Skip to main content

The Role of Gas Analysis and Cardiopulmonary Exercise Testing

  • Chapter
Exercise Stress Testing for Primary Care and Sports Medicine

Apart from the measurement of the vital signs, evaluation of exercise performance constitutes one of the most crucial parameters in the clinical assessment of a \nobreak patient. Many different methods are currently employed by the health care providers in this regard, but most remain un-standardized and arbitrary. Generally, physicians depend on the clinical history and the information provided by the patients about their own ability to walk a certain distance or climb a certain number of steps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clark, AL, Poole-Wilson, PA, Coats, AJS. Effects of motivation of the patient on indices of exercise capacity in chronic heart failure. Br Heart J, 71:162–165, 1994.

    Article  PubMed  CAS  Google Scholar 

  2. Holloszy, JO, Booth, FW. Biochemical adaptation to endurance exercise in muscle. Annu Rev Physiol, 38:273–291, 1976.

    Article  PubMed  CAS  Google Scholar 

  3. Mitchell, JH, Bloomquist, CG. Maximal oxygen uptake. N Engl J Med, 284:1018–1022, 1971.

    PubMed  CAS  Google Scholar 

  4. Saltin, B, Rowell, LB. Functional adaptation to physical activity and inactivity. Fed Proc, 39:1506–1513, 1980.

    PubMed  CAS  Google Scholar 

  5. Weber, KT. Principles and applications of cardiopulmonary exercise testing. In Fishman, AP (ed.), Pulmonary Diseases and Disorders, 3rd ed. New York, McGraw Hill, 1998,pp. 575–588.

    Google Scholar 

  6. Taylor, HL, Buskirk, E, Henschel, A. Maximal O2 uptake as an objective measure of cardio-respiratory performance. J Applied Physiol, 8:73–80, 1955.

    CAS  Google Scholar 

  7. Mitchell, JH, Sproule, BJ, Chapman, CB. The physiological meaning of the maximal $O2$ intake test. J Clin Investigation, 37:538–547, 1958.

    Article  CAS  Google Scholar 

  8. Weber, KT, Janicki, JS. Cardiopulmonary exercise testing for evaluation of chronic cardiac failure. Am J Cardiol, 55(Suppl A):22A–31A, 1985.

    Article  PubMed  CAS  Google Scholar 

  9. Wasserman, K (ed.). Exercise Gas Exchange in Heart Disease. Armonk, NY, Futura, 1996.

    Google Scholar 

  10. Weber, KT, Janicki, JS (eds.). Cardiopulmonary Exercise Testing: Physiologic Principles and Clinical Applications. Philadelphia, Saunders, 1986.

    Google Scholar 

  11. Page, E, Cohen-Solal, A, Jondeau, G et al. Comparison of treadmill and bicycle exercise in patients with chronic heart failure. Chest, 106:1002–1006, 1994.

    Article  PubMed  CAS  Google Scholar 

  12. Pollock, ML, Wilmore, JH, Fox, SM. Health and Fitness Through Physical Activity. New York, Wiley, 1978.

    Google Scholar 

  13. Weber, KT, Janicki, JS, McElroy, PA. Cardiopulmonary exercise (CPX) testing. In Weber KT, Janicki JS (eds.), Cardiopulmonary Exercise Testing: Physiologic Principles and Clinical Applications. Philadelphia, Saunders, 1986, pp. 151–167.

    Google Scholar 

  14. Janicki, JS. Influence of the pericardium and ventricular interdependence on left ventricular diastolic and systolic function in patients with heart failure. Circulation, 81:III-1500–III-20, 1990.

    Google Scholar 

  15. Janicki, JS, Weber, KT, Likoff, MJ, Fishman, AP. The pressure-flow response of the pulmonary circulation in patients with heart failure and pulmonary vascular disease. Circulation, 72:1270–1278, 1965.

    Google Scholar 

  16. Katz, LN, Feinberg, H, Shaffer, AB. Hemodynamic aspects of congestive heart failure. Circulation, 21:95–111, 1960.

    PubMed  CAS  Google Scholar 

  17. Weber, KT, Janicki, JS. Lactate production during maximal and submaximal exercise in patients with chronic heart failure. J Am Coll Cardiol, 6:717–724, 1985.

    PubMed  CAS  Google Scholar 

  18. Higginbotham, MB. Diastolic dysfunction and exercise gas exchange, In Wasserman, K (ed.), Exercise Gas Exchange in Heart Disease. Armonk, NY, Futura, 1996, pp. 39–54.

    Google Scholar 

  19. Kitzman, DW, Sheikh, KH, Beere, PA, et al. Age-related alterations of Doppler left ventricular filling indexes in normal subjects are independent of left ventricular mass, heart rate, contractility and loading conditions. J Am Coll Cardiol, 18:1243–1250, 1991.

    PubMed  CAS  Google Scholar 

  20. Kao, AC, Van Trigt, P III, Shaeffer-McCall, GS, et al. Central and peripheral limitations to upright exercise in untrained cardiac transplant recipients. Circulation, 89:2605–2615, 1994.

    PubMed  CAS  Google Scholar 

  21. Treese, N. Exercise gas exchange to evaluate cardiac pacemaker function. In Wasserman, K. (ed.), Exercise Gas Exchange in Heart Disease. Armonk, NY, Futura, 1996, pp. 257–270.

    Google Scholar 

  22. Donald, KW, Gloster, J, Harris, EA, et al. The production of lactic acid during exercise in normal subjects and in patients with rheumatic heart disease. A Heart J, 62:494–510, 1961.

    Article  CAS  Google Scholar 

  23. Gardner, AW, Montgomery, PS, Flinn, WR, Katzel, LI. The effect of exercise intensity on the response to exercise rehabilitation in patients with intermittent claudication. J Vasc Surg, 42:702–709, 2005.

    Article  PubMed  Google Scholar 

  24. Dimopoulos, K, Okonko, DO, Diller, GP, et al. Abnormal ventilator response to exercise in adults with congenital heart disease relates to cyanosis and predicts survival. Circulation, 113:2796–2802, 2006.

    Article  PubMed  Google Scholar 

  25. Gallagher, CG. Exercise limitation and clinical exercise stress testing in chronic obstructive pulmonary disease. Clin Chest Med, 15:305–326, 1994.

    PubMed  CAS  Google Scholar 

  26. Marciniuk, DD, Gallagher, CG. Clinical exercise testing in interstitial lung disease. Clin Chest Med, 15:287–303, 1994.

    PubMed  CAS  Google Scholar 

  27. Older, P, Smith, R, Courtney, P, et al. Preoperative evaluation of cardiac failure and ischemia in elderly patients by cardiopulmonary exercise testing. Chest, 104:701–704, 1993.

    Article  PubMed  CAS  Google Scholar 

  28. Mancini, DM, Eisen, H, Kussmaul, W, et al. Value of peak exercise oxygen consumption for optimal timing of cardiac transplantation in ambulatory patients with heart failure. Circulation, 83:778–786, 1991.

    PubMed  CAS  Google Scholar 

  29. Stevenson, LW. Role of exercise testing in the evaluation of candidates for cardiac transplantation. In Wasserman, K (ed.), Exercise Gas Exchange in Heart Disease. Armonk, NY, Futura, 1996, pp. 271–286.

    Google Scholar 

  30. Mudge, GH, Goldstein, S, Addonizio, LJ, et al. 24th Bethesda conference: Cardiac transplantation. Task Force 3: Recipient guidelines/prioritization. J Am Coll Cardiol, 22:21–31, 1993.

    PubMed  CAS  Google Scholar 

  31. Karvounis, HI, Dalamaga, EG, Papadopoulos, CE, et al. Improved papillary muscle function attenuates functional mitral regurgitation in patients with dilated cardiomyopathy after cardiac resynchronization. J Am Soc Echocardiogr, 19:1150–1157, 2006.

    Article  PubMed  Google Scholar 

  32. Abraham, WT, Fisher, WG, Smith, AL, et al. Multicenter InSync Randomized Clinical Evaluation (MIRACLE). Cardiac resynchronization in chronic heart failure. N Engl J Med, 346:1845–1853, 2002.

    Article  PubMed  Google Scholar 

  33. Paridon, SM, Alpert, BS, Boas, SR, et al. Clinical stress testing in the pediatric age group: A statement from the American Heart Association Council on Cardiovascular Disease in the Young, Committee on Atherosclerosis, Hypertension, and Obesity in Youth. Circulation, 113:1905–1920, 2006.

    Article  PubMed  Google Scholar 

  34. Ekelund, LG, Haskell, WL, Johnson, JL, et al. Physical fitness as a predictor of cardiovascular mortality in asymptomatic North American men: The Lipid Research Clinics Mortality Follow-up Study. N Engl J Med, 319:1379–1384, 1988.

    Article  PubMed  CAS  Google Scholar 

  35. Fleg, JL, Pina, IL, Balady, GJ, et al. Assessment of functional capacity in clinical and research applications: An advisory from the Committee on Exercise, Rehabilitation and Prevention, Council on Clinical Cardiology, American Heart Association. Circulation, 102:1591–1597, 2000.

    PubMed  CAS  Google Scholar 

  36. Milani, RV, Lavie, CJ, Mehra, MR. Cardiopulmonary exercise testing, how do we differentiate the cause of dyspnea. Circulation, 110:e27–e31, 2004.

    Article  PubMed  Google Scholar 

  37. Singh, VN. The role of gas analysis with exercise testing. Primary Care 28:159–179, 2001.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Singh, V.N., Kumar, A., Janicki, J.S. (2009). The Role of Gas Analysis and Cardiopulmonary Exercise Testing. In: Evans, C.H., White, R.D. (eds) Exercise Stress Testing for Primary Care and Sports Medicine. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76597-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-76597-6_17

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-76596-9

  • Online ISBN: 978-0-387-76597-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics