Nuclear Imaging with Exercise Testing

  • Patricia Nguyen

Advances in nuclear imaging have helped establish its role in the diagnosis and management of coronary artery disease. Recent innovations, including the advent of new radiotracers, attenuation techniques and cardiac gating, have improved the accuracy of SPECT and PET. There are extensive data demonstrating the independent diagnostic and prognostic utility of nuclear imaging for stress testing.


Single Photon Emission Compute Tomography Myocardial Perfusion Myocardial Perfusion Imaging Perfusion Defect Myocardial Viability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dilsizian V, Narula J. Atlas of Nuclear Cardiology. Philadelphia: Current Medicine, 2003.Google Scholar
  2. 2.
    Husain SS. Myocardial perfusion imaging protocols: is there an ideal protocol? J Nucl Med Technol 2007;35(1):3—9.PubMedGoogle Scholar
  3. 3.
    Beller GA, Bergmann SR. Myocardial perfusion agents: SPECT and PET. J Nucl Cardiol 2004;11(1):74—86.Google Scholar
  4. 4.
    Feigenbaum H, Armstrong WF, Ryan, T. Feigenbaum’s Echocardiography. 6 ed: Philadelphia, Lippincott Williams and Wilkins, 2005.Google Scholar
  5. 5.
    Wackers FJ. Exercise myocardial perfusion imaging. J Nucl Med 1994;35(4):726—9.PubMedGoogle Scholar
  6. 6.
    Meleca MJ, McGoron AJ, Gerson MC, et al. Flow versus uptake comparisons of thallium-201 with technetium-99m perfusion tracers in a canine model of myocardial ischemia. J Nucl Med 1997;38(12):1847—56.PubMedGoogle Scholar
  7. 7.
    Slart RH, Bax JJ, van Veldhuisen DJ, et al. Prediction of functional recovery after revascularization in patients with coronary artery disease and left ventricular dysfunction by gated FDG-PET. J Nucl Cardiol 2006;13(2):210—9.PubMedGoogle Scholar
  8. 8.
    Arrighi JA. Assessment of myocardial viability: more than measurements of radiotracer uptake alone. J Nucl Cardiol 2006;13(2):180—3.PubMedGoogle Scholar
  9. 9.
    Anagnostopoulos C, Harbinson M, Kelion A, et al. Procedure guidelines for radionuclide myocardial perfusion imaging. Heart 2004;90 Suppl 1:i1—10.PubMedCrossRefGoogle Scholar
  10. 10.
    Klocke FJ, Baird MG, Lorell BH, et al. ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging — executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Cardiac Radionuclide Imaging). J Am Coll Cardiol 2003;42(7):1318—33.PubMedCrossRefGoogle Scholar
  11. 11.
    Henzlova MJ, Cerqueira MD, Mahmarian JJ, Yao SS. Stress protocols and tracers. J Nucl Cardiol 2006;13(6):e80—90.PubMedCrossRefGoogle Scholar
  12. 12.
    Bateman TM. Cardiac positron emission tomography and the role of adenosine pharmacologic stress. Am J Cardiol 2004;94(2A):19D—24D; discussion D-5D.PubMedCrossRefGoogle Scholar
  13. 13.
    Schelbert HR, Beanlands R, Bengel F, et al. PET myocardial perfusion and glucose metabolism imaging: Part 2-Guidelines for interpretation and reporting. J Nucl Cardiol 2003;10(5):557—71.PubMedCrossRefGoogle Scholar
  14. 14.
    McNeer JF, Margolis JR, Lee KL, et al. The role of the exercise test in the evaluation of patients for ischemic heart disease. Circulation 1978;57(1):64—70.PubMedGoogle Scholar
  15. 15.
    Cerqueira MD, Weissman NJ, Dilsizian V, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002;105(4):539—42.PubMedCrossRefGoogle Scholar
  16. 16.
    Hachamovitch R, Berman DS, Shaw LJ, et al. Incremental prognostic value of myocardial perfusion single photon emission computed tomography for the prediction of cardiac death: differential stratification for risk of cardiac death and myocardial infarction. Circulation 1998;97(6):535—43.PubMedGoogle Scholar
  17. 17.
    Hachamovitch R. Prognostic characterization of patients with mild coronary artery disease with myocardial perfusion single photon emission computed tomography: validation of an outcomes-based strategy. J Nucl Cardiol 1998;5(1):90—5.PubMedCrossRefGoogle Scholar
  18. 18.
    Sanders GP, Pinto DS, Parker JA, Koutkia P, Aepfelbacher FC, Danias PG. Increased resting Tl-201 lung-to-heart ratio is associated with invasively determined measures of left ventricular dysfunction, extent of coronary artery disease, and resting myocardial perfusion abnormalities. J Nucl Cardiol 2003;10(2):140—7.PubMedCrossRefGoogle Scholar
  19. 19.
    Omar WA, Reda A. Comparison between gated SPECT and echocardiography in evaluation of left ventricular ejection fraction. J Egypt Nat Canc Inst 2000;12(4):301—6.Google Scholar
  20. 20.
    Berman D, Germano G, Lewin H, et al. Comparison of post-stress ejection fraction and relative left ventricular volumes by automatic analysis of gated myocardial perfusion single-photon emission computed tomography acquired in the supine and prone positions. J Nucl Cardiol 1998;5(1):40—7.PubMedCrossRefGoogle Scholar
  21. 21.
    Verberne HJ, Dijkgraaf MG, Somsen GA, van Eck-Smit BL. Stress-related variations in left ventricular function as assessed with gated myocardial perfusion SPECT. J Nucl Cardiol 2003;10(5):456—63.PubMedCrossRefGoogle Scholar
  22. 22.
    Kiat H, Berman DS, Maddahi J, et al. Late reversibility of tomographic myocardial thallium-201 defects: an accurate marker of myocardial viability. J Am Coll Cardiol 1988;12(6):1456—63.PubMedGoogle Scholar
  23. 23.
    Sansoy V, Glover DK, Watson DD, et al. Comparison of thallium-201 resting redistribution with technetium-99m-sestamibi uptake and functional response to dobutamine for assessment of myocardial viability. Circulation 1995;92(4):994—1004.PubMedGoogle Scholar
  24. 24.
    Nicolai E, Cuocolo A, Acampa W, Varrone A, Pace L, Salvatore M. Exercise-test Tc-99m tetrofosmin SPECT in patients with chronic ischemic left ventricular dysfunction: direct comparison with Ti-201 reinjection. J Nucl Cardiol 1999;6(3):270—7.PubMedCrossRefGoogle Scholar
  25. 25.
    Matsunari I, Fujino S, Taki J, et al. Myocardial viability assessment with technetium-99m-tetrofosmin and thallium-201 reinjection in coronary artery disease. J Nucl Med 1995;36(11):1961—7.PubMedGoogle Scholar
  26. 26.
    Schoder H, Campisi R, Ohtake T, et al. Blood flow-metabolism imaging with positron emission tomography in patients with diabetes mellitus for the assessment of reversible left ventricular contractile dysfunction. J Am Coll Cardiol 1999;33(5):1328—37.PubMedCrossRefGoogle Scholar
  27. 27.
    Pagano D, Townend JN, Littler WA, Horton R, Camici PG, Bonser RS. Coronary artery bypass surgery as treatment for ischemic heart failure: the predictive value of viability assessment with quantitative positron emission tomography for symptomatic and functional outcome. J Thorac Cardiovasc Surg 1998;115(4):791—9.PubMedCrossRefGoogle Scholar
  28. 28.
    Gambhir SS, Schwaiger M, Huang SC, et al. Simple noninvasive quantification method for measuring myocardial glucose utilization in humans employing positron emission tomography and fluorine-18 deoxyglucose. J Nucl Med 1989;30(3):359—66.PubMedGoogle Scholar
  29. 29.
    Choi Y, Hawkins RA, Huang SC, et al. Parametric images of myocardial metabolic rate of glucose generated from dynamic cardiac PET and 2-[18F]fluoro-2-deoxy-d-glucose studies. J Nucl Med 1991;32(4):733—8.PubMedGoogle Scholar
  30. 30.
    Maes A, Van de Werf F, Nuyts J, Bormans G, Desmet W, Mortelmans L. Impaired myocardial tissue perfusion early after successful thrombolysis. Impact on myocardial flow, metabolism, and function at late follow-up. Circulation 1995;92(8):2072—8.Google Scholar
  31. 31.
    Maes A, Mortelmans L, Nuyts J, et al. Importance of flow/metabolism studies in predicting late recovery of function following reperfusion in patients with acute myocardial infarction. Eur Heart J 1997;18(6):954—62.PubMedGoogle Scholar
  32. 32.
    Yamagishi H, Akioka K, Hirata K, et al. A reverse flow-metabolism mismatch pattern on PET is related to multivessel disease in patients with acute myocardial infarction. J Nucl Med 1999;40(9):1492—8.PubMedGoogle Scholar
  33. 33.
    Gibbons RJ, Balady GJ, Bricker JT, et al. ACC/AHA 2002 guideline update for exercise testing: summary article. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Update the 1997 Exercise Testing Guidelines). J Am Coll Cardiol 2002;40(8):1531—40.PubMedGoogle Scholar
  34. 34.
    Mattera JA, Arain SA, Sinusas AJ, Finta L, Wackers FJ. Exercise testing with myocardial perfusion imaging in patients with normal baseline electrocardiograms: cost savings with a stepwise diagnostic strategy. J Nucl Cardiol 1998;5(5):498—506.PubMedCrossRefGoogle Scholar
  35. 35.
    Douglas PS, Ginsburg GS. The evaluation of chest pain in women. N Engl J Med 1996;334(20):1311—5.PubMedCrossRefGoogle Scholar
  36. 36.
    Wong Y, Rodwell A, Dawkins S, Livesey SA, Simpson IA. Sex differences in investigation results and treatment in subjects referred for investigation of chest pain. Heart 2001;85(2):149—52.PubMedCrossRefGoogle Scholar
  37. 37.
    Sketch MH, Mohiuddin SM, Lynch JD, Zencka AE, Runco V. Significant sex differences in the correlation of electrocardiographic exercise testing and coronary arteriograms. Am J Cardiol 1975;36(2):169—73.PubMedCrossRefGoogle Scholar
  38. 38.
    Ryan TJ, Antman EM, Brooks NH, et al. 1999 update: ACC/AHA guidelines for the management of patients with acute myocardial infarction. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Management of Acute Myocardial Infarction). J Am Coll Cardiol 1999;34(3):890—911.PubMedGoogle Scholar
  39. 39.
    Dakik HA, Mahmarian JJ, Kimball KT, Koutelou MG, Medrano R, Verani MS. Prognostic value of exercise 201Tl tomography in patients treated with thrombolytic therapy during acute myocardial infarction. Circulation 1996;94(11):2735—42.PubMedGoogle Scholar
  40. 40.
    Basu S, Senior R, Dore C, Lahiri A. Value of thallium-201 imaging in detecting adverse cardiac events after myocardial infarction and thrombolysis: a follow up of 100 consecutive patients. BMJ 1996;313(7061):844—8.PubMedGoogle Scholar
  41. 41.
    Amanullah AM, Lindvall K. Prevalence and significance of transient – predominantly asymptomatic – myocardial ischemia on Holter monitoring in unstable angina pectoris, and correlation with exercise test and thallium-201 myocardial perfusion imaging. Am J Cardiol 1993;72(2):144—8.PubMedCrossRefGoogle Scholar
  42. 42.
    Stratmann HG, Younis LT, Wittry MD, Amato M, Miller DD. Exercise technetium-99m myocardial tomography for the risk stratification of men with medically treated unstable angina pectoris. Am J Cardiol 1995;76(4):236—40.PubMedCrossRefGoogle Scholar
  43. 43.
    Kroll D, Farah W, McKendall GR, Reinert SE, Johnson LL. Prognostic value of stress-gated Tc-99m sestamibi SPECT after acute myocardial infarction. Am J Cardiol 2001;87(4):381—6.PubMedCrossRefGoogle Scholar
  44. 44.
    Stratmann HG, Tamesis BR, Younis LT, Wittry MD, Amato M, Miller DD. Prognostic value of predischarge dipyridamole technetium 99m sestamibi myocardial tomography in medically treated patients with unstable angina. Am Heart J 1995;130(4):734—40.PubMedCrossRefGoogle Scholar
  45. 45.
    Acampa W, Cuocolo A, Sullo P, et al. Direct comparison of technetium 99m-sestamibi and technetium 99m-tetrofosmin cardiac single photon emission computed tomography in patients with coronary artery disease. J Nucl Cardiol 1998;5(3):265—74.PubMedCrossRefGoogle Scholar
  46. 46.
    Azzarelli S, Galassi AR, Foti R, et al. Accuracy of 99mTc-tetrofosmin myocardial tomography in the evaluation of coronary artery disease. J Nucl Cardiol 1999;6(2):183—9.PubMedCrossRefGoogle Scholar
  47. 47.
    Budoff MJ, Gillespie R, Georgiou D, et al. Comparison of exercise electron beam computed tomography and sestamibi in the evaluation of coronary artery disease. Am J Cardiol 1998;81(6):682—7.PubMedCrossRefGoogle Scholar
  48. 48.
    Candell-Riera J, Santana-Boado C, Castell-Conesa J, et al. Simultaneous dipyridamole/maximal subjective exercise with 99mTc-MIBI SPECT: improved diagnostic yield in coronary artery disease. J Am Coll Cardiol 1997;29(3):531—6.PubMedCrossRefGoogle Scholar
  49. 49.
    Elhendy A, van Domburg RT, Sozzi FB, Poldermans D, Bax JJ, Roelandt JR. Impact of hypertension on the accuracy of exercise stress myocardial perfusion imaging for the diagnosis of coronary artery disease. Heart 2001;85(6):655—61.PubMedCrossRefGoogle Scholar
  50. 50.
    Hambye AS, Vervaet A, Lieber S, Ranquin R. Diagnostic value and incremental contribution of bicycle exercise, first-pass radionuclide angiography, and 99mTc-labeled sestamibi single-photon emission computed tomography in the identification of coronary artery disease in patients without infarction. J Nucl Cardiol 1996;3(6 Pt 1):464—74.PubMedCrossRefGoogle Scholar
  51. 51.
    Ho YL, Wu CC, Huang PJ, et al. Assessment of coronary artery disease in women by dobutamine stress echocardiography: comparison with stress thallium-201 single-photon emission computed tomography and exercise electrocardiography. Am Heart J 1998;135(4):655—62.PubMedCrossRefGoogle Scholar
  52. 52.
    Ho YL, Wu CC, Huang PJ, et al. Dobutamine stress echocardiography compared with exercise thallium-201 single-photon emission computed tomography in detecting coronary artery disease-effect of exercise level on accuracy. Cardiology 1997;88(4):379—85.PubMedCrossRefGoogle Scholar
  53. 53.
    Palmas W, Friedman JD, Diamond GA, Silber H, Kiat H, Berman DS. Incremental value of simultaneous assessment of myocardial function and perfusion with technetium-99m sestamibi for prediction of extent of coronary artery disease. J Am Coll Cardiol 1995;25(5):1024—31.PubMedCrossRefGoogle Scholar
  54. 54.
    Rubello D, Zanco P, Candelpergher G, et al. Usefulness of 99mTc-MIBI stress myocardial SPECT bull’s-eye quantification in coronary artery disease. Q J Nucl Med 1995;39(2):111—5.PubMedGoogle Scholar
  55. 55.
    San Roman JA, Vilacosta I, Castillo JA, et al. Selection of the optimal stress test for the diagnosis of coronary artery disease. Heart 1998;80(4):370—6.PubMedGoogle Scholar
  56. 56.
    Santana-Boado C, Candell-Riera J, Castell-Conesa J, et al. Diagnostic accuracy of technetium-99m-MIBI myocardial SPECT in women and men. J Nucl Med 1998;39(5):751—5.PubMedGoogle Scholar
  57. 57.
    Sylven C, Hagerman I, Ylen M, Nyquist O, Nowak J. Variance ECG detection of coronary artery disease – a comparison with exercise stress test and myocardial scintigraphy. Clin Cardiol 1994;17(3):132—40.PubMedCrossRefGoogle Scholar
  58. 58.
    Taillefer R, DePuey EG, Udelson JE, Beller GA, Latour Y, Reeves F. Comparative diagnostic accuracy of Tl-201 and Tc-99m sestamibi SPECT imaging (perfusion and ECG-gated SPECT) in detecting coronary artery disease in women. J Am Coll Cardiol 1997;29(1):69—77.PubMedCrossRefGoogle Scholar
  59. 59.
    van Eck-Smit BL, Poots S, Zwinderman AH, Bruschke AV, Pauwels EK, van der Wall EE. Myocardial SPET imaging with 99Tcm-tetrofosmin in clinical practice: comparison of a 1 day and a 2 day imaging protocol. Nucl Med Commun 1997;18(1):24—30.PubMedGoogle Scholar
  60. 60.
    Van Train KF, Garcia EV, Maddahi J, et al. Multicenter trial validation for quantitative analysis of same-day rest-stress technetium-99m-sestamibi myocardial tomograms. J Nucl Med 1994;35(4):609—18.PubMedGoogle Scholar
  61. 61.
    Stewart RE, Schwaiger M, Molina E, et al. Comparison of rubidium-82 positron emission tomography and thallium-201 SPECT imaging for detection of coronary artery disease. Am J Cardiol 1991;67(16):1303—10.PubMedCrossRefGoogle Scholar
  62. 62.
    Tamaki N, Yonekura Y, Senda M, et al. Value and limitation of stress thallium-201 single photon emission computed tomography: comparison with nitrogen-13 ammonia positron tomography. J Nucl Med 1988;29(7):1181—8.PubMedGoogle Scholar
  63. 63.
    Sharir T, Kang X, Germano G, et al. Prognostic value of poststress left ventricular volume and ejection fraction by gated myocardial perfusion SPECT in women and men: gender-related differences in normal limits and outcomes. J Nucl Cardiol 2006;13(4):495—506.PubMedCrossRefGoogle Scholar
  64. 64.
    Hachamovitch R, Berman DS, Kiat H, et al. Exercise myocardial perfusion SPECT in patients without known coronary artery disease: incremental prognostic value and use in risk stratification. Circulation 1996;93(5):905—14.PubMedGoogle Scholar
  65. 65.
    Shaw LJ, Hachamovitch R, Peterson ED, et al. Using an outcomes-based approach to identify candidates for risk stratification after exercise treadmill testing. J Gen Intern Med 1999;14(1):1—9.PubMedCrossRefGoogle Scholar
  66. 66.
    Hlatky MA, Pryor DB, Harrell FE, Jr., Califf RM, Mark DB, Rosati RA. Factors affecting sensitivity and specificity of exercise electrocardiography. Multivariable analysis. Am J Med 1984;77(1):64—71.Google Scholar
  67. 67.
    Gibbons RJ, Hodge DO, Berman DS, et al. Long-term outcome of patients with intermediate-risk exercise electrocardiograms who do not have myocardial perfusion defects on radionuclide imaging. Circulation 1999;100(21):2140—5.PubMedGoogle Scholar
  68. 68.
    Sharir T, Germano G, Kang X, et al. Prediction of myocardial infarction versus cardiac death by gated myocardial perfusion SPECT: risk stratification by the amount of stress-induced ischemia and the poststress ejection fraction. J Nucl Med 2001;42(6):831—7.PubMedGoogle Scholar
  69. 69.
    Iskandrian AS, Chae SC, Heo J, Stanberry CD, Wasserleben V, Cave V. Independent and incremental prognostic value of exercise single-photon emission computed tomographic (SPECT) thallium imaging in coronary artery disease. J Am Coll Cardiol 1993;22(3):665—70.PubMedGoogle Scholar
  70. 70.
    Alkeylani A, Miller DD, Shaw LJ, et al. Influence of race on the prediction of cardiac events with stress technetium-99m sestamibi tomographic imaging in patients with stable angina pectoris. Am J Cardiol 1998;81(3):293—7.PubMedCrossRefGoogle Scholar
  71. 71.
    Boyne TS, Koplan BA, Parsons WJ, et al. Predicting adverse outcome with exercise SPECT technetium-99m sestamibi imaging in patients with suspected or known coronary artery disease. Am J Cardiol 1997;79(3):270—4.PubMedCrossRefGoogle Scholar
  72. 72.
    Galassi AR, Azzarelli S, Tomaselli A, et al. Incremental prognostic value of technetium-99m-tetrofosmin exercise myocardial perfusion imaging for predicting outcomes in patients with suspected or known coronary artery disease. Am J Cardiol 2001;88(2):101—6.PubMedCrossRefGoogle Scholar
  73. 73.
    Machecourt J, Longere P, Fagret D, et al. Prognostic value of thallium-201 single-photon emission computed tomographic myocardial perfusion imaging according to extent of myocardial defect. Study in 1,926 patients with follow-up at 33 months. J Am Coll Cardiol 1994;23(5):1096—106.Google Scholar
  74. 74.
    Stratmann HG, Williams GA, Wittry MD, Chaitman BR, Miller DD. Exercise technetium-99m sestamibi tomography for cardiac risk stratification of patients with stable chest pain. Circulation 1994;89(2):615—22.PubMedGoogle Scholar
  75. 75.
    Vanzetto G, Ormezzano O, Fagret D, Comet M, Denis B, Machecourt J. Long-term additive prognostic value of thallium-201 myocardial perfusion imaging over clinical and exercise stress test in low to intermediate risk patients : study in 1137 patients with 6-year follow-up. Circulation 1999;100(14):1521—7.PubMedGoogle Scholar
  76. 76.
    Mazzanti M, Germano G, Kiat H, et al. Identification of severe and extensive coronary artery disease by automatic measurement of transient ischemic dilation of the left ventricle in dual-isotope myocardial perfusion SPECT. J Am Coll Cardiol 1996;27(7):1612—20.PubMedCrossRefGoogle Scholar
  77. 77.
    Weiss AT, Berman DS, Lew AS, et al. Transient ischemic dilation of the left ventricle on stress thallium-201 scintigraphy: a marker of severe and extensive coronary artery disease. J Am Coll Cardiol 1987;9(4):752—9.PubMedGoogle Scholar
  78. 78.
    Bacher-Stier C, Sharir T, Kavanagh PB, et al. Postexercise lung uptake of 99mTc-sestamibi determined by a new automatic technique: validation and application in detection of severe and extensive coronary artery disease and reduced left ventricular function. J Nucl Med 2000;41(7):1190—7.PubMedGoogle Scholar
  79. 79.
    Sharir T, Germano G, Kavanagh PB, et al. Incremental prognostic value of post-stress left ventricular ejection fraction and volume by gated myocardial perfusion single photon emission computed tomography. Circulation 1999;100(10):1035—42.PubMedGoogle Scholar
  80. 80.
    Lee KL, Pryor DB, Pieper KS, et al. Prognostic value of radionuclide angiography in medically treated patients with coronary artery disease. A comparison with clinical and catheterization variables. Circulation 1990;82(5):1705—17.Google Scholar
  81. 81.
    Mazzotta G, Bonow RO, Pace L, Brittain E, Epstein SE. Relation between exertional ischemia and prognosis in mildly symptomatic patients with single or double vessel coronary artery disease and left ventricular dysfunction at rest. J Am Coll Cardiol 1989;13(3):567—73.PubMedGoogle Scholar
  82. 82.
    Taliercio CP, Clements IP, Zinsmeister AR, Gibbons RJ. Prognostic value and limitations of exercise radionuclide angiography in medically treated coronary artery disease. Mayo Clin Proc 1988;63(6):573—82.PubMedGoogle Scholar
  83. 83.
    Legrand V, Mancini GB, Bates ER, Hodgson JM, Gross MD, Vogel RA. Comparative study of coronary flow reserve, coronary anatomy and results of radionuclide exercise tests in patients with coronary artery disease. J Am Coll Cardiol 1986;8(5):1022—32.PubMedCrossRefGoogle Scholar
  84. 84.
    Miller DD, Donohue TJ, Younis LT, et al. Correlation of pharmacological 99mTc-sestamibi myocardial perfusion imaging with poststenotic coronary flow reserve in patients with angiographically intermediate coronary artery stenoses. Circulation 1994;89(5):2150—60.PubMedGoogle Scholar
  85. 85.
    Brown KA, Rowen M, Altland E. Prognosis of patients with an isolated fixed thallium-201 defect and no prior myocardial infarction. Am J Cardiol 1993;72(15):1199—201.PubMedCrossRefGoogle Scholar
  86. 86.
    Abdel Fattah A, Kamal AM, Pancholy S, et al. Prognostic implications of normal exercise tomographic thallium images in patients with angiographic evidence of significant coronary artery disease. Am J Cardiol 1994;74(8):769—71.PubMedCrossRefGoogle Scholar
  87. 87.
    Kang X, Berman DS, Lewin HC, et al. Incremental prognostic value of myocardial perfusion single photon emission computed tomography in patients with diabetes mellitus. Am Heart J 1999;138(6 Pt 1):1025—32.PubMedCrossRefGoogle Scholar
  88. 88.
    Giri S, Shaw LJ, Murthy DR, et al. Impact of diabetes on the risk stratification using stress single-photon emission computed tomography myocardial perfusion imaging in patients with symptoms suggestive of coronary artery disease. Circulation 2002;105(1):32—40.PubMedCrossRefGoogle Scholar
  89. 89.
    Eagle KA, Berger PB, Calkins H, et al. ACC/AHA guideline update for perioperative cardiovascular evaluation for noncardiac surgery – executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Update the 1996 Guidelines on Perioperative Cardiovascular Evaluation for Noncardiac Surgery). J Am Coll Cardiol 2002;39(3):542—53.PubMedCrossRefGoogle Scholar
  90. 90.
    Rahimtoola SH, La Canna G, Ferrari R. Hibernating myocardium: another piece of the puzzle falls into place. J Am Coll Cardiol 2006;47(5):978—80.PubMedCrossRefGoogle Scholar
  91. 91.
    Bax JJ, Wijns W, Cornel JH, Visser FC, Boersma E, Fioretti PM. Accuracy of currently available techniques for prediction of functional recovery after revascularization in patients with left ventricular dysfunction due to chronic coronary artery disease: comparison of pooled data. J Am Coll Cardiol 1997;30(6):1451—60.PubMedCrossRefGoogle Scholar
  92. 92.
    Allman KC, Shaw LJ, Hachamovitch R, Udelson JE. Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: a meta-analysis. J Am Coll Cardiol 2002;39(7):1151—8.PubMedCrossRefGoogle Scholar
  93. 93.
    Heiba SI, Hayat NJ, Salman HS, et al. Technetium-99m-MIBI myocardial SPECT: supine versus right lateral imaging and comparison with coronary arteriography. J Nucl Med 1997;38(10):1510—4.PubMedGoogle Scholar
  94. 94.
    Yao Z, Liu XJ, Shi R, et al. A comparison of 99mTc-MIBI myocardial SPET with electron beam computed tomography in the assessment of coronary artery disease. Eur J Nucl Med 1997;24(9):1115—20.PubMedGoogle Scholar
  95. 95.
    Iskandrian AE, Heo J, Nallamothu N. Detection of coronary artery disease in women with use of stress single-photon emission computed tomography myocardial perfusion imaging. J Nucl Cardiol 1997;4(4):329—35.PubMedCrossRefGoogle Scholar
  96. 96.
    Snader CE, Marwick TH, Pashkow FJ, Harvey SA, Thomas JD, Lauer MS. Importance of estimated functional capacity as a predictor of all-cause mortality among patients referred for exercise thallium single-photon emission computed tomography: report of 3,400 patients from a single center. J Am Coll Cardiol 1997;30(3):641—8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Patricia Nguyen
    • 1
  1. 1.Department of CardiologyStanford University School of MedicinePalo AltoUSA

Personalised recommendations