Relationship Between Three-Dimensional Microstructure and Elastic Properties of Cortical Bone in the Human Mandible and Femur

  • Paul C. Dechow
  • Dong Hwa Chung
  • Mitra Bolouri
Part of the Developments In Primatology: Progress and Prospects book series (DIPR)


Cortical Bone Ultrasonic Velocity Haversian Canal Maximum Stiffness Phys Anthropol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen KL, Mortensen HT, Pedersen EH, Melsen B. (1991a) Determination of stress levels and profiles in the periodontal ligament by means of an improved three-dimensional finite element model for various types of orthodontic and natural force systems. J Biomed Eng 13:293–303.CrossRefGoogle Scholar
  2. Andersen KL, Pedersen EH, Melsen B. (1991b) Material parameters and stress profiles within the periodontal ligament. Am J Orthod Dentofacial Orthop 99:427–40.CrossRefGoogle Scholar
  3. Ascenzi A. (1988) The micromechanics versus the macromechanics of cortical bone–a comprehensive presentation. Journal of Biomechanical Engineering 110:357–63.PubMedGoogle Scholar
  4. Ashman RB. (1989) Experimental techniques. In: Cowin SC, (editors), Bone Mechanics, Boca Raton, Florida: CRC Press, Inc. pp. 75–96.Google Scholar
  5. Ashman RB, Cowin SC, Van Buskirk WC, et al. (1984) A continuous wave technique for the measurement of the elastic properties of cortical bone. J Biomech 17:349–61.PubMedCrossRefGoogle Scholar
  6. Asundi A, Kishen, A. (2000) A strain gauge and photoelastic analysis of in vivo strain and in vitro stress distribution in human dental supporting structures. Arch Oral Biol 45:543–50.PubMedCrossRefGoogle Scholar
  7. Bacon GE, Goodship AE. (1991) The orientation of the mineral crystals in the radius and tibia of the sheep, and its variation with age. J Anat 179:15–22.PubMedGoogle Scholar
  8. Bouvier M, Hylander WL. (1981) The relationship between split-line orientation and in vivo bone strain in galago (G.crassicaudatus) and macaque (Macaca mulatta and M. fascicularis) mandibles. Am J Phys Anthropol 56:147–56.PubMedCrossRefGoogle Scholar
  9. Bouvier M, Hylander WL. (1996) The mechanical or metabolic function of secondary osteonal bone in the monkey Macaca fascicularis. Arch Oral Biol 41:941–50.PubMedCrossRefGoogle Scholar
  10. Buckland-Wright JC. (1977) The nature of split-line formation in bone. Proceedings of the Anatomical Society of Great Britain and Ireland.Google Scholar
  11. Carando S, Portigliatti-Barbos M, Ascenzi A, et al. (1991) Macroscopic shape of, and lamellar distribution within, the upper limb shafts, allowing inferences about mechanical properties. Bone 12:265–9.PubMedCrossRefGoogle Scholar
  12. Carter DR. (1978) Anisotropic analysis of strain rosette information from cortical bone. J Biomech 11:199–202.PubMedCrossRefGoogle Scholar
  13. Cooper DMI, Turinsky AL, Sensen CW, Hallgrimsson B. (2003) Quantitative 3D analysis of the canal network in cortical bone by micro-computed tomography. Anat Rec 274B: 169–179.CrossRefGoogle Scholar
  14. Cowin SC. (1989) The mechanical properties of cortical bone tissue. In: Cowin SC, (editor), Bone Mechanics, CRC Press, Inc. Boca Raton, Florida, pp. 97–128.Google Scholar
  15. Cowin SC, Hart RT. (1990) Errors in the orientation of the principal stress axes if bone tissue is modeled as isotropic. J Biomech 23:349–52.PubMedCrossRefGoogle Scholar
  16. Cowin SC, Sadegh AM, Luo GM. (1991) Correction formulae for the misalignment of axes in the measurement of the orthotropic elastic constants. J Biomech 24:637–41.PubMedCrossRefGoogle Scholar
  17. Currey JD. (1984) The mechanical adaptations of bones. Princeton University Press, Princeton, NJ.Google Scholar
  18. Currey JD, Brear K, Zioupos P. (1994) Dependence of mechanical properties on fibre angle in narwhal tusk, a highly oriented biological composite. J Biomech 27:885.PubMedCrossRefGoogle Scholar
  19. Currey JD, Zioupos P. (2001) The effect of porous microstructure on the anisotropy of bone-like tissue: a counterexample. J Biomech 34:707–10.PubMedCrossRefGoogle Scholar
  20. Dechow PC, Nail GA, Schwartz-Dabney CL, Ashman RB. (1993) Elastic properties of human supraorbital and mandibular bone. Am J Phys Anthropol 90:291–306.PubMedCrossRefGoogle Scholar
  21. Dechow PC, Schwartz-Dabney CL, Ashman RB. (1992) Elastic properties of the human mandibular corpus. In: Carlson DS, Goldstein SA, (editors), Bone Biodynamics in Orthodontic and Orthopedic Treatment, Craniofacial Growth Series, Volume 27, Center for Human Growth and Development, The University of Michigan: Ann Arbor, Michigan, pp. 299–314.Google Scholar
  22. Dechow PC, Hylander WL. (2000) Elastic properties and masticatory bone stress in the macaque mandible. Am J Phys Anthropol 112:553–74.PubMedCrossRefGoogle Scholar
  23. Dempster WT. (1967) Correlation of types of cortical grain structure with architectural features of the human skull. Amer J Anat 120:7–32.CrossRefGoogle Scholar
  24. Endo B. (1973) Stress analysis on the facial skeleton of gorilla by means of the wire strain gauge method. Primates 14:37–45.CrossRefGoogle Scholar
  25. Evans FG. (1973) Mechanical Properties of Bone. Charles C. Thomas, Springfield, IL.Google Scholar
  26. Fisher NI. (1993) Statistical Analysis of Circular Data. Cambridge University Press, Cambridge. 277pp.Google Scholar
  27. Fratzl P, Fratzl-Zelman N, Klaushofer K. (1993) Collagen packing and mineralization. An x-ray scattering investigation of turkey leg tendon. Biophys J 64:260–6.PubMedGoogle Scholar
  28. Fratzl P, Groschner M, Vogl G, et al. (1992) Mineral crystals in calcified tissues: a comparative study by SAXS. J Bone Min Res 7:329–34.Google Scholar
  29. Gebhardt W. (1906) Über funktionell wichtige Anordnungsweisen der feineren und gröberen Bauelemente des Wirbeltierknochens. II. Spezieller Teil.: Der Bau der Haversschen Lamellensysteme und seine funktionelle Bedeutung. Arch Entw Mech Org 20:187–322.Google Scholar
  30. Giesen EB, van Eijden TM. (2000) The three-dimensional cancellous bone architecture of the human mandibular condyle. J Dent Res 79:957–63.PubMedCrossRefGoogle Scholar
  31. Guo E. (2001) Mechanical properties of cortical bone and cancellous bone tissue. In Cowin SC (editor) Bone Mechanics Handbook, Second Edition, CRC Press, Boca Raton, pages 10–1 to 10–23.Google Scholar
  32. Harper RP, de Bruin H, Burcea I. (1997) Muscle activity during mandibular movements in normal and mandibular retrognathic subjects. J Oral Maxillofac Surg 55:225–33.PubMedCrossRefGoogle Scholar
  33. Hart RT, Hennebel VV, Thongpreda N, et al. (1992) Modeling the biomechanics of the mandible – a three- dimensional finite element study. J Biomechanics 25:261–86.CrossRefGoogle Scholar
  34. Hasegawa K, Turner CH, Burr DB. (1994) Contribution of collagen and mineral to the elastic anisotropy of bone. Calcif Tissue Int 55:381–6.PubMedCrossRefGoogle Scholar
  35. Hert J, Fiala P, Petrtyl M. (1994) Osteon orientation of the diaphysis of the long bones in man. Bone 15:269–77.PubMedCrossRefGoogle Scholar
  36. Hylander WL. (1979a) An experimental analysis of temporomandibular joint reaction force in Macaques. Am J Phys Anthropol 51:433–56.CrossRefGoogle Scholar
  37. Hylander WL. (1979b) Mandibular function in Galago crassicaudatus and Macaca fascicularis: an in vivo approach to stress analysis of the mandible. J Morphol 159:253–96.CrossRefGoogle Scholar
  38. Hylander WL. (1984) Stress and strain in the mandibular symphysis of primates: a test of competing hypotheses. Am J Phys Anthropol 64:1–46.PubMedCrossRefGoogle Scholar
  39. Hylander WL, Johnson KR. (1994) Jaw muscle function and wishboning of the mandible during mastication in macaques and baboons. Am J Phys Anthropol 94:523–47}.PubMedCrossRefGoogle Scholar
  40. Hylander WL, Johnson KR, Crompton AW. (1987) Loading patterns and jaw movements during mastication in Macaca fascicularis: a bone-strain, electromyographic, and cineradiographic analysis. Am J Phys Anthropol 72:287–314.PubMedCrossRefGoogle Scholar
  41. Kabel J, van Rietbergen B, Odgaard A, Huiskes R. (1999) Constitutive relationships of fabric, density, and elastic properties in cancellous bone architecture. Bone 25:481–6.PubMedCrossRefGoogle Scholar
  42. Katz JL, Meunier A. (1987) The elastic anisotropy of bone. J Biomech 20:1063–70.PubMedCrossRefGoogle Scholar
  43. Katz JL, Yoon HS. (1984) The structure and anisotropic mechanical properties of bone. IEEE Trans Biomed Eng 31:878–84.PubMedCrossRefGoogle Scholar
  44. Katz JL, Kinney JH, Spencer P, Wang Y, Fricke B, Walker MP, Friis EA. (2005) Elastic anisotropy of bone and dentitional tissues. J Mater Sci Mater Med. 16:803–6.PubMedCrossRefGoogle Scholar
  45. Katz JL, Yoon HS, Lipson S, Maharidge R, Meunier A, Christel P. (1984) The effects of remodeling on the elastic properties of bone. Calcif Tissue Int 36:Suppl 1:S31–6.PubMedCrossRefGoogle Scholar
  46. Koch JC. (1917) The laws of bone architecture. Am J Anat 21:177–297.CrossRefGoogle Scholar
  47. Kohles SS, Bowers JR, Vailas AC, Vanderby R Jr. (1997) Ultrasonic wave velocity measurement in small polymeric and cortical bone specimens. J Biomech Eng 119:232–6.PubMedCrossRefGoogle Scholar
  48. Korioth TWP, Hannam AG. (1994a) Deformation of the human mandible during simulated tooth clenching. J Dent Res 73:56–66.Google Scholar
  49. Korioth TWP, Hannam AG. (1994b) Mandibular forces during simulated tooth clenching. J Orofac Pain 8:178–89.Google Scholar
  50. Lanyon LE, Rubin CT. (1985) Functional adaptation in skeletal structures. In: Hildebrand M, Bramble DM, Liem KF, Wake DB, (editors), Functional Vertebrate Morphology, The Belknap Press of Harvard University Press: London, England, pp. 1–25.Google Scholar
  51. Lees S. (1982) Ultrasonic measurements of deer antler, bovine tibia and tympanic bulla. J Biomech 15:867–74.PubMedCrossRefGoogle Scholar
  52. Lees S, Eyre DR, Barnard SM. (1990) BAPN dose dependence of mature crosslinking in bone matrix collagen of rabbit compact bone: corresponding variation of sonic velocity and equatorial diffraction spacing. Connect Tissue Res 24:95–105.PubMedCrossRefGoogle Scholar
  53. Lipson SF, Katz JL. (1984) The relationship between elastic properties and microstructure of bovine cortical bone. J Biomech 17:231–40.PubMedCrossRefGoogle Scholar
  54. Mardia KV, Jupp PE. (2000) Statistics of Directional Data. 2nd Edition. John Wiley & Sons, Chicester. 429pp.Google Scholar
  55. Marks L, Teng S, Artun J, Herring S. (1997) Reaction strains on the condylar neck during mastication and maximum muscle stimulation in different condylar positions: an experimental study in the miniature pig. J Dent Res 76:1412–20.PubMedGoogle Scholar
  56. Martin RB, Burr DB. (1989) Structure, function, and adaptation of compact bone. Raven Press, New York.Google Scholar
  57. Martin RB, Burr DB, Sharkey NA. (1998) Skeletal Tissue Mechanics. Springer, New York.Google Scholar
  58. Peterson J, Dechow PC. (2002) Material properties of the inner and outer cortical tables of the human parietal bone. Anat Rec 268:7–15.PubMedCrossRefGoogle Scholar
  59. Peterson J, Dechow PC. (2003) Material properties of the cranial vault and zygoma. Anat Rec 274A:785–797.CrossRefGoogle Scholar
  60. Peterson J, Wang Q, Dechow PC. (2006) Material properties of the dentate maxilla. Anat Rec, 288A:962–972.CrossRefGoogle Scholar
  61. Petrtyl M, Hert J, Fiala P. (1996) Spatial organization of the haversian bone in man. J Biomech 29:161–9.PubMedCrossRefGoogle Scholar
  62. Reilly DT, Burstein AH. (1974) The mechanical properties of cortical bone. J Bone Joint Surg (AM) 56-A:1001–22.Google Scholar
  63. Ricos V, Pedersen DR, Brown TD, Ashman RB, Rubin CT, Brand RA. (1996) Effects of anisotropy and material axis registration on computed stress and strain distributions in the turkey ulna. J Biomech 29:261–7.PubMedCrossRefGoogle Scholar
  64. Riggs CM, Vaughan LC, Evans GP, et al. (1993) Mechanical implications of collagen fibre orientation in cortical bone of the equine radius. Anat Embryol 187:239–48.PubMedGoogle Scholar
  65. Rinnerthaler S, Roschger P, Jakob HF, Nader A, Klaushofer K, Fratzl P. (1999) Scanning small angle X-ray scattering analysis of human bone sections. Calcif Tissue Int 64: 422–9.PubMedCrossRefGoogle Scholar
  66. Robling AG, Stout SD. (1999) Morphology of the drifting osteon. Cells Tiss Org 164:192–204.CrossRefGoogle Scholar
  67. Sevostianov I, Kachanov M. (2000) Impact of the porous microstructure on the overall elastic properties of the osteonal cortical bone. J Biomech 33:881–8.PubMedCrossRefGoogle Scholar
  68. Sasaki N, Ikawa T, Fukuda A. (1991) Orientation of mineral in bovine bone and the anisotropic mechanical properties of plexiform bone. J Biomech 24:57–62.PubMedCrossRefGoogle Scholar
  69. Sasaki N, Matsushima N, Ikawa T, et al. (1989) Orientation of bone mineral and its role in the anisotropic mechanical properties of bone- transverse anisotropy. J Biomech 22:157–64.PubMedCrossRefGoogle Scholar
  70. Schaffler MB, Burr DB. (1988) Stiffness of compact bone: effects of porosity and density. J Biomech 21:13–6.PubMedCrossRefGoogle Scholar
  71. Schwartz-Dabney CL, Dechow PC. (2002) Edentulation alters material properties of mandibular cortical bone. J Dent Res 81:613–617.Google Scholar
  72. Schwartz-Dabney CL, Dechow PC. (2003) Variations in cortical material properties throughout the human dentate mandible. Am J Phys Anthropol 120:252–77.CrossRefGoogle Scholar
  73. Skedros JG, Mason MW, Bloebaum RD. (1994) Differences in osteonal micromorphology between tensile and compressive cortices of a bending skeletal system: indications of potential strain-specific differences in bone microstructure. Anat Rec 239:405–13.PubMedCrossRefGoogle Scholar
  74. Stout SD, Brunsden BS, Hildebolt CF, Commean PK, Smith KE, Tappen NC. (1999) Computer-assisted 3D reconstruction of serial sections of cortical bone to determine the 3D structure of osteons. Calcif Tissue Int 65:280–4.PubMedCrossRefGoogle Scholar
  75. Takano Y, Turner CH, Burr DB. (1996) Mineral anisotropy in mineralized tissues is similar among species and mineral growth occurs independently of collagen orientation in rats: results from acoustic velocity measurements. J Bone Miner Res 11:1292–301.PubMedCrossRefGoogle Scholar
  76. Takano Y, Turner CH, Owan I, Martin RB, Lau ST, Forwood MR, Burr DB. (1999) Elastic anisotropy and collagen orientation of osteonal bone are dependent on the mechanical strain distribution. J Orthop Res 17:59–66.PubMedCrossRefGoogle Scholar
  77. Tappen NC. (1970) Main patterns and individual differences in baboon skull split-lines and theories of causes of split-line orientation in bone. Am J Phys Anthropol 33:61–72.PubMedCrossRefGoogle Scholar
  78. Tappen NC. (1977) Three-dimensional studies on resorption spaces and developing osteons. Am J Anat. 149:301–17.PubMedCrossRefGoogle Scholar
  79. Teng S, Herring SW (1995) A stereological study of trabecular architecture in the mandibular condyle of the pig. Arch Oral Biol 40:299–310.PubMedCrossRefGoogle Scholar
  80. Teng S, Herring SW. (1996) Anatomic and directional variation in the mechanical properties of the mandibular condyle in pigs. J Dent Res 75:1842–50.PubMedGoogle Scholar
  81. Throckmorton GS, Dechow PC. (1994) In vitro strain measurements in the condylar process of the human mandible. Archs Oral Biol 39:853–67.CrossRefGoogle Scholar
  82. Throckmorton GS, Ellis E, III, Winkler AJ, Dechow PC. (1992) Bone strain following application of a rigid bone plate: an in-vitro study in human mandibles. J Oral Maxillofac Surg 50:1066–73.PubMedCrossRefGoogle Scholar
  83. Throckmorton GS, Groshan GJ, Boyd SB. (1990) Muscle activity patterns and control of temporomandibular joint loads. J Prosthet Dent 63:685–95.PubMedCrossRefGoogle Scholar
  84. Turner CH, Chandran A, Pidaparti RM. (1995) The anisotropy of osteonal bone and its ultrastructural implications. Bone 17:85–9.PubMedCrossRefGoogle Scholar
  85. Turner CH, Woltman TA, Belongia DA. (1992) Structural changes in rat bone subjected to long-term, in vivo mechanical loading. Bone 13:417–22.PubMedCrossRefGoogle Scholar
  86. van Eijden TM. (2000) Biomechanics of the mandible. Crit Rev Oral Biol Med 11:123–36.Google Scholar
  87. van Eijden TM, Brugman P, Weijs WA, Oosting J. (1990) Coactivation of jaw muscles: recruitment order and level as a function of bite force direction and magnitude. J Biomech 23:475–85.CrossRefGoogle Scholar
  88. Vollmer D, Meyer U, Joos U, Vegh A, Piffko J. (2000) Experimental and finite element study of a human mandible. J Craniomaxillofac Surg 28:91–6.PubMedGoogle Scholar
  89. Wenk HR, Heidelbach F. (1999) Crystal alignment of carbonated apatite in bone and calcified tendon: results from quantitative texture analysis. Bone 24:361–9.PubMedCrossRefGoogle Scholar
  90. Woo SL-Y, Kuel SC, Amiel DG, Hayes WC, White FC, Akeson WH. (1981) The effect of prolonged physical training on the properties of lone bone: a study of Wolff’s law. J Bone Joint Surg (AM) 63-A:780–7.Google Scholar
  91. Yamashita J, Dechow PC. (2000) Strain patterns of the human mandible during artificial loading. J Dent Res 79, Special Issue: Abstract 2833.Google Scholar
  92. Yeni YN, Vashishth D, Fyhrie DP. (2001) Estimation of bone matrix apparent stiffness variation caused by osteocyte lacunar size and density. J Biomech Eng 123:10–7.PubMedCrossRefGoogle Scholar
  93. Yoon HS, Katz JL (1976) Ultrasonic wave propagation in human cortical bone-I. Theoretical considerations for hexagonal symmetry. J Biomech 9:407–12.PubMedCrossRefGoogle Scholar
  94. Zioupos P, Currey D. 1998. Changes in the stiffness, strength, and toughness of human cortical bone with age. Bone 22:57–66.PubMedCrossRefGoogle Scholar
  95. Zioupos P, Currey JD, Mirza MS, Barton DC. (1995) Experimentally determined microcracking around a circular hole in a flat plate of bone: comparison with predicted stresses. Philos Trans R Soc Lond B Biol Sci 347:383–96.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Paul C. Dechow
    • 1
  • Dong Hwa Chung
  • Mitra Bolouri
  1. 1.Department of Biomedical SciencesBaylor College of Dentistry, Texas A&M Health Science CenterDallasUSA, 214-370-7229

Personalised recommendations