Advertisement

Estimating Sources and Sinks of Methane: An Atmospheric View

  • Peter Bergamaschi
  • Philippe Bousquet
Part of the Ecological Studies book series (ECOLSTUD, volume 203)

Methane (CH4) is an important trace gas of the atmosphere. Its mixing ratio has increased by a factor of 2.5 compared to preindustrial levels (year 1800) (Etheridge et al. 1992) and reached almost 1,800 parts per billion (ppb) today (Dlugokencky et al. 2003; IPCC 2007). From ice core measurements, it is known that present atmospheric levels of CH4 are unprecedented during at least the last 600,000 years (Petit et al. 1999; Spahni et al. 2005). Atmospheric CH4 is the second most important anthropogenic greenhouse gas (GHG) after CO2 (IPCC 2007). The direct radiative forcing of anthropogenic CH4 is 0.48 W/m2, that is almost one third that of anthropogenic CO2 (1.66 W/m2) (IPCC 2007). Furthermore, CH4 plays an important role in atmospheric chemistry, affecting the oxidizing capacity of the atmosphere and tropospheric ozone (O3). The mean atmospheric lifetime of CH4 is estimated to be 8.4 years on average (IPCC 2001).

CH4 is emitted at the earth surface by a variety of natural and anthropogenic sources (Matthews and Fung 1987, 1991; Olivier and Berdowski 2001). The principal CH4 production processes are: (1) biogenic CH4 formation (by methanogenic bacteria under anaerobic conditions), (2) thermogenic formation, and (3) incomplete combustion of biomass or fossil fuels. The biogenic CH4 formation occurs, for example, in wetlands, water-flooded rice paddies, landfills, and stomachs of ruminant animals, while thermogenic CH4 formation is the most important process for generation of natural gas deposits (over geological timescales). Recently, it has been suggested that plants emit CH4 also under aerobic conditions (Keppler et al. 2006). The experiments by Keppler et al. (2006) indicated that these emissions are related to a hitherto unknown nonmicrobial process in which the structural plant component pectin plays a central role. Keppler et al. (2006) estimated that these plant emissions may contribute significantly to the global CH4 budget (62–236 Tg/year). However, consideration of the preindustrial CH4 budget (Bergamaschi et al. 2006; Houweling et al. 2000), and a more detailed upscaling study (Kirschbaum et al. 2006) indicates that the upper estimate by Keppler et al. appears very unlikely.

Keywords

Methane Emission Inverse Modeling Former Soviet Union Atmospheric Methane Infrared Atmospheric Sounding Interferometer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, D. F., R. M. Law, K. R. Gurney, P. Rayner, P. Peylin, A. S. Denning, L. P. Bousquet, Bruhwiler, Y.-H. Chen, P. Ciais, I. Y. Fung, M. Heimann, J. John, T. Maki, S. Maksyutov, K. Masarie, M. Prather, B. Pak, S. Taguchi, and Z. Zhu, TransCom3 inversion intercompari-son: Impact of transport model errors on the interannual variability of regional CO2 fluxes, 1988-2003, Global Biogeochem. Cycles, 20, doi:10.1029/2004GB002439, 2006.Google Scholar
  2. Bergamaschi, P., R. Hein, M. Heimann, and P. J. Crutzen, Inverse modeling of the global CO cycle 1. Inversion of CO mixing ratios, J. Geophys. Res., 105(D2), 1909-1927, 2000a.CrossRefGoogle Scholar
  3. Bergamaschi, P., R. Hein, C. A. M. Brenninkmeijer, and P. J. Crutzen, Inverse modeling of the global CO cycle 2. Inversion of 13C/12C and 18O/16O isotope ratios, J. Geophys. Res., 105(D2), 1929-1945, 2000b.CrossRefGoogle Scholar
  4. Bergamaschi, P., H. Behrend, and A. Jol (Eds.), Inverse modelling of national and EU greenhouse gas emission inventories—report of the workshop “Inverse modelling for potential verification of national and EU bottom-up GHG inventories” under the mandate of the Monitoring Mechanism Committee WG-1, 23-24 October 2003, JRC Ispra, 144 pp., European Commission Joint Research Centre, Ispra, 2004.Google Scholar
  5. Bergamaschi, P., M. Krol, F. Dentener, A. Vermeulen, F. Meinhardt, R. Graul, M. Ramonet, W. Peters, and E. J. Dlugokencky, Inverse modelling of national and European CH4 emissions using the atmospheric zoom model TM5, Atmos. Chem. Phys., 5, 2431-2460, 2005.CrossRefGoogle Scholar
  6. Bergamaschi, P., F. Dentener, G. Grassi, A. Leip, Z. Somogyi, S. Federici, G. Seufert, and F. Raes, Methane Emissions from Terrestrial Plants On the discovery of CH4 emissions from terrestrial plants and its potential implications Comments on the paper of Keppler et al. (Methane emis-sions from terrestrial plants under aerobic conditions, Nature, 439, 2006), European Commission, DG Joint Research Centre, Institute for Environment and Sustainability, 6 pp., 2006.Google Scholar
  7. Bergamaschi, P., C. Frankenberg, J. F. Meirink, M. Krol, F. Dentener, T. Wagner, U. Platt, J. O. Kaplan, S. Korner, M. Heimann, E. J. Dlugokencky, and A. Goede, Satellite chartography of atmospheric methane from SCIAMACHY on board ENVISAT: 2. Evaluation based on inverse model simulations, J. Geophys. Res., 112(D2), doi:10.1029/2006JD007268, 2007.Google Scholar
  8. Bousquet, P., P. Peylin, P. Ciais, C. Le Quere, P. Friedlingstein, and P. P. Tans, Regional changes in carbon dioxide fluxes of land and oceans since 1980, Science, 290(5495), 1342-1346, 2000.CrossRefGoogle Scholar
  9. Bousquet, P., D. A. Hauglustaine, P. Peylin, C. Carouge, and P. Ciais, Two decades of OH variability as inferred by an inversion of atmospheric transport and chemistry of methyl chloroform, Atmos. Chem. Phys., 5, 2635-2656, 2005.CrossRefGoogle Scholar
  10. Bousquet, P., P. Ciais, J. B. Miller, E. J. Dlugokencky, D. A. Hauglustaine, C. Prigent, G. van der Werf, P. Peylin, E. Brunke, C. Carouge, R. L. Langenfelds, J. Lathiere, P. F., M. Ramonet, M. Schmidt, L. P. Steele, S. C. Tyler, and J. W. C. White, Contribution of anthropogenic and natural sources methane emissions variability, Nature, 443, 439-443, 2006.CrossRefGoogle Scholar
  11. Buchwitz, M., R. de Beek, J. P. Burrows, H. Bovensmann, T. Warneke, J. Notholt, J. F. Meirink, A. P. H. Goede, P. Bergamaschi, S. Korner, M. Heimann, and A. Schulz, Atmospheric methane and carbon dioxide from SCIAMACHY satellite data: Initial comparison with chemistry and transport models, Atmos. Chem. Phys., 5, 941-962, 2005a.Google Scholar
  12. Buchwitz, M., R. de Beek, S. Noel, J. P. Burrows, H. Bovensmann, H. Bremer, P. Bergamaschi, S. Korner, and M. Heimann, Carbon monoxide, methane and carbon dioxide columns retrieved from SCIAMACHY by WFM-DOAS: Year 2003 initial data set, Atmos. Chem. Phys., 5, 3313-3329, 2005b.CrossRefGoogle Scholar
  13. Clerbaux, C., J. Hadji-Lazaro, S. Turquety, G. Mégie, and P.-F. Coheur, Trace gas measurements from infrared satellite for chemistry and climate applications, Atmos. Chem. Phys., 3, 1495-1508, 2003.CrossRefGoogle Scholar
  14. Crutzen, P. J., Photochemical reactions initiated by and influencing ozone in unpolluted tropospheric air, Tellus, 26, 46-57, 1974.CrossRefGoogle Scholar
  15. Dentener, F., W. Peters, M. Krol, M. van Weele, P. Bergamaschi, and J. Lelieveld, Interannual variability and trend of CH4 lifetime as a measure for OH changes in the 1979-1993 time period, J. Geophys. Res., 108(D15), 4442, doi:4410.1029/2002JD002916, 2003.CrossRefGoogle Scholar
  16. Dlugokencky, E. J., K. A. Masaire, P. M. Lang, P. P. Tans, L. P. Steele, and E. G. Nisbet, A dra-matic decrease in the growth-rate of atmospheric methane in the Northern-Hemisphere during 1992, Geophys. Res. Lett., 21(1), 45-48, 1994.CrossRefGoogle Scholar
  17. Dlugokencky, E. J., L. P. Steele, P. M. Lang, and K. A. Masarie, Atmospheric methane at Mauna-Loa and barrow observatories Presentation and analysis of in-situ measurements, J. Geophys. Res., 100(D11), 23103-23113, 1995.CrossRefGoogle Scholar
  18. Dlugokencky, E. J., E. G. Dutton, P. C. Novelli, P. P. Tans, K. A. Masarie, K. O. Lantz, and S. Madronich, Changes in CH4 and CO growth rates after the eruption of Mt Pinatubo and their link with changes in tropical tropospheric UV flux, Geophys. Res. Lett., 23(20), 2761-2764, 1996.CrossRefGoogle Scholar
  19. Dlugokencky, E. J., B. P. Walter, K. A. Masarie, P. M. Lang, and E. S. Kasischke, Measurements of an anomalous global methane increase during 1998, Geophys. Res. Lett., 28 (3), 499-502, 2001.CrossRefGoogle Scholar
  20. Dlugokencky, E. J., S. Houweling, L. Bruhwiler, K. A. Masarie, P. M. Lang, J. B. Miller, and P. P. Tans, Atmospheric methane levels off: Temporary pause or a new steady-state?, Geophys. Res. Lett., 30(19), 1992, doi:1910.1029/2003GL018126, 2003.CrossRefGoogle Scholar
  21. Dueck, T. A., R. de Visser, H. Poorter, S. Persijn, A. A. Gorissen, W. W. de Visser, A. Schapendonk, J. Verhagen, J. Snel, F. J. M. Harren, A. K. Y. Ngai, F. Verstappen, H. Bouwmeester, L. A. C. J. Voesenek, and A. van der Werf, No evidence for substantial aerobic methane emis-sion by terrestrial plants: A 13C-labelling approach, New Phytol., 175(1), 29-35, doi:10.1111/j.1469-8137.2007.02103.x., 2007.CrossRefGoogle Scholar
  22. EEA, Annual European Community greenhouse gas inventory 1990-2001 and inventory report 2003, European Environment Agency, Copenhagen, 2003.Google Scholar
  23. EEA, Annual European Community greenhouse gas inventory 1990-2002 and inventory report 2004, European Environment Agency, Copenhagen, 2004.Google Scholar
  24. Enting, I. G., C. M. Trudinger, and R. J. Francey, A synthesis inversion of the concentration and δ13C of atmospheric CO2, Tellus B, 47(1-2), 35-52, 1995.CrossRefGoogle Scholar
  25. Enting, I. G., Green’s function methods of tracer inversion, in Inverse methods in global biogeochemical cycles, P. Kasibhatla et al.(eds.), pp.19-31, American Geophysical Union, Washington, DC, 2000.Google Scholar
  26. Etheridge, D. M., G. I. Pearman, and P. J. Fraser, Changes in tropospheric methane between 1841 and 1978 from a high accumulation-rate Antarctic ice core, Tellus B, 44, 282-294, 1992.CrossRefGoogle Scholar
  27. Frankenberg, C., J. F. Meirink, M. van Weele, U. Platt, and T. Wagner, Assessing methane emissions from global space-borne observations, Science, 308(5724), 1010-1014, 2005.CrossRefGoogle Scholar
  28. Frankenberg, C., J. F. Meirink, P. Bergamaschi, A. P. H. Goede, M. Heimann, S. Körner, U. Platt, M. van Weele, and T. Wagner, Satellite chartography of atmospheric methane from SCIAMACHY onboard ENVISAT: Analysis of the years 2003 and 2004, J. Geophys. Res., 111, D07303, doi:07310.01029/02005JD006235, 2006.Google Scholar
  29. Fung, I., J. John, J. Lerner, E. Matthews, M. Prather, L. P. Steele, and P. J. Fraser, Three-dimen-sional model synthesis of global methane cycle, J. Geophys. Res., 96, 13033-13065, 1991.CrossRefGoogle Scholar
  30. GLOBALVIEW-CH4, Cooperative Atmospheric Data Integration Project—Methane. CD-ROM, NOAA CMDL (Also available on Internet via anonymous FTP to ftp.cmdl.noaa.gov, Path: ccg/ch4/GLOBALVIEW), 2005.Google Scholar
  31. Gurney, K. R., R. M. Law, A. S. Denning, P. J. Rayner, D. Baker, P. Bousquet, L. Bruhwiler, Y. H. Chen, P. Ciais, S. Fan, I. Y. Fung, M. Gloor, M. Heimann, K. Higuchi, J. John, T. Maki, S. Maksyutov, K. Masarie, P. Peylin, M. Prather, B. C. Pak, J. Randerson, J. Sarmiento, S. Taguchi, T. Takahashi, and C. W. Yuen, Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models, Nature, 415(6872), 626-630, 2002.CrossRefGoogle Scholar
  32. Hauglustaine, D. A., F. Hourdin, L. Jourdain, M. A. Filiberti, S. Walters, J. F. Lamarque, and E. A. Holland, Interactive chemistry in the Laboratoire de Meteorologie Dynamique general circulation model: Description and background tropospheric chemistry evaluation, J. Geophys. Res., 109(D4), D04314, doi:04310.01029/02003JD003957, 2004.CrossRefGoogle Scholar
  33. Heimann, M., and T. Kaminski, Inverse modeling approaches to infer surface trace gas fluxes from observed atmospheric mixing ratios. Approaches to scaling of trace gas fluxes in ecosystems, in Approaches to scaling of trace gas fluxes in ecosystems, A. F. Bouwman (ed.), pp. 275-295, Elsevier, Amsterdam, 1999.Google Scholar
  34. Hein, R., P. J. Crutzen, and M. Heimann, An inverse modeling approach to investigate the global atmospheric methane cycle, Global Biogeochem. Cycles, 11(1), 43-76, 1997.CrossRefGoogle Scholar
  35. Hoerling, M., and A. Kumar, The perfect ocean for drought, Science, 299(5607), 691-694, 2003.CrossRefGoogle Scholar
  36. Houweling, S., T. Kaminski, F. Dentener, J. Lelieveld, and M. Heimann, Inverse modelling of methane sources and sinks using the adjoint of a global transport model, J. Geophys. Res., 104, 26137-26160, 1999.CrossRefGoogle Scholar
  37. Houweling, S., F. Dentener, and J. Lelieveld, Simulation of preindustrial atmospheric methane to constrain the global source strength of natural wetlands, J. Geophys. Res., 105(D13), 17243-17255, 2000.CrossRefGoogle Scholar
  38. IPCC, Good practice guidance and uncertainty management in national greenhouse gas invento-ries, Institute for Global Environmental Strategies, Japan, 2000.Google Scholar
  39. IPCC, Climate change 2001: The scientific basis. Contribution of working group I to the third assessment report of the Intergovernmental Panel on Climate Change, 881 pp., Cambridge University Press, Cambridge, UK and New York, NY, 2001.Google Scholar
  40. IPCC, Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change 996 pp.,Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2007.Google Scholar
  41. Keppler, F., J. T. G. Hamilton, M. Brass, and T. Rockmann, Methane emissions from terrestrial plants under aerobic conditions, Nature, 439, 187-191, 2006.CrossRefGoogle Scholar
  42. Kirschbaum, M. U. F., D. Bruhn, D. M. Etheridge, J. R. Evans, G. D. Farquhar, R. M. Gifford, K. I. Paul, and A. J. Winters, A comment on the quantitative significance of aerobic methane release by plants, Funct. Plant Biol., 33, 521-530, 2006.CrossRefGoogle Scholar
  43. Krol, M., and J. Lelieveld, Can the variability in tropospheric OH be deduced from measurements of 1,1,1-trichloroethane (methyl chloroform)?, J. Geophys. Res., 108(D3), 4125, doi:4110.1029/ 2002JD002423, 2003.CrossRefGoogle Scholar
  44. Krol, M., S. Houweling, B. Bregman, M. van den Broek, A. Segers, P. van Velthoven, W. Peters, F. Dentener, and P. Bergamaschi, The two-way nested global chemistry-transport zoom model TM5: Algorithm and applications, Atmos. Chem. Phys., 5, 417-432, 2005.CrossRefGoogle Scholar
  45. Krol, M. C., J. Lelieveld, D. E. Oram, G. A. Sturrock, S. A. Penkett, C. A. M.Brenninkmeijer, V. Gros, J. Williams, and H. A. Scheeren, Continuing emissions of methyl chloroform from Europe, Nature, 421(6919), 131-135, 2003.Google Scholar
  46. Langenfelds, R. L., R. J. Francey, B. C. Pak, L. P. Steele, J. Lloyd, C. M. Trudinger, and C. E. Allison, Interannual growth rate variations of atmospheric CO2 and its δ13C, H2, CH4, and CO between 1992 and 1999 linked to biomass burning, Global Biogeochem. Cycles, 16(3), 1048, doi:1010.1029/2001GB001466, 2002.CrossRefGoogle Scholar
  47. Manning, A. J., D. B. Ryall, R. G. Derwent, P. G. Simmonds, and S. O’Doherty, Estimating European emissions of ozone-depleting and greenhouse gases using observations and a modeling back-attribution technique, J. Geophys. Res.,108(D14),4405, doi:4410.1029/2002JD002312, 2003.Google Scholar
  48. Manning, M. R., D. C. Lowe, R. C. Moss, G. E. Bodeker, and W. Allan, Short-term variations in the oxidizing power of the atmosphere, Nature, 436, 1001-1004, 2005.CrossRefGoogle Scholar
  49. Matthews, E., and I. Fung, Methane emissions from natural wetlands, global distribution, area and environmental characteristics of sources, Global Biogeochem. Cycles, 1, 61-86, 1987.CrossRefGoogle Scholar
  50. Matthews, E., and I. Fung, Methane emissions from rice cultivation: Geographic and seasonal distribution of cultivated areas and emissions, Global Biogeochem. Cycles, 5, 3-24, 1991.CrossRefGoogle Scholar
  51. Meirink, J. F., H. J. Eskes, and A. P. H. Goede, Sensitivity analysis of methane emissions derived from SCIAMACHY observations through inverse modelling, Atmos. Chem. Phys., 6, 1275-1292, 2006.CrossRefGoogle Scholar
  52. Mikaloff Fletcher, S. E. M., P. P. Tans, L. M. Bruhwiler, J. B. Miller, and M. Heimann, CH4 sources estimated from atmospheric observations of CH4 and its 13C/12C isotopic ratios: 1. Inverse mod-eling of source processes, Global Biogeochem. Cycles, 18 (4), GB4004, doi:4010.1029/2004GB002223, 2004a. CrossRefGoogle Scholar
  53. Mikaloff Fletcher, S. E. M., P. P. Tans, L. M. Bruhwiler, J. B. Miller, and M. Heimann, CH4 sources estimated from atmospheric observations of CH4 and its 13C/12C isotopic ratios: 2. Inverse modeling of CH4 fluxes from geographical regions, Global Biogeochem. Cycles, 18(4), GB4005, doi:4010.1029/2004GB002224, 2004b.CrossRefGoogle Scholar
  54. Miller, J. B., K. A. Mack, R. Dissly, J. W. C. White, E. J. Dlugokencky, and P. P. Tans, Development of analytical methods and measurements of 13C/12C in atmospheric CH4 from the NOAA Climate Monitoring and Diagnostics Laboratory global air sampling network, J. Geophys. Res., 107(D13), 107, doi:110.1029/2001JD000630, 2002.CrossRefGoogle Scholar
  55. Olivier, J. G. J., and J. J. M. Berdowski, Global emissions sources and sinks, in The climate sys-tem, J. Berdowski, et al. (eds.), pp. 33-37, 2001.Google Scholar
  56. Page, S. E., F. Siegert, J. O. Rieley, H. D. V. Boehm, A. Jaya, and S. Limin, The amount of carbon released from peat and forest fires in Indonesia during 1997, Nature, 420(6911), 61-65, 2002.CrossRefGoogle Scholar
  57. Petit, J., J. Jouzel, D. Raynaud, N. Barkov, J. Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V. Kotlyakov, M. Legrand, V. Lipenkov, C. Lorius, L. Pepin, C. Ritz, E. Saltzman, and M. Stievenard, Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica, Nature, 399(6735), 429-436, 1999.Google Scholar
  58. Peylin, P., D. Baker, J. Sarmiento, P. Ciais, and P. Bousquet, Influence of transport uncertainty on annual mean and seasonal inversions of atmospheric CO2 data, J. Geophys. Res., 107(D19), 4385, doi:4310.1029/2001JD000857, 2002.CrossRefGoogle Scholar
  59. Platt, U., W. Allan, and D. Lowe, Hemispheric average Cl atom concentration from 13C/12C ratios in atmospheric methane, Atmos. Chem. Phys., 4, 2393-2399, 2004.Google Scholar
  60. Prigent, C., E. Matthews, F. Aires, and W. B. Rossow, Remote sensing of global wetland dynamics with multiple satellite data sets, Geophys. Res. Lett., 28(24), 4631-4634, doi:4610.1029/ 2001GL013263, 2001.CrossRefGoogle Scholar
  61. Prinn, R. G., R. F. Weiss, B. R. Miller, J. Huang, F. N. Alyea, D. M. Cunnold, P. J. Fraser, D. E. Hartley, and P. G. Simmonds, Atmospheric trends and lifetime of CH3CCl3 and global OH concentrations, Science, 269(5221), 187-192, 1995.CrossRefGoogle Scholar
  62. Prinn, R. G., R. F. Weiss, P. J. Fraser, P. G. Simmonds, D. M. Cunnold, F. N. Alyea, S. O’Doherty, P. Salameh, B. R. Miller, J. Huang, R. H. J. Wang, D. E. Hartley, C. Harth, L. P. Steele, G. Sturrock, P. M. Midgley, and A. McCulloch, A history of chemically and radiatively important gases in air deduced from ALE/GAGE/AGAGE, J. Geophys. Res., 105(D14), 17751-17792, 2000.CrossRefGoogle Scholar
  63. Prinn, R. G., J. Huang, R. F. Weiss, D. M. Cunnold, P. J. Fraser, P. G. Simmonds, A. McCulloch, C. Harth, P. Salameh, S. O’Doherty, R. H. J. Wang, L. Porter, and B. R. Miller, Evidence for substantial variations of atmospheric hydroxyl radicals in the past two decades, Science, 292, 1882-1888, 2001.CrossRefGoogle Scholar
  64. Prinn, R. G., J. Huang, R. F. Weiss, D. M. Cunnold, P. J. Fraser, P. G. Simmonds, A. McCulloch, C. Harth, S. Reimann, P. Salameh, S. O’Doherty, R. H. J. Wang, L. W. Porter, B. R. Miller, and P. B. Krummel, Evidence for variability of atmospheric hydroxyl radicals over the past quarter century, Geophys. Res. Lett., 32(7), L07809, doi:07810.01029/02004GL022228, 2005.CrossRefGoogle Scholar
  65. Quay, P. D., J. L. Stutsman, D. O. Wilbur, A. K. Snover, E. J. Dlugokencky, and T. A. Brown, The isotopic composition of atmospheric methane, Global Biogeochem. Cycles, 13, 445-461, 1999.CrossRefGoogle Scholar
  66. Rayner, P. J., I. G. Enting, R. J. Francey, and R. Langenfelds, Reconstructing the recent carbon cycle from atmospheric CO2, δ13C and O2/N2 observations, Tellus B, 51B(2), 213-232, 1999.CrossRefGoogle Scholar
  67. Rodenbeck, C., S. Houweling, M. Gloor, and M. Heimann, CO2 flux history 1982-2001 inferred from atmospheric data using a global inversion of atmospheric transport, Atmos. Chem. Phys., 3, 1919-1964, 2003.CrossRefGoogle Scholar
  68. Simmonds, P. G., A. J. Manning, R. G. Derwent, P. Ciais, M. Ramonet, V. Kazan, and D. Ryall, A burning question. Can recent growth rate anomalies in the greenhouse gases be attributed to large-scale biomass burning events?, Atmos. Environ., 39(14), 2513-2517, 2005.Google Scholar
  69. Spahni, R., J. Chappellaz, T. F. Stocker, L. Loulergue, G. Hausammann, K. Kawamura, J. Flückiger, J. Schwander, D. Raynaud, V. Masson-Delmotte, and J. Jouzel, Atmospheric methane and nitrous oxide of the late Pleistocene from Antarctic ice cores, Science, 310, 1317-1321, 2005.CrossRefGoogle Scholar
  70. Spivakovsky, C. M., J. A. Logan, S. A. Montzka, Y. J. Balkanski, M. Foreman-Fowler, D. B. A. Jones, L. W. Horowitz, A. C. Fusco, C. A. M. Brenninkmeijer, M. J. Prather, S. C. Wofsy, and M. B. McElroy, Three-dimensional climatological distribution of tropospheric OH: Update and evaluation, J. Geophys. Res., 105(D7), 8931-8980, 2000.CrossRefGoogle Scholar
  71. Turquety, S., J. Hadji-Lazaro, C. Clerbaux, D. A. Hauglustaine, S. A. Clough, V. Casse, P. Schlüssel, and G. Megie, Operational trace gas retrieval algorithm for the Infrared Atmospheric Sounding Interferometer, J. Geophys. Res., 109, doi:10.1029/2004JD004821, 2004.Google Scholar
  72. Tyler, S. C., H. O. Ajie, M. L. Gupta, R. J. Cicerone, D. R. Blake, and E. J. Dlugokencky, Stable carbon isotopic composition of atmospheric methane: A comparison of surface level and free tropospheric air, J. Geophys. Res., 104(D11), 13895-13910, 1999.CrossRefGoogle Scholar
  73. Uppala, S. M., P. W. Koallberg, A. J. Simmons, U. Andrae, V. da Costa Bechtold, M. Fiorino, J. K. Gibson, J. Haseler, A. Hernandez, G. Kelly, X. Li, K. Onogi, S. Saarinen, N. Sokka, R. P. Allan, E. Andersson, K. Arpe, M. A. Balmaseda, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, S. Caires, F. Chevallier, D. A, M. Dragosavac, M. Fisher, M. Fuentes, S. Hagemann, E. Holm, B. J. Hoskins, L. Isaksen, P. A. E. M. Janssen, R. Jenne, A. P. A. McNally, J.-F. Mahfouf, J.-J. Morcrette, N. A. Rayner, R. W. Saunders, P. Simon, A. Sterl, K. E. Trenberth, A. Untch, D. Vasiljevic, P. Viterbo, and J. Woollen, The ERA-40 Reanalysis, J. Roy. Met. Soc., 131, 2961-3012, 2005.CrossRefGoogle Scholar
  74. Van der Werf, G. R., J. T. Randerson, G. J. Collatz, and L. Giglio, Carbon emissions from fires in tropical and subtropical ecosystems, Global Change Biol., 9(4), 547-562, 2003.CrossRefGoogle Scholar
  75. Van der Werf, G. R., J. T. Randerson, G. J. Collatz, L. Giglio, P. S. Kasibhatla, A. F. Arellano, S. C. Olsen, and E. S. Kasischke, Continental-scale partitioning of fire emissions during the 1997 to 2001 El Nino/La Nina period, Science, 303(5654), 73-76, 2004.CrossRefGoogle Scholar
  76. Vermeulen, A., R. Eisma, A. Hensen, and J. Slanina, Transport calculations of NW-European methane emissions, Env. Sci. & Policy, 2, 315-324, 1999.CrossRefGoogle Scholar
  77. Wahlen, M., N. Tanaka, R. Henry, and T. Yoshinari, 13C, D and 14C in Methane, Eos, 68, No. 44, 1220, 1987.Google Scholar
  78. Walter, B. P., M. Heimann, and E. Matthews, Modeling modern methane emissions from natural wet-lands 2. Interannual variations 1982-1993, J. Geophys. Res., 106(D24), 34207-34219, 2001.CrossRefGoogle Scholar
  79. Wang, J. S., J. A. Logan, M. B. McElroy, B. N. Duncan, I. A. Megretskaia, and R. M. Yantosca, A 3-D model analysis of the slowdown and interannual variability in the methane growth rate from 1988 to 1997, Global Biogeochem. Cycles, 18(3), 3011, doi:3010.1029/2003GB002180, 2004.Google Scholar
  80. Warwick, N. J., S. Bekki, K. S. Law, E. G. Nisbet, and J. A. Pyle, The impact of meteorology on the interannual growth rate of atmospheric methane, Geophys. Res. Lett., 29(20), 1947, doi: 1910.1029/2002GLO15282, 2002.CrossRefGoogle Scholar
  81. WMO, Global Atmospheric Watch World Data Centre for Greenhouse Gases, 92 pp., Japan Meteorological Agency in co-operation with World Meteorological Organisation, 2003.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • Peter Bergamaschi
    • 1
  • Philippe Bousquet
    • 2
  1. 1.Institute for Environment and SustainabilityEuropean Commission Joint Research CentreIspraItaly
  2. 2.Laboratoire des Sciences du Climat et del’Environnement (LSCE)Gif sur YvetteFrance

Personalised recommendations