Google Scholar 

  52. Park Y, Ha JW. Comparison of one-level posterior lumbar interbody fusion performed with a minimally invasive approach or a traditional open approach. Spine 2007;32:537–543

    Article  PubMed  Google Scholar 

  53. Gejo R, Matsui H, Kawaguchi Y, et al. Serial changes in trunk muscle performance after posterior lumbar surgery. Spine 1999;24:1023–1028

    Article  CAS  PubMed  Google Scholar 

  54. Kawaguchi Y, Matsui H, Tsuji H. Back muscle injury after posterior lumbar spine surgery. A histologic and enzymatic analysis. Spine 1996;21:941–944

    Article  CAS  PubMed  Google Scholar 

  55. Kawaguchi Y, Matsui H, Tsuji H. Back muscle injury after posterior lumbar spine surgery. Part 2: Histologic and histochemical analyses in humans. Spine 1994;19:2598–2602

    Article  CAS  PubMed  Google Scholar 

  56. Kawaguchi Y, Matsui H, Tsuji H. Changes in serum creatine phosphokinase MM isoenzyme after lumbar spine surgery. Spine 1997;22:1018–1023

    Article  CAS  PubMed  Google Scholar 

  57. Mayer TG, Vanharanta H, Gatchel RJ, et al. Comparison of CT scan muscle measurements and isokinetic trunk strength in postoperative patients. Spine 1989;14:33–36

    Article  CAS  PubMed  Google Scholar 

  58. Sihvonen T, Herno A, Paljarvi L, et al. Local denervation atrophy of paraspinal muscles in postoperative failed back syndrome. Spine 1993;18:575–581

    Article  CAS  PubMed  Google Scholar 

  59. Stevens KJ, Spenciner DB, Griffiths KL, et al. Comparison of minimally invasive and conventional open posterolateral lumbar fusion using magnetic resonance imaging and retraction pressure studies. J Spinal Disord Tech 2006;19:77–86

    Article  PubMed  Google Scholar 

  60. Kim KT, Lee SH, Suk KS, et al. The quantitative analysis of tissue injury markers after mini-open lumbar fusion. Spine 2006;31:712–716

    Article  PubMed  Google Scholar 

  61. Jang JS, Lee SH. Minimally invasive transforaminal lumbar interbody fusion with ipsilateral pedicle screw and contralateral facet screw fixation. J Neurosurg Spine 2005;3:218–223

    Article  PubMed  Google Scholar 

  62. Khoo LT, Fessler RG. Microendoscopic decompressive laminotomy for the treatment of lumbar stenosis. Neurosurgery 2002;51:S146–S154

    PubMed  Google Scholar 

  63. Beringer WF, Mobasser JP. Unilateral pedicle screw instrumentation for minimally invasive transforaminal lumbar interbody fusion. Neurosurg Focus 2006;20:E4

    PubMed  Google Scholar 

  64. Deutsch H, Musacchio MJ Jr. Minimally invasive transforaminal lumbar interbody fusion with unilateral pedicle screw fixation. Neurosurg Focus 2006;20:E10

    Article  PubMed  Google Scholar 

  65. Holly LT, Foley KT. Three-dimensional fluoroscopy-guided percutaneous thoracolumbar pedicle screw placement. Technical note. J Neurosurg 2003;99:324–329

    PubMed  Google Scholar 

  66. Grutzner PA, Beutler T, Wendl K, et al. [Intraoperative three-dimensional navigation for pedicle screw placement]. Chirurg 2004;75:967–975

    Article  CAS  PubMed  Google Scholar 

  67. Villavicencio AT, Burneikiene S, Bulsara KR, et al. Utility of computerized isocentric fluoroscopy for minimally invasive spinal surgical techniques. J Spinal Disord Tech 2005;18:369–375

    Article  PubMed  Google Scholar 

  68. Shoham M, Lieberman IH, Benzel EC, et al. Robotic assisted spinal surgery - from concept to clinical practice. Comput Aided Surg 2007;12:105–115

    CAS  PubMed  Google Scholar 

  69. O. Toole, J.E., Eichholy, J.M., Fossler, G.G. Surgicalsite infection notes after minimally invasive surgey. Zournal of Neuosurgery in press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ogden, A.T., Fessler, R.G. (2010). Minimally Invasive Transforaminal Lumbar Interbody Fusion. In: Scuderi, G., Tria, A. (eds) Minimally Invasive Surgery in Orthopedics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76608-9_69

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-76608-9_69

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-76607-2

  • Online ISBN: 978-0-387-76608-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics