Designing an Observation Strategy for N2O

  • Annette Freibauer
Part of the Ecological Studies book series (ECOLSTUD, volume 203)

Nitrous oxide (N2O) is a powerful greenhouse gas (GHG) with a global warming potential (GWP) of 296 in relation to CO2 (IPCC 2001). In the context of the United Nations Framework Convention on Climate Change (UNFCCC), a GWP value of 310 is used (IPCC 1996). For easy comparison, we express N2O fluxes in units of nitrogen (N) and in CO2-carbon equivalents (Ceq), applying the politically relevant GWP of 310 (Eq. 8.1). N2O is also involved in the depletion of the stratospheric ozone layer.

This chapter will give an overview of the present N2O emissions in Europe, and then focus on the major source, the soilborne N2O emissions. The spatio-temporal variation of soil N2O fluxes and underlying biogoechemical processes will be described, as well as approaches to observe and quantify N2O fluxes, associated uncertainties and ways towards a systematic operational N2O monitoring. In the latter part, N2O emissions from other sources than soils will be included.


Nitrous Oxide Global Warming Potential Nitrous Oxide Emission Observation Strategy IPCC Methodology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Biraud, S. et al. 2002. Quantification of carbon dioxide, methane, nitrous oxide and chloroform emissions over Ireland from atmospheric observations at Mace Head. Tellus Series B-Chemical & Physical Meteorology, 54(1): 41-60.CrossRefGoogle Scholar
  2. Boeckx, P. and Van Cleemput, O. 2001. Estimates of N2O and CH4 fluxes from agricultural lands in various regions in Europe. Nutrient Cycling in Agroecosystems, 60(1-3): 35-47.CrossRefGoogle Scholar
  3. Boeckx, P., Van Moortel, E. and Van Cleemput, O. 2001. Spatial and sectorial disaggregation of N2O emissions from agriculture in Belgium. Nutrient Cycling in Agroecosystems, 60(1-3): 197-208.CrossRefGoogle Scholar
  4. Bouwman, A.F. 1996. Direct emission of nitrous oxide from agricultural soils. Nutrient Cycling in Agroecosystems, 46: 53-70.CrossRefGoogle Scholar
  5. Bouwman, A.F., Boumans, L.J.M. and Batjes, N.H. 2002a. Emissions of N2O and NO from ferti-lized fields: Summary of available measurement data. Global Biogeochemical Cycles, 16(18 October 2002).Google Scholar
  6. Bouwman, A.F., Boumans, L.J.M. and Batjes, N.H. 2002b. Modeling global annual N2O and NO emissions from fertilized fields. Global Biogeochemical Cycles, 16(4): 1080, doi:10.1029/ 2001BG001812.CrossRefGoogle Scholar
  7. Bouwman, A.F., Taylor, J.A. and Kroeze, C. 2000. Testing hypotheses on global emissions of nitrous oxide using atmospheric models. Chemosphere Global Change Science, 2(3-4): 475-492.CrossRefGoogle Scholar
  8. Brown, L. et al. 2001. An inventory of nitrous oxide emissions from agriculture in the UK using the IPCC methodology: Emission estimate, uncertainty and sensitivity analysis. Atmospheric Environment, 35(8): 1439-1449.CrossRefGoogle Scholar
  9. Brown, L. et al. 2002. Development and application of a mechanistic model to estimate emission of nitrous oxide from UK agriculture. Atmospheric Environment, 36(6): 917-928.CrossRefGoogle Scholar
  10. Brumme, R., Borken, W. and Finke, S. 1999. Hierarchical control on nitrous oxide emission in forest ecosystems. Global Biogeochemical Cycles, 13(4): 1137-1148.CrossRefGoogle Scholar
  11. Butterbach-Bahl, K., Kesik, M., Miehle, P., Papen, H. and Li, C. 2004. Quantifying the regional source strength of N-trace gases across agricultural and forest ecosystems with process based models. Plant & Soil, 260(1-2): 311-329.CrossRefGoogle Scholar
  12. Butterbach-Bahl, K., Stange, F., Papen, H. and Li, C.S. 2001. Regional inventory of nitric oxide and nitrous oxide emissions for forest soils of southeast Germany using the biogeochemical model PnET-N-DNDC. Journal of Geophysical Research-Atmospheres, 106(D24): 34155-34166, doi 2000JD000173.Google Scholar
  13. Chedin, A. et al. 2002. Annual and seasonal variations of atmospheric CO2, N2O and CO concen-trations retrieved from NOAA/TOVS satellite observations. Geophysical Research Letters, 29 (8): doi 10.1029/2001BL014082.Google Scholar
  14. Christensen, S. et al. 1996. Nitrous oxide emission from an agricultural field—Comparison between measurements by flux chamber and micrometerological techniques. Atmospheric Environment, 30 (24): 4183-4190.CrossRefGoogle Scholar
  15. Conen, F., Dobbie, K.E. and Smith, K.A. 2000. Predicting N2O emissions from agricultural land through related soil parameters. Global Change Biology, 6(4): 417-426.CrossRefGoogle Scholar
  16. Denmead, O.T., Leuning, R., Jamie, I. and Griffith, D.W.T. 2000. Nitrous oxide emissions from grazed pastures: Measurements at different scales. Chemosphere Global Change Science, 2 (3-4): 301-312, doi:10.1016/S1465-9972(00)00035-0.CrossRefGoogle Scholar
  17. ETC. 2007. National greenhouse gases inventories (IPCC Common Reporting Format sector clas-sification). The European Topic Centre on Air and Climate Change (Database version 2.3, 12 June 2007), national submissions to UNFCCC or to EU Monitoring Mechanism of CO2 and other greenhouse emissions. asp?id=971, downloaded on 10 April 2007.
  18. Firestone, M.K. and Davidson, E.A. 1989. Microbiological basis of NO and N2O production and consumption in soil. In: M.O. Andreae and D.S. Schimel (Eds.), Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere. Dahlem Konferenzen. John Wiley & Sons, Chichester, pp. 7-21.Google Scholar
  19. Freibauer, A. 2003. Regionalised inventory of biogenic greenhouse gas emissions from European agriculture. European Journal of Agronomy, 19(2): 135-160.CrossRefGoogle Scholar
  20. Freibauer, A. and Kaltschmitt, M. 2003. Controls and models for estimating direct nitrous oxide emissions from temperate and boreal agricultural mineral soils in Europe. Biogeochemistry, 63 (1): 93-115.CrossRefGoogle Scholar
  21. Griffith, D.W.T., Leuning, R., Denmead, O.T. and Jamie, I.M. 2002. Air-land exchanges of CO2, CH4 and N2O measured by FTIR spectrometry and micrometeorological techniques. Atmospheric Environment, 36(11): 1833-1842.CrossRefGoogle Scholar
  22. Hall, B., Dutton, G.S. and Elkins, J.W. 2007. The NOAA Nitrous oxide standard scale for atmos-pheric observations. Journal of Geophysical Research, 112, D09305, doi:10.1029/ 2006JD007954.CrossRefGoogle Scholar
  23. Heinemeyer, O., Munch, J.C. and Kaiser, E.-A. 1995. Variabilität von N2O-Emissionen Bedeutung der Gasauffangsysteme. Mitt Dtsch Bodenkundl Ges, 76: 543-546.Google Scholar
  24. Hensen, A., Dieguez Villar, A. and Vermeulen, A.T. 1999. Emission estimates based on ambient N2O concentrations measured at a 200 m tower in the Netherlands 1995-1997. In: A. Freibauer and M. Kaltschmitt (Eds.), Approaches to Greenhouse Gas Inventories of Biogenic Sources in Agriculture, Stuttgart, pp. 215-228.Google Scholar
  25. Hensen, A. et al. 2006. Dairy farm CH4 and N2O emissions, from one square metre to the full farm scale. Agriculture Ecosystems & Environment, 112(2-3 Special Issue SI): 146-152.CrossRefGoogle Scholar
  26. IPCC. 1996. Global Change 1995—The Science of Climate Change. Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Cliamte Change, Intergovernmental Panel on Climate Change.Google Scholar
  27. Hirsch, A. et al. 2006. Inverse estimates of the global nitrous oxide surface flux from 1998-2001. Global Biogeochem. Cycles 20, GB1008, doi:10.1029/2004GB002443.CrossRefGoogle Scholar
  28. IPCC. 2000. Good Practice Guidance and Uncertainty Management in National Greenhouse Gas InventoriesGoogle Scholar
  29. IPCC National Greenhouse Gas Inventories Programme. Published for the IPCC by the Institute for Global Environmental Strategies, Japan.Google Scholar
  30. IPCC. 2001. Climate Change 2001: The Scientific Basis. IPCC Third Assessment Report. http://
  31. Kaiser, J., Röckmann, T. and Brenninkmeijer, C.A.M. 2004. Contribution of mass-dependent fractionation to the oxygen isotope anomaly of atmospheric nitrous oxide. Journal of Geophysical Research-Atmospheres, 109(D3): art. no. D03305.Google Scholar
  32. Kesik, M. et al. 2005. Inventories of N2O and NO emissions from European forest soils. Biogeosciences, 2(4): 353-375.Google Scholar
  33. Kim, K.R. and Craig, H. 1993. Nitrogen-15 and oxygen-18 characteristics of nitrous oxide—A global perspective. Science, 262(5141): 1855-1857.CrossRefGoogle Scholar
  34. Kroon, P.S. Hensen, A., Jonker, H.J.J., Zahniser, M.S., van’t Veen, W.H. and Vermeulen, A.T. 2007. Suitability of quantum cascade laser spectrometry for CH4 and N2O eddy covariance measurements. Biogeosciences Discussions, 4: 1137-1165.Google Scholar
  35. Li, C.S. et al. 2001. Comparing a process-based agro-ecosystem model to the IPCC methodology for developing a national inventory of N2O emissions from arable lands in China. Nutrient Cycling in Agroecosystems, 60(1-3): 159-175.CrossRefGoogle Scholar
  36. Lilly, A., Ball, B.C., McTaggart, I.P. and Horne, P.L. 2003. Spatial and temporal scaling of nitrous oxide emissions from the field to the regional scale in Scotland. Nutrient Cycling in Agroecosystems, 66(3): 241-257.CrossRefGoogle Scholar
  37. Mosier, A.R., Duxbury, J.M., Freney, J.R., Heinemeyer, O. and Minami, K. 1996. Nitrous oxide emissions from agricultural fields—Assessment, measurement and mitigation. Plant & Soil, 181 (1): 95-108.CrossRefGoogle Scholar
  38. Neufeldt, H., Schäfer, M. and Angenendt, E. 2004. Modelling regional GHG emissions from farm production and agricultural soils with EFEM-DNDC. In: L. Institute for Energy and Environment (Editor), International Conference Greenhouse Gas Emissions from Agriculture Mitigation Options and Strategies. Institute for Energy and Environment, Leipzig, Leipzig, Germany, pp. 165-171.Google Scholar
  39. Neufeldt, H. et al. 2006. Disaggregated greenhouse gas emission inventories from agriculture via a coupled economic-ecosystem model. Agriculture Ecosystems & Environment, 112(2-3 Special Issue SI): 233-240.CrossRefGoogle Scholar
  40. Nevison, C. 2000. Review of the IPCC methodology for estimating nitrous oxide emissions asso-ciated with agricultural leaching and runoff. Chemosphere Global Change Science, 2(3-4): 493-500.CrossRefGoogle Scholar
  41. Nevison, C. and Holland, E. 1997. A reexamination of the impact of anthropogenically fixed nitrogen on atmospheric N2O and the stratospheric ozone layer. Journal of Geophysical Research, 102: 25519-25536.CrossRefGoogle Scholar
  42. Olivier, J.G.J., Bouwman, A.F., Van der Hoek, K.W. and Berdowski, J.J.M. 1998. Global air emis-sion inventories for anthropogenic sources of NOx, NH3 and N2O in 1990. Environmental Pollution, 102(Suppl. 1): 135-148.CrossRefGoogle Scholar
  43. Perez, T. et al. 2001. Identifying the agricultural imprint on the global N2O budget using stable isotopes. Journal of Geophysical Research-Atmospheres,106(D9):9869-9878, doi 2000JD900809.CrossRefGoogle Scholar
  44. Röckmann, T., Kaiser, J. and Brenninkmeijer, C.A.M. 2003. The isotopic fingerprint of the pre-industrial and the anthropogenic N2O source. Atmospheric Chemistry and Physics, 3: 315-323.CrossRefGoogle Scholar
  45. Röckmann, T. and Levin, I. 2005. High-precision determination of the changing isotopic composition of atmospheric N2O from 1990 to 2002. Journal of Geophysical Research, 110, D21304, doi:10.1029/2005JD006066.CrossRefGoogle Scholar
  46. Ruser, R. 1999. Freisetzung und Verbrauch der klimarelevanten Spurengase N2O und CH4 eines landwirtschaftlich genutzten Bodens in Abhängigkeit von Kultur und N-Duengung, unter besonderer Berücksichtigung des Kartoffelbaus. FAM-Bericht 36, Hieronymus-Verlag, München.Google Scholar
  47. Schmidt, M., Glatzel-Mattheier, H., Sartorius, H., Worthy, D. and Levin, I. 2001. Western European N2O emissions: A top-down approach based on atmospheric observations. Journal of Geophysical Research-Atmospheres, 106(D6): 5507-5516.CrossRefGoogle Scholar
  48. Schulte-Bisping, H., Brumme, R. and Priesack, E. 2003. Nitrous oxide emission inventory of German forest soils. Journal of Geophysical Research-Atmospheres, 108(D4): doi 10.1029/ 2002JD002292.Google Scholar
  49. Skiba, U.M., Sheppard, L.J., Macdonald, J. and Fowler, D. 1998. Some key environmental varia-bles controlling nitrous oxide emissions from agricultural and semi-natural soils in Scotland. Atmospheric Environment, 32(19): 3311-3320.CrossRefGoogle Scholar
  50. Smith, K.A. et al. 1994. Micrometeorological and chamber methods for measurement of nitrous oxide fluxes between soils and the atmosphere: Overview and conclusions. Journal of Geophysical Research, 99(D8): 16541-16548.CrossRefGoogle Scholar
  51. Smith, K.A., Thomson, P.E., Clayton, H., Mctaggart, I.P. and Conen, F. 1998. Effects of tempera-ture, water content and nitrogen fertilisation on emissions of nitrous oxide by soils. Atmospheric Environment, 32(19): 3301-3309.CrossRefGoogle Scholar
  52. Sozanska, M., Skiba, U. and Metcalfe, S. 2002. Developing an inventory of N2O emissions from British soils. Atmospheric Environment, 36(6): 987-998.CrossRefGoogle Scholar
  53. Stehfest, E. and Bouwman, L. 2006. N2O and NO emission from agricultural fields and soils under natural vegetation: Summarizing available measurement data and modeling of global annual emissions. Nutrient Cycling in Agroecosystems, 74(3): 207-228.CrossRefGoogle Scholar
  54. Tilsner, J., Wrage, N., Lauf, J. and Gebauer, G. 2003. Emission of gaseous nitrogen oxides from an extensively managed grassland in NE Bavaria, Germany. Biogeochemistry, 63(3): 249-267.Google Scholar
  55. Yamulki, S. et al. 2001. Diurnal fluxes and the isotopomer ratios of N2O in a temperate grassland following urine amendment. Rapid Communications in Mass Spectrometry, 15(15): 1263-1269.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • Annette Freibauer
    • 1
    • 2
  1. 1.Max-Planck-Institute for BiogeochemistryJena
  2. 2.JenaGermany

Personalised recommendations