Quantifying Fossil Fuel CO2 over Europe

  • Ingeborg Levin
  • Ute Karstens
Part of the Ecological Studies book series (ECOLSTUD, volume 203)

Europe is responsible for more than 25% of global fossil fuel CO2 emissions (Marland et al. 2006), and these emissions account for about 30–50% of the observed CO2 variability in this region (see Sect. 4.2.1). To balance greenhouse gases over Europe, therefore, also requires quantification of CO2 emissions from fossil fuel (i.e. coal, oil and natural gas) burning. Reliable continuous observations of the fossil fuel CO2 component are needed in order to validate emission-based model simulations and finally allow for robust estimates of the biogenic part in the observed atmospheric CO2 variations. Fossil fuel emissions in Europe are very heterogeneously distributed in space with hot spots in highly industrialised and populated regions. The temporal variability comprises seasonal as well as diurnal cycles with a strong coupling to ambient temperature variations (i.e. domestic heating), the current economic situation (i.e. industry) and other factors such as the general meteorological conditions or holiday periods (i.e. traffic and industry). All these parameters need to be accurately modelled if fossil fuel emissions shall be estimated in a realistic and quantitative way from bottom-up information on the respective sources (see Reis et al. 2008).

The aim of this chapter is to review the state of the art of quantifying fossil fuel CO2 over Europe. We will first provide an estimate of the relative signal of fossil fuel emissions over Europe using emissions inventories and atmospheric transport modelling and compare them to the respective signals from biogenic (and oceanic) sources and sinks. Then we will give an overview on the existing 14CO2 measurements and respective 14C-based fossil fuel CO2 estimates, including their seasonal variability and temporal trends. We will further discuss the quality of the surrogate tracer CO, and finally present a sensitivity test of a proposed method, which allows to estimate the uncertainty of using continuous CO measurements together with 14C-calibrated CO/CO2(foss) ratios to estimate fossil fuel CO2 at high temporal resolution (Levin and Karstens 2007). Finally, we will make a recommendation for a fossil fuel CO2 monitoring network for the European continent.


Fossil Fuel Emission Inventory Relative Root Mean Square Error Terrestrial Biosphere Fossil Fuel Emission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bakwin, P. S., Hurst, D. F., Tans, P. P., and Elkins, J. W. 1997. Anthropogenic sources of halocar-bons, sulfur hexafluoride, carbon monoxide, and methane in the south-eastern United States. J. Geophys. Res. 102:15,915-15, 925.Google Scholar
  2. Chevillard, A., Karstens, U., Ciais, P., Lafont, S., and Heimann, M. 2002. Simulation of atmos-pheric CO2 over Europe and western Siberia using the regional scale model REMO. Tellus 54B:872-894.Google Scholar
  3. Churkina, G., Tenhunen, J., Thornton, P., Falge, E. M., Elbers, J. A., Erhard, M., Grünwald, T., Kowalski, A. S., Rannik, Ü., and Sprinz, D. 2003. Analyzing the ecosystem carbon dynamics of four European coniferous forests using a biogeochemistry model. Ecosystems 6:168-184.CrossRefGoogle Scholar
  4. Gamnitzer, U., Karstens, U., Kromer, B., Neubert, R. E. M., Meijer, H. A. J., Schroeder, H., and Levin, I. 2006. Carbon monoxide: A quantitative tracer for fossil fuel CO2 ? J. Geophys. Res. 111:D22302, doi:10.1029/2005JD006966. CrossRefGoogle Scholar
  5. Geels, C., Gloor, M., Ciais, P., Bousquet, P., Peylin, P., Vermeulen, A. T., Dargaville, R., Aalto, T., Brandt, J., Christensen, J. H., Frohn, L. M., Haszpra, L., Karstens, U., Rödenbeck, C., Ramonet, M., Carboni, G., and Santaguida, R. 2006. Comparing atmospheric transport models for future regional inversions over Europe. Part 1: Mapping the CO2 atmospheric signals over Europe. Atmos. Chem. Phys. Discuss. 6:3709-3756. Google Scholar
  6. GLOBALVIEW-CO2 2005. Cooperative Atmospheric Data Integration Project—Carbon Dioxide. CD-ROM, NOAA CMDL, Boulder, Colorado (Also available on Internet via anonymous FTP to, Path: ccg/co2/GLOBALVIEW).Google Scholar
  7. Hesshaimer, V. 1997. Tracing the global carbon cycle with bomb radiocarbon, Ph.D. thesis, University of Heidelberg.Google Scholar
  8. Kromer, B., and Münnich, K. O. 1992. CO2 gas proportional counting in Radiocarbon dating review and perspective. In Radiocarbon after four decades, eds. R. E. Taylor, A. Long and R. S. Kra, pp. 184-197. New York: Springer-Verlag.Google Scholar
  9. Kuc, T. 1986. Carbon isotopes in atmospheric CO2 of the Krakow region: A two-year record. Radiocarbon 28:649-654.Google Scholar
  10. Levin, I., Münnich, K. O., and Weiss, W. 1980. The effect of anthropogenic CO2 and 14C sources on the distribution of 14CO2 in the atmosphere. Radiocarbon 22:379-391.Google Scholar
  11. Levin, I., Kromer, B., Schoch-Fischer, H., Bruns, M., Münnich, M., Berdau, D., Vogel, J. C., and Münnich, K. O.1985.25 years of tropospheric14C observations in Central Europe. Radiocarbon 27:1-19.Google Scholar
  12. Levin, I., Schuchard, J., Kromer, B., and Münnich, K. O. 1989. The continental European Suess effect. Radiocarbon 31:431-440.Google Scholar
  13. Levin, I., Kromer, B., Schmidt, M., and Sartorius, H. 2003. A novel approach for independent budgeting of fossil fuels CO2 over Europe by 14CO2 observations. Geophys. Res. Lett., 30 (23):2194, doi:10.1029/2003GL018477.CrossRefGoogle Scholar
  14. Levin, I., and Kromer, B. 2004. The tropospheric 14CO2 level in mid-latitudes of the Northern Hemisphere (1959-2003). Radiocarbon 46:1261-1272.Google Scholar
  15. Levin, I., and Karstens, U. 2007. Inferring high-resolution fossil fuel CO2 records at continental sites from combined 14CO2 and CO observations. Tellus B, doi:10.1111.j1600.0889.2006.00224.x 59B,245-250.Google Scholar
  16. Marland, G., Boden, T.A., and Andres, R. J. 2006. Global, Regional, and National CO2 Emissions. In Trends: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., U.S.A.Google Scholar
  17. Meijer, H. A. J., van der Plicht, J., and Gislefoss, J. S. 1995. Comparing long-term atmospheric 14C and 3H records near Groningen, the Netherlands with Fruholmen, Norway and Izaña, Canary Islands 14C stations. Radiocarbon 37(1):39-50.Google Scholar
  18. Naegler, T. 2005. Simulating bomb Radiocarbon: Implications for the Global Carbon Cycle. Ph.D. thesis, University of Heidelberg.Google Scholar
  19. Naegler, T., and Levin, I. 2006. Closing the global bomb radiocarbon budget. J. Geophys. Res. 111, D12311, doi: 10.10292005JD006758.CrossRefGoogle Scholar
  20. Nakazawa, T., Ishizawa, M., Higuchi, K., and Trivett, N. B. A. 1997. Two curve fitting methods applied to CO2 flask data. EnvironMetrics 8:197-218.CrossRefGoogle Scholar
  21. Olivier, J. G. J., van Aardenne, J. A., Dentener, F., Ganzeveld, L., and Peters, J. A. H. W. 2005. Recent trends in global greenhouse gas emissions: Regional trends and spatial distribution of key sources. In Non-CO2 Greenhouse Gases (NCGG-4), ed. A. van Amstel (coord.), pp. 325-330. Millpress, Rotterdam, ISBN 9059660439. Information available online at
  22. Potosnak, M. J., Wofsy, S. C., Denning, A. S., Conway, T. J., Munger, J. W., and Barnes, D. H. 1999. Influence of biotic exchange and combustion sources on atmospheric CO2 concentrations in New England from observations at a forest flux tower. J. Geophys. Res. 104:9561-9569.CrossRefGoogle Scholar
  23. Randerson, J. T., Enting, I. G., Schuur, E. A. G., Caldeira, K., and Fung, I. Y. 2002. Seasonal and latitudinal variability of troposphere Δ14CO2: Post bomb contributions from fossil fuels, oceans, the stratosphere, and the terrestrial biosphere. Global Biogeochem. Cycles 16, doi:10.1029/2002GB001876.Google Scholar
  24. Reis, S., Pfeiffer, H., Theloke, J., and Scholz, Y. 2008. Temporal and spatial distribution of Carbon emissions. This issue, Chapter 5.Google Scholar
  25. Rivier, L., Ciais, P., Hauglustaine, D. A., Bakwin, P., Bousquet, P., Peylin, P., and Klonecki, A. 2006. Evaluation of SF6, C2Cl4 and CO as surrogate tracers for fossil fuel CO2 in the United States using models and continuous atmospheric observations on high towers. J. Geophys. Res. 111, D16311, doi:10.1029/2005JD006725.CrossRefGoogle Scholar
  26. Sanhueza, E., Dong, Y., Scharffe, D., Lobert, J. M., and Crutzen, P. J. 1998. Carbon monoxide uptake by temperate forest soils: The effects of leaves and humus layers. Tellus 50B:51-58.Google Scholar
  27. Schmidt, M., Graul, R., Sartorius, H., and Levin, I. 2003. The Schauinsland CO2 record: 30 years of continental observations and their implications for the variability of the European CO2 budget. J. Geophys. Res. 108(D19), 4619, doi:10.1029/2002JD003085.CrossRefGoogle Scholar
  28. Stuiver, M., and Polach, H. A. 1977. Discussion: Reporting of 14C data. Radiocarbon 19:355-363.Google Scholar
  29. Suess, H. E. 1955. Radiocarbon concentration in modern wood. Science 122:415.CrossRefGoogle Scholar
  30. Takahashi, T., et al. 1999. Net sea-air CO2 flux over the global oceans: An improved estimate based on the sea-air pCO2 difference. Proceedings of the 2nd CO2 in Oceans Symposium, Tsukuba, JAPAN, January 18-23.Google Scholar
  31. Turnbull, J. C., Miller, J. B., Lehman, S. J., Tans, P. P., Sparks, R. J., and Southon, J. 2006. Comparison of 14CO2, CO, and SF6 as tracers for recently added fossil fuel CO2 in the atmos-phere and implications for biological CO2 exchange. Geophys. Res. Lett. 33, L01817, doi: 10.1029/2005GL024213.CrossRefGoogle Scholar
  32. UNFCCC (United Nations Framework Convention on Climate Change) 2005. Greenhouse gases database. Bonn, Germany. Available online at, Download on 10. Feb. 2005.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • Ingeborg Levin
    • 1
  • Ute Karstens
    • 2
    • 3
  1. 1.Institut für UmweltphysikUniversity of HeidelbergHeidelbergGermany
  2. 2.Max-Planck-Institute for BiogeochemistryJena
  3. 3.JenaGermany

Personalised recommendations