Monitoring Carbon Stock Changes in European Soils: Process Understanding and Sampling Strategies

  • Marion Schrumpf
  • Jens Schumacher
  • Ingo Schöning
  • Ernst-Detlef Schulze
Part of the Ecological Studies book series (ECOLSTUD, volume 203)

Soils are the main reservoir for carbon (C) in terrestrial ecosystems. On a global average, they contain about 2–3 times as much organic carbon (OC) as the atmosphere or standing biomass, namely about 1500–2000Gt (Janzen 2005).

It is well established that this reservoir is not inert, but in a dynamic stage of accumulation or decomposition. These processes are influenced by human activities. A major anthropogenic disturbance of soils is a land-use change from forest or natural grassland to agricultural soils (Johnson and Curtis 2001; Guo and Gifford 2002), and the permanent mechanical disturbance by ploughing. Prairie soils, for instance, lost 50% of their original soil C after 50 years of cultivation, and at a rate of about 70 g m−2 y−2 (Matson et al. 1997). The remaining 50% are temporary stabilized against decomposition by various mechanisms (Gleixner et al. 2001), but also this C can be mobilized under changing conditions, although at a much slower rate. Apparently, there is no organic matter in soils which is totally protected against microbial attack. But accumulation or degradation of soil C are influenced by environmental conditions and management.

Thus, the following section will discuss (1) the processes that lead to C stabilization or mobilization, (2) approaches of soil C assessment, (3) existing approaches for the determination of soil C changes and (4) optimization strategies for soil sampling at the European scale.


Soil Organic Carbon Mineral Soil Soil Organic Carbon Stock Global Change Biology Paired Design 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arrouays D, Deslais W, Badeau V (2001) The carbon content of topsoil and its geographical dis-tribution in France. Soil Use and Management 17:7-11.Google Scholar
  2. Baldock JA, Skjemstad JO (2000) Role of soil matrix and minerals in protecting natural organic material against biological attack. Organic Geochemistry 31:697-710.CrossRefGoogle Scholar
  3. Baritz R, Van Ranst E, Seufert G (2005) Soil carbon default values relevant for evaluation of the carbon status of forest soils in Europe. CarboInvent-WP3-D3.2-RUG, Joanneum Research, Austria.Google Scholar
  4. Bellamy PH, Loveland PJ, Bradley RI, Lark RM, Kirk GJD (2005) Carbon losses from all soils across England and Wales 1978-2003. Nature 437:245-248.CrossRefGoogle Scholar
  5. Boix-Fayos C, Martinez-Mena M, Calvo-Cases A, Castillo V, Albaladejo J (2005) Concise review of interrill erosion studies in SE Spain (Alicante and Murcia): Erosion rates and progress of knowledge from the 1980s. Land Degradation & Development 16:517-528.CrossRefGoogle Scholar
  6. Chapin III FS, Woodwell GM, Randerson JT, Rastetter EB, Lovett GM, Baldocchi DD, Clark DA, Harmon ME, Schimel DS, Valentini R, Wirth C, Aber JD, Cole JJ, Goulden ML, Harden JW, Heimann M, Howarth RW, Matson PA, McGuire AD, Melillo JM, Mooney HA, Neff JC, Houghton RA, Pace ML, Ryan MG, Running SW, Sala OE, Schlesinger WH, Schulze E-D (2006) Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems 9:1041-1050.CrossRefGoogle Scholar
  7. Chenu C, Stotzky G (2002) Interactions between microorganisms and soil particles: An overview. In: Huang PM, Bollag J-M, Senesi N (eds) Interactions Between Soil Particles and Microorganisms. John Wiley & Sons Ltd., Chichester, pp 3-40.Google Scholar
  8. Conen F, Zerva A, Arrouays D, Jolivet C, Jarvis PG, Grace J, Mencuccini M (2005) The carbon balance of forest soils: Detectability of changes in soil carbon stocks in temperate and boreal forests. In: Griffiths H, Jarvis PG (eds) The Carbon Balance of Forest Biomes. Taylor and Francis, London, pp 233-247.Google Scholar
  9. Conant RT, Smith GR, Paustian K (2003) Spatial variability of soil carbon in forested and culti-vated sites: Implications for change detection. Journal of Environmental Quality 32:278-286.CrossRefGoogle Scholar
  10. Conant RT, Paustian K (2002) Spatial variability of soil organic carbon in grasslands: Implications for detecting change at different scales. Environmental Pollution 116:127-135.CrossRefGoogle Scholar
  11. Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiological Reviews 60:608-640.Google Scholar
  12. Darnley AG, Björklund A, Bölviken B, Gustavsson N, Koval PV, Plant JA, Steenfelt A, Tauchid M, Xie X (1995) A global geochemical database for environmental and resource management. Final report of IGCP Project 259. Earth Sciences 19, UNESCO Publishing, Paris, 122 pp.Google Scholar
  13. Daroussin J, King D (1997) A pedortransfer rules database to interpret the soil geographical data-base of Europe for environmental purposes. In: Bruand A, Duval O, Wosten H, Lilly A (eds) The Use of Pedotransfer Functions in Soil Hydrology Research in Europe. European Soil Bureaux Research Report No 3, EUR 17307 EN, INRA, Orleans, pp 25-40.Google Scholar
  14. Davidson EA, Janssens IA, Luo Y (2005) On the variability of respiration in terrestrial ecosys-tems: Moving beyond Q10. Global Change Biology 12:154-164.CrossRefGoogle Scholar
  15. Davis AA, Stolt MH, Compton JE (2004) Spatial distribution of soil carbon in southern new England hardwood forest landscapes. Soil Science Society of America Journal 68:895-903.Google Scholar
  16. de Gruijter J, Brus D, Bierkens M, Knotters M (2006) Sampling for natural resource monitoring. Springer, Heidelberg, 332 pp.Google Scholar
  17. Dontsova KM, Bigham JM (2005) Anionic polysaccharide sorption by clay minerals. Soil Science Society of America Journal 69:1026-1035.CrossRefGoogle Scholar
  18. Eliasson PE, McMurtrie RE, Pepper DA, Strömgren M, Linder S, Ågren GI (2005) The response of heterotrophic CO2 flux to soil warming. Global Change Biology 11:167-181.CrossRefGoogle Scholar
  19. Eusterhues K, Rumpel C, Kögel-Knabner I (2005) Organo-mineral associations in sandy acid for-est soils: Importance of specific surface area, iron oxides and micropores. European Journal of Soil Science 56:753-763.Google Scholar
  20. Francis AJ, Dodge CJ, Gillow JB (1992) Biodegradation of metal citrate complexes and implica-tion of toxic-metal mobility. Nature 356:140-142.CrossRefGoogle Scholar
  21. Gleixner G, Czimczik C, Kramer C, Lühker BM, Schmidt MWI (2001) Plant compounds and their turnover and stability as soil organic matter. In: Schulze ED, Heimann M, Harrison SP, Holland EA, Lloyd J, Prentice IC, Schimel DS (eds) Global Biogeochemical Cycles in the Climate System. Academic Press, San Diego, pp 201-216.CrossRefGoogle Scholar
  22. Gleixner G, Poirier N, Bol R, Balesdent J (2002) Molecular dynamics of organic matter in culti-vated soil. Organic Geochemistry 33:357-366.CrossRefGoogle Scholar
  23. Gleixner G, Kramer C, Hahn V, Sachse D (2005) The effect of biodiversity on carbon storage in soils. Ecological Studies 176:165-184.CrossRefGoogle Scholar
  24. Grabe M, Kleber M, Hartmann KJ, Jahn R (2003) Preparing a soil carbon inventory of Saxony-Anhalt, Central Germany using GIS and the state soil data base SABO_P. Journal of Plant Nutrition and Soil Science 166:642-648.CrossRefGoogle Scholar
  25. Guggenberger G, Kaiser K (2003) Dissolved organic matter in soil: Challenging the paradigm of sorptive preservation. Geoderma 113:293-310.CrossRefGoogle Scholar
  26. Guo LB, Gifford RM (2002) Soil carbon stocks and land use change: A meta analysis. Global Change Biology 8:345-360.CrossRefGoogle Scholar
  27. Hedges JI, Oades JM (1997) Comparative organic geochemistries of soils and marine sediments. Organic Geochemistry 27:319-361.CrossRefGoogle Scholar
  28. Jansen B, Nierop KGJ, Verstraten JM (2005) Mechanisms controlling the mobility of dissolved organic matter, aluminium and iron in podzol B horizons. European Journal of Soil Science 56:537-550.CrossRefGoogle Scholar
  29. Janzen HH (2005) Soil carbon: A measure of ecosystem response in a changing world? Canadian Journal of Soil Science 85:467-480.Google Scholar
  30. Johnson CE, Curtis PS (2001) Effects of forest management on soil C and N storage: Meta analy-sis. Forest Ecology Management 140:277-238.CrossRefGoogle Scholar
  31. Jones, RJA, Hiederer, R, Rusco, E, Montanarella, L (2005a) Estimating organic carbon in the soils of Europe for policy support. European Journal of Soil Science 56:655-671.CrossRefGoogle Scholar
  32. Jones RJA, Housková B, Bullok P, Montanarella L (2005b) European Soil Bureaux Research Report No 9 EUR 20559 EN, Office for Official Publications of the European Communities, Luxembourg.Google Scholar
  33. Khanna M, Yoder M, Calamai L, Stotzky G (1998) X-ray diffractometry and electron microscopy of DNA from Bacillus subtilis bound on clay minerals. Sciences of Soils 3:1-10.CrossRefGoogle Scholar
  34. Kaiser K, Guggenberger G (2003) Mineral surfaces and soil organic matter. European Journal of Soil Science 54:219-236.CrossRefGoogle Scholar
  35. Kalbitz K, Schwesig D, Rethemeyer J, Matzner E (2005) Stabilization of dissolved organic matter by sorption to the mineral soil. Soil Biology and Biochemistry 37:1319-1331.CrossRefGoogle Scholar
  36. Kane ES, Valentine DW, Schuur EAG, Dutta K (2005) Soil carbon stabilization along climate and stand productivity gradients in black spruce forests of interior Alaska. Canadian Journal of Forest Research 35:2118-2129.CrossRefGoogle Scholar
  37. Kern JS, Turner, DP, Dodson, RF (1998) Spatial patterns in soil organic carbon pool size in the Northwestern United States. In: Lal R, Kimble JM, Follett RF, Stewart BA (eds) Soil Processes and the Carbon Cycle. CRC Press, Boston, pp 29-44.Google Scholar
  38. King D, Montanarella L (2002) Inventaire et surveillance des sols en Europe. Étude et Gestion des Sols 9:137-148.Google Scholar
  39. Kleber M, Mikutta R, Torn MS, Jahn R (2005) Poorly crystalline mineral phases protect organic matter in acid subsoil horizons. European Journal of Soil Science 56:717-725.Google Scholar
  40. Klironomos JN, Rillig MC, Allen MF (1999) Designing belowground field experiments with the help of semi-variance and power analyses. Applied Soil Ecology 12:227-238.CrossRefGoogle Scholar
  41. Körner C (2003) Slow in, raip out—Carbon flux studies and Kyoto targets. Science 300:1242.CrossRefGoogle Scholar
  42. Kohlmeier S, Smits THM, Ford RM, Keel C, Harms H, Wick LY (2005) Taking the fungal high-way: Mobilization of pollutant-degrading bacteria and fungi. Environmental Science & Technology 39:4640-4646.CrossRefGoogle Scholar
  43. Krogh L, Greve MH (1999) Evaluation of world reference base for soil resources and FAO soil map of the world using nationwide grid soil data from Denmark. Soil Use and Management 15:157-166.CrossRefGoogle Scholar
  44. Krogh L, Noergaard A, Hermansen M, Greve MH, Balstroem T, Breuning-Madsen H (2003) Preliminary estimates of contemporary soil organic carbon stocks in Denmark using multiple datasets and four scaling-up methods. Agriculture, Ecosystems and Environment 96:19-28.Google Scholar
  45. Lal R(2005) Forest soils and carbon sequestration. Forest Ecology and Management 220:242-258.CrossRefGoogle Scholar
  46. Lettens S, Van Orshoven J, van Wesemael B, Muys, B (2004) Soil organic and inorganic carbon contents of landscape units in Belgium derived using data from 1950 to 1970. Soil Use and Management 20:40-47.CrossRefGoogle Scholar
  47. Lettens, S, Van Orshovena, J, van Wesemael, B, De Vos, B, Muys, B (2005a) Stocks and fluxes of soil organic carbon for landscape units in Belgium derived from heterogeneous data sets for 1990 and 2000. Geoderma 127:11-23.CrossRefGoogle Scholar
  48. Lettens, S van Orshoven, J, van Wesemael, B, Muys, B, Perrin, D (2005b) Soil organic carbon changes in landscape units of Belgium between 1960 and 2000 with reference to 1990. Global Change Biology 11:2128-2140.Google Scholar
  49. Liebens J, VanMolle M (2003) Influence of estimation procedure on soil organic carbon stock assessment in Flanders, Belgium. Soil Use and Management 19:364-371.CrossRefGoogle Scholar
  50. Lützow M, Kögel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H (2006) Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions—A review. European Journal of Soil Science 57:426-445.CrossRefGoogle Scholar
  51. Marschner B, Kalbitz K (2003) Controls of bioavailability and biodegradability of dissolved organic matter in soils. Geoderma 113:211-235.CrossRefGoogle Scholar
  52. Matson PA, Parton WJ, Power WJ, Swift MJ (1997) Agricultural intensification and ecosystem properties. Science 277:504-508.CrossRefGoogle Scholar
  53. Melillo JM, Steudker PA, Aber JD, Newkirk K, Lux H, Bowles FP, Catricala C, Magill A, Ahrens T, Morrisseau S (2002) Soil warming and carbon-cycle feedbacks to the climate system. Science 298:2173-2176.CrossRefGoogle Scholar
  54. Milne, R, Brown, TA (1997) Carbon in the vegetation and soils of Great Britain. Journal of Environmental Management 49:413-433.CrossRefGoogle Scholar
  55. Miltner A, Kopinke FD, Kindler R, Selesi DE, Hartmann A, Kastner M (2005) Non-phototrophic CO2 fixation by soil microorganisms. Plant and Soil 269:193-203.CrossRefGoogle Scholar
  56. Mund M, Schulze ED (2006) Impacts of silvicultural practices on the carbon budget of European beech forests. Allgemeine Forst- und Jagdzeitung 177:47-63.Google Scholar
  57. Nordstrom KF, Hotta S (2004) Wind erosion from cropland solutions in the USA: A review of problems, and prospects. Geoderma 121:157-167.CrossRefGoogle Scholar
  58. Palmer CJ, Smith WD, Conkling BL (2002) Development of a protocol for monitoring status and trends in forest soil carbon at a national level. Environmental Pollution 116:209-219.CrossRefGoogle Scholar
  59. Peltoniemi M, Heikkinen J, Mäkipää R (2007) Stratification of regional sampling by model-pre-dicted changes of carbon stocks in forested mineral soils. Silva Fennica (September, in press).Google Scholar
  60. Plante AF, Feng Y, McGill WB (2002) A modeling approach to quantifying soil macroaggregate dynamics. Canadian Journal of Soil Science 82:181-190.Google Scholar
  61. Prescott CE (2005) Decomposition and mineralization of nutrients from litter and humus. In: BassiriRad H (ed) Nutrient Acquisition by Plants. An Ecological Perspective. Springer, Ecological Studies 181, Berlin, pp 15-41.Google Scholar
  62. Renella G, Landi L, Nannipieri P (2004) Degradation of low molecular weight organic acids complexed with heavy metals in soil. Geoderma 122:311-315.CrossRefGoogle Scholar
  63. Rillig MC (2005) Polymers and microorganisms. In D Hillil (ed) Encyclopedia of soils in the environment. Elsevier, Oxford, pp 287-294.Google Scholar
  64. Rusco E, Jones R, Bidoglio G (2001) Organic matter in the soils of Europe: Present status, and future trends. European Soil Bureaux Research, EUR 20556 EN, JRC IES, Ispra.Google Scholar
  65. Salminen R (2005) Geochemical Atlas of Europe. Part 1—Background Information, Methodology and Maps. ISBN 951-690-913-2 (electronic version).Google Scholar
  66. Schmidt MWI, Noack AG (2000) Black carbon in soils and sediments: Analysis, distribution, implications and current challenges. Global Biogeochemical Cycles 14:777-793.CrossRefGoogle Scholar
  67. Schöning I, Morgenroth G, Kögel-Knabner I (2005a) O/N-alkyl and alkyl C are stabilised in fine particle size fractions of forest soils. Biogeochemistry 73:475-497.CrossRefGoogle Scholar
  68. Schöning I, Knicker H, Kögel-Knabner I (2005b) Intimate association between O/N-alkyl carbon and iron oxides in clay fractions of forest soils. Organic Geochemistry 36:1378-1390.CrossRefGoogle Scholar
  69. Schulze ED, Freibauer A (2005) Carbon unlocked from soils. Nature 437:205-206.CrossRefGoogle Scholar
  70. Schulze E-D, Kelliher FM, Körner C, Lloyd J, Hollinger DJ, Vygodskaya NN (1996) The role of vegetation in controlling carbon dioxide and water exchange between land surface and the atmosphere. In: Walker B, Steffen W (eds) Global Change and Terrestrial Ecosystems. IGBP-Series 2, Cambridge University Press, Cambridge, pp 77-92.Google Scholar
  71. Schwesig D, Kalbitz K, Matzner E (2003) Effects of aluminium on the mineralization of dis-solved organic carbon derived from forest floors. European Journal of Soil Science 54: 311-322.CrossRefGoogle Scholar
  72. Six J, Conant RT, Paul EA, Paustian K (2002) Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant and Soil 241:155-176.CrossRefGoogle Scholar
  73. Six J, Bossuyt H, Degryze S, Denef K (2004) A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research 79:7-31.CrossRefGoogle Scholar
  74. Smith J, Smith P, Wattenbach M, Zaehle S, Hiederer R, Jones RJA, Montanarella L, Rounsevell MDA, Reginster I, Ewert F (2005) Projected changes in mineral soil carbon of European cro-plands and grasslands, 1990-2080. Global Change Biology 11:2141-2152.CrossRefGoogle Scholar
  75. Smith P, Smith J, Wattenbach M, Meyer J, Lindner M, Zaehle S, Hiederer R, Jones RJA, Montanarella L, Rounsevell MDA, Reginster I, Kankaanpää S (2006) Projected changes in mineral soil carbon of European forests, 1990-2100. Canadian Journal of Soil Science 86:159-169.Google Scholar
  76. Sollins P, Homann P, Caldwell BA (1996) Stabilization and destabilization of soil organic matter: Mechanisms and controls. Geoderma 74:65-105.CrossRefGoogle Scholar
  77. Thuille A, Schulze ED (2006) Carbon dynamics in successional and afforested spruce stands in Thuringia and the Alps. Global Change Biology 12:325-342.CrossRefGoogle Scholar
  78. Ulrich B, Puhe J (1994) Auswirkungen der zukünftigen Klimaveränderung auf mitteleuropäische Waldökosysteme und deren Rückkopplungen auf den Treibhauseffekt. Enquete-Kommission “Schutz der Erdatmosphäre” des deutschen Bundestages (eds) Studienprogramm Bd. 2: Wälder, Studie B (208 S.). Bonn, Economica Verlag.Google Scholar
  79. Valentin C, Poesen J, Yong Li (2005) Gully erosion: Impacts, factors and control. Catena 63: 132-153.CrossRefGoogle Scholar
  80. Van Ranst, E, Thomasson, AJ, Daroussin, J, Hollins JM, Jones RJA, Jamagne M (1995) Elaboration of an extended knowledge database to interpret the 1:1000000 EU Soil Map for environmental purposes. In: King D, Jones RJA, Thomasson AJ (eds) European Land Information Systems for Agro-Environmental Monitoring. EUR 16232 EN, Office for Official Publications of the European Communities, Luxembourg, pp 71-84.Google Scholar
  81. Verheijen FGA, Bellamy PH, Kibblewhite MG, Gaunt JL (2005) Organic carbon ranges in arable soils of England and Wales. Soil Use and Management 21:2-9.CrossRefGoogle Scholar
  82. Wirth C, Schulze ED, Schwalbe G, Tomczyk S, Weber G, Weller E (2004) Dynamik der Kohlenstoffvorräte in den Wäldern Thüringens. Mittelungen der Thüringer Landesanstalt für Wald, Jagd und Fischerei 23/2004:308 pp.Google Scholar
  83. Zhang CS, McGrath D (2004) Geostatistical and GIS analyses on soil organic carbon concentra-tions in grassland of southeastern Ireland from two different periods. Geoderma s119:261-275.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • Marion Schrumpf
    • 1
    • 2
  • Jens Schumacher
    • 1
    • 2
  • Ingo Schöning
    • 1
    • 2
  • Ernst-Detlef Schulze
    • 1
    • 2
  1. 1.Max-Planck-Institute for BiogeochemistryJena
  2. 2.JenaGermany

Personalised recommendations