Advertisement

Observing a Vulnerable Carbon Cycle

  • Michael R. Raupach
  • Joseph G. Canadell
Part of the Ecological Studies book series (ECOLSTUD, volume 203)
The carbon cycle and indeed the entire earth system are now inextricably linked with human activities (Global Carbon Project 2003; Steffen et al. 2004; Field and Raupach 2004), so that the ‘carbon—climate—human system’ constitutes a single, coupled entity in which interacting processes link all of its major components. Linking processes of primary significance include
  1. 1.

    The human drivers of energy consumption and land-use change, through increases in both population and per capita consumption

     
  2. 2.

    The role of human energy systems as sources of CO2 and other greenhouse gases (GHGs)

     
  3. 3.

    Land-use change (deforestation, increases in agricultural and urban land use) and its consequences for both GHG emissions and resource (water, land, ecosystem) condition

     
  4. 4.

    Climate forcing by CO2 and other GHGs, following from drivers 1, 2 and 3

     
  5. 5.

    The changing roles of the ocean and the terrestrial biosphere as sinks and sources of CO2 and other GHGs, driven by the disequilibrium of the earth system through human activities

     
  6. 6.

    Impacts of climate change through declines in resource condition and human well-being

     
  7. 7.

    Attempts by human societies to reduce their impact on the global environment, for example, through reductions in GHG emissions to avoid ‘dangerous climate change’ (Schellnhuber et al. 2006)

     
Through the first six of these processes humankind is unintentionally influencing the earth system, while the seventh is an effort to manage global-scale human impacts on the earth system by mitigating their causes.

Keywords

Soil Respiration Carbon Cycle Freeze Soil Terrestrial Carbon Global Carbon Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achard F., Eva H. D., Mayaux P., Stibig H. J., Belward A. 2004. Improved estimates of net carbon emissions from land cover change in the tropics for the 1990s. Global Biogeochem. Cycles 18: doi:10.1029/2003GB002142.Google Scholar
  2. Allan W., Lowe D. C., Gomez A. J. 2005. Interannual variations of 13C in tropospheric methane: Implication for a possible atomic chlorine sink in the marine boundary layer. J. Geophys. Res. 110: doi:10.1029/ 2004JD005650.Google Scholar
  3. Angert A., Biraud S., Bonfils C. et al. 2005. Drier summers cancel out the CO2 uptake enhance-ment induced by warmer springs. Proc. Natl. Acad. Sci. U.S.A. 102: 10823-10827.CrossRefGoogle Scholar
  4. Anisimov O. A., Nelson F. E., Pavlov A. V. 1999. Predictive scenarios of permafrost development under conditions of global climate change in the XXI century. Earth Cryol. 3: 15-25.Google Scholar
  5. Arrhenius S. 1896. On the influence of carbonic acid in the air upon the temperature of the ground. Philos. Mag. J. Sci. 5: 239-276.Google Scholar
  6. Bogner J., Matthews E. 2003. Global methane emissions from landfills: New methodology and annual estimates 1980-1996. Global Biogeochem. Cycles 17: doi:10.1029/2002GB001913.Google Scholar
  7. Bousquet P., Ciais P., Miller J. B. et al. 2006. Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature 443: 439-443.CrossRefGoogle Scholar
  8. Burrows W. H., Henry B. K., Back P. V. et al. 2002. Growth and carbon stock change in eucalypt woodlands in northeast Australia: Ecological and greenhouse sink implications. Global Change Biol. 8: 769-784.CrossRefGoogle Scholar
  9. Camill P. 2005. Permafrost thaw accelerates in boreal peatlands during late-20th century climate warming. Clim. Change 68: 135-152.CrossRefGoogle Scholar
  10. Canadell J. G., Le Quéré C., Raupach M. R., Field C. B., Buitenhuis E. T., Ciais P, Conway T. J., Gillette N. P., Houghton R. A., Marland G. 2007a. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the National Academy of Sciences, Early Edition 10.1073/pnas.0702737104.Google Scholar
  11. Canadell J. G., Pataki D., Gifford R. M. et al. 2007b. Saturation of the terrestrial carbon sink. In Terrestrial Ecosystems in a Changing World, eds. J. G. Canadell, D. Pataki, L. Pitelka, pp. 59-78. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  12. Cao M. K., Gregson K., Marshall S. 1998. Global methane emission from wetlands and its sensi-tivity to climate change. Atmos. Environ. 32: 3293-3299.CrossRefGoogle Scholar
  13. Chen Y.-H., Prinn R. G. 2005. Atmospheric modeling of high- and low-frequency methane obser-vations: Importance of interannually varying transport. J. Geophys. Res. 110: D10303, doi:10.1029/ 2004JD005542.Google Scholar
  14. Christiansen T. R., Ekberg A., Ström L., Mastepanov M. 2003. Factors controlling large scale varia-tions in methane emission from wetlands. Geophys. Res. Lett. 30: doi: 10.1029/ 2002GL016848.Google Scholar
  15. Ciais P., Moore B. I., Steffen W. et al. 2004. Integrated global carbon observation theme: A strategy to realise a coordinated system of integrated global carbon cycle observations. Integrated Global Observing Strategy, Stockholm.Google Scholar
  16. Ciais P., Reichstein M., Viovy N. et al. 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437: 529-533.CrossRefGoogle Scholar
  17. Cramer W., Bondeau A., Woodward F. I. et al. 2001. Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models. Global Change Biol. 7: 357-373.CrossRefGoogle Scholar
  18. DeFries R. S., Field C. B., Fung I. Y., Collatz G. J., Bounoua L. 1999. Combining satellite data and biogeochemical models to estimate global effects of human-induced land cover change on carbon emissions and primary productivity. Global Biogeochem. Cycles 13: 803-815.CrossRefGoogle Scholar
  19. DeFries R. S., Houghton R. A., Hansen M. C., Field C. B., Skole D., Townshend J. 2002. Carbon emissions from tropical deforestation and regrowth based on satellite observations for the 1980s and 1990s. Proc. Natl. Acad. Sci. U.S.A. 99: 14256-14261.CrossRefGoogle Scholar
  20. Etheridge D. M., Steele L. P., Francey R. J., Langenfelds R. L. 1998a. Atmospheric methane between 1000 AD and present: Evidence of anthropogenic emissions and climatic variability. J. Geophys. Res. 103: 15979-15993.CrossRefGoogle Scholar
  21. Etheridge D. M., Steele L. P., Langenfelds R. L., Francey R. J., Barnola J. M., Morgan V. I. 1998b. Historical CO2 records from the Law Dome DE08, DE08-2, and DSS ice cores. Trends: A Compendium of Data on Global Change, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, USA.Google Scholar
  22. Fang J. Y., Chen A. P., Peng C. H., Zhao S. Q., Ci L. 2001. Changes in forest biomass carbon stor-age in China between 1949 and 1998. Science 292: 2320-2322.CrossRefGoogle Scholar
  23. Fang C. M., Smith P., Moncrieff J. B., Smith J. U. 2005. Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature 433: 57-59.CrossRefGoogle Scholar
  24. Farquhar G. D., Sharkey T. D. 1982. Stomatal conductance and photosynthesis. Annu. Rev. Plant Physiol. 33: 317-345.CrossRefGoogle Scholar
  25. Farquhar G. D., Caemmerer von S., Berry J. A. 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149: 78-90.CrossRefGoogle Scholar
  26. Field C. B., Raupach M. R. 2004. The Global Carbon Cycle: Integrating Humans, Climate, and the Natural World. Island Press, Washington, p. 526.Google Scholar
  27. Field C. B., Chapin III F. S., Chiariello N. R., Holland E. A., Mooney H. A. 1996. The Jasper Ridge CO2 experiment: Design and motivation. In Carbon Dioxide and Terrestrial Ecosystems, eds. G. W. Koch, H. A. Mooney, pp. 121-145. Academic Press, San Diego.Google Scholar
  28. Friborg T., Soegaard H., Christensen T. R., Lloyd C. R., Panikov N. S. 2003. Siberian wetlands: Where a sink is a source. Geophys. Res. Lett. 30.Google Scholar
  29. Friedlingstein P., Cox P., Betts R. et al. 2006. Climate-carbon cycle feedback analysis: Results from the C4MIP model intercomparison. J. Clim. 19: 3337-3353.CrossRefGoogle Scholar
  30. Fung I. Y., John J., Lerner J., Mathews E., Prather M., Steele L. P., Fraser P. J. 1991. Three-dimen-sional model synthesis of the global methane cycle. J. Geophys. Res. 96: 13033-13065.CrossRefGoogle Scholar
  31. Giardina C. P., Ryan M. G. 2000. Biogeochemistry: Soil warming and organic carbon content -Reply. Nature 408: 790.CrossRefGoogle Scholar
  32. Gifford R. M., Howden M. 2001. Vegetation thickening in an ecological perspective: Significance to national greenhouse gas inventories. Environ. Sci. Policy 4: 59-72.CrossRefGoogle Scholar
  33. Global Carbon Project 2003. Science Framework and Implementation. Earth System Science Partnership (IGBP, IHDP, WCRP, Diversitas) Report No. 1; GCP Report No. 1, Global Carbon Project, Canberra.Google Scholar
  34. Goody R. M. 1964. Atmospheric Radiation. I. Theoretical Basis. Clarendon Press, Oxford, 436 pp.Google Scholar
  35. Greenblatt J. B., Sarmiento J. L. 2004. Variability and climate feedback mechanisms in ocean uptake of CO2. In The Global Carbon Cycle: Integrating Humans, Climate, and the Natural World, eds. C. B. Field, M. R. Raupach, pp. 257-275. Island Press, Washington.Google Scholar
  36. Gruber N., Friedlingstein P., Field C. B. et al. 2004. The vulnerability of the carbon cycle in the 21st century: An assessment of carbon-climate-human interactions. In The Global Carbon Cycle: Integrating Humans, Climate, and the Natural World, eds. C. B. Field, M. R. Raupach, pp. 45-76. Island Press, Washington.Google Scholar
  37. Hein R., Crutzen P. J., Heimann M. 1997. An inverse modelling approach to investigate the global atmospheric methane cycle. Global Biogeochem. Cycles 11: 43-76.CrossRefGoogle Scholar
  38. Holland E. A., Braswell B. H., Lamarque J. F. et al. 1997. Variations in the predicted spatial dis-tribution of atmospheric nitrogen deposition and their impact on carbon uptake by terrestrial ecosystems. J. Geophys. Res. Atmos. 102: 15849-15866.CrossRefGoogle Scholar
  39. Houghton R. A. 1998. Historic role of forests in the global carbon cycle. In Carbon Dioxide Mitigation in Forestry and Wood Industry, eds. G. H. Kohlmaier, M. Weber, R. A. Houghton, pp. 1-24. Springer-Verlag, Berlin.Google Scholar
  40. Houghton R. A. 1999. The annual net flux of carbon to the atmosphere from changes in land use 1850-1990. Tellus Ser. B 51: 298-313.Google Scholar
  41. Houghton R. A. 2003. Why are estimates of the terrestrial carbon balance so different? Global Change Biol. 9: 500-509.CrossRefGoogle Scholar
  42. Houghton R. A., Hackler J. L. 2000. Changes in terrestrial carbon storage in the United States. 1: The roles of agriculture and forestry. Global Ecol. Biogeog. 9: 125-144.CrossRefGoogle Scholar
  43. Houghton R. A., Hackler J. L., Lawrence K. T. 2000. Changes in terrestrial carbon storage in the United States. 2: The role of fire and fire management. Global Ecol. Biogeog. 9: 145-170.CrossRefGoogle Scholar
  44. Houweling S., Kaminski T., Dentener F. J., Lelieveld J., Heimann M. 1999. Inverse modeling of methane sources and sinks using the adjoint of a global transport model. J. Geophys. Res. 104: 26137-26160.CrossRefGoogle Scholar
  45. IPCC 2001. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York.Google Scholar
  46. IPCC 2007. Climate change 2007: The physical science basis. Summary for policymakers. IPCC Secretariat, Geneva.Google Scholar
  47. Jacobson M., Charleson R. J., Rodhe H., Orians G. H. 2000. Earth System Science: From Biogeochemical Cycles to Global Change. Academic Press, New York, p. 527.Google Scholar
  48. Janssens I. A., Freibauer A., Schlamadinger B. et al. 2005. The carbon budget of terrestrial eco-systems at country-scale - a European case study. Biogeosciences 2: 15-26.CrossRefGoogle Scholar
  49. Jarvis P., Linder S. 2000. Botany: Constraints to growth of boreal forests. Nature 405: 904-905.CrossRefGoogle Scholar
  50. Jones P. D., Parker D. E., Osborn T. J., Briffa K. R. 2006. Global and hemispheric temperature anomalies - land and marine instrumental records. Trends: A Compendium of Data on Global Change, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, USA.Google Scholar
  51. Jorgenson T. M., Shur Y. L., Pullman E. R. 2006. Abrupt increase in permafrost degradation in Arctic Alaska. Geophys. Res. Lett. 33: doi:10. 1029/2005GL024960.Google Scholar
  52. Keeling C. D. and Whorf T. P. 2005. Atmospheric CO2 records from sites in the SIO air sampling network. Trends: A Compendium of Data on Global Change, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, USA.Google Scholar
  53. Knorr W., Prentice I. C., House J. I., Holland E. A. 2005. Long-term sensitivity of soil carbon turnover to warming. Nature 433: 298-301.CrossRefGoogle Scholar
  54. Kurz W. A., Apps M. J. 1999. A 70-year retrospective analysis of carbon fluxes in the Canadian forest sector. Ecol. Appl. 9: 526-547.CrossRefGoogle Scholar
  55. Langenfelds R. L., Francey R. J., Pak B. C., Steele L. P., Lloyd J., Trudinger C. M., Allison C. E. 2002. Interannual growth rate variations of atmospheric CO2 and its delta C-13, H-2, CH4, and CO between 1992 and 1999 linked to biomass burning. Global Biogeochem. Cycles 16.Google Scholar
  56. Le Quere C., Metzl N. 2004. Natural processes regulating the ocean uptake of CO2. In The Global Carbon Cycle: Integrating Humans, Climate, and the Natural World, eds. C. B. Field, M. R. Raupach, pp. 243-255. Island Press, Washington.Google Scholar
  57. Lelieveld J., Crutzen P. J., Dentener F. J. 1998. Changing concentration, lifetime and climate forc-ing of atmospheric methane. Tellus Ser. B 50: 128-150.CrossRefGoogle Scholar
  58. Lloyd J., Taylor J. A. 1994. On the temperature dependence of soil respiration. Functional Ecology 8: 315-323.CrossRefGoogle Scholar
  59. Luger A. D., Moll E. J. 1993. Fire protection and afromontane forest expansion in Cape Fynbos. Biol. Conserv. 64: 51-56.CrossRefGoogle Scholar
  60. Luo Y. Q., Wan S. Q., Hui D. F., Wallace L. L. 2001. Acclimatization of soil respiration to warm-ing in a tall grass prairie. Nature 413: 622-625.CrossRefGoogle Scholar
  61. Luo Y., Su B., Currie W. S. et al. 2004. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. BioScience 54: 731-739.CrossRefGoogle Scholar
  62. Mack F., Hoffstadt J., Esser G., Goldammer J. G. 1996. Modeling the influence of vegetation fires on the global carbon cycle. In Biomass Burning and Global Change, ed. J. S. Levine. MIT Press, Cambridge, MA.Google Scholar
  63. Marland G., Boden T. A., Andres R. J. 2006. Global, regional, and national CO2 emissions. Trends: A Compendium of Data on Global Change, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, USA.Google Scholar
  64. Mikaloff Fletcher S. E., Tans P. P., Bruhwiler L. M., Miller J. B., Heimann M. 2004a. CH4 sources estimated from atmospheric observations of CH4 and its 13C/12C isotopic ratios: 1. Inverse modelling of source processes. Global Biogeochem. Cycles 18: doi:10.1029/2004GB002223.Google Scholar
  65. Mikaloff Fletcher S. E., Tans P. P., Bruhwiler L. M., Miller J. B., Heimann M. 2004b. CH4 sources estimated from atmospheric observations of CH4 and its 13C/12C isotopic ratios: 2. Inverse modelling of CH4 fluxes from geographical regions. Global Biogeochem. Cycles 18: doi:10.1029/2004GB002224.Google Scholar
  66. Mosier A. R., Duxbury J. M., Freney J. R., Heinemeyer O., Minami K., Johnson D. E. 1998. Mitigating agricultural emissions of methane. Clim. Change 40: 39-80.CrossRefGoogle Scholar
  67. Mouillot F., Field C. B. 2005. Fire history and the global carbon budget: A 1 degrees x 1 degrees fire history reconstruction for the 20th century. Global Change Biol. 11: 398-420.CrossRefGoogle Scholar
  68. Nadelhoffer K. J., Emmett B. A., Gundersen P. et al. 1999. Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature 398: 145-148.CrossRefGoogle Scholar
  69. Nakicenovic N., Alcamo J., Davis G. et al. 2000. IPCC Special Report on Emissions Scenarios. Cambridge University Press, Cambridge, U.K. and New York.Google Scholar
  70. Nemani R. R., Keeling C. D., Hashimoto H. et al. 2003. Climate-driven increases in global terres-trial net primary production from 1982 to 1999. Science 300: 1560-1563.CrossRefGoogle Scholar
  71. Norby R. J., DeLucia E. H., Gielen B. et al. 2005. Forest response to elevated CO2 is conserved across a broad range of productivity. Proc. Natl. Acad. Sci. U.S.A. 102: 18052-18056.CrossRefGoogle Scholar
  72. Nowak R. S., Ellsworth D. S., Smith S. D. 2004. Functional responses of plants to elevated atmos-pheric CO2: Do photosynthetic and productivity data from FACE experiments support early predictions? New Phytol. 162: 253-280.CrossRefGoogle Scholar
  73. Olivier J. G. J., Bouwman A. F., Berdowski J. J. M. et al. 1999. Sectoral emission inventories of greenhouse gases for 1990 on a per country basis as well as on 1x1. Environ. Sci. Policy 2: 241-263.CrossRefGoogle Scholar
  74. Oren R., Ellsworth D. S., Johnsen K. H. et al. 2001. Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature 411: 469-472.CrossRefGoogle Scholar
  75. Owensby C. E., Ham J. M., Knapp A. K., Bremer D., Auen L. M. 1997. Water vapour fluxes and their impact under elevated CO2 in a C4-tallgrass prairie. Global Change Biol. 3: 189-195.CrossRefGoogle Scholar
  76. Pacala S. W., Hurtt G. C., Baker D. et al. 2001. Consistent land- and atmosphere-based US carbon sink estimates. Science 292: 2316-2320.CrossRefGoogle Scholar
  77. Page S. E., Siegert F., Rieley J. O., Boehm H. D. V., Jaya A., Limin S. 2002. The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420: 61-65.CrossRefGoogle Scholar
  78. Page S. E., Wust R. A. J., Weiss D., Rieley J. O., Shotyk W., Limin S. H. 2004. A record of Late Pleistocene and Holocene carbon accumulation and climate change from an equatorial peat bog (Kalimantan, Indonesia): Implications for past, present and future carbon dynamics. J. Quat. Sci. 19: 625-635.CrossRefGoogle Scholar
  79. Pataki D. E., Huxman T. E., Jordan D. N. et al. 2000. Water use of two Mojave Desert shrubs under elevated CO2. Global Change Biol. 6: 889-897.CrossRefGoogle Scholar
  80. Raupach M. R., Marland G., Ciais P., LeQuere C., Canadell J. G., Field C. B. 2007. Global and regional drivers of accelerating CO2 emissions. Proceedings of the National Academy of Sciences 14: 10288-10293.CrossRefGoogle Scholar
  81. Raupach M. R., Rayner P. J., Barrett D. J. et al. 2005. Model-data synthesis in terrestrial carbon observation: Methods, data requirements and data uncertainty specifications. Global Change Biol. 11: 10.1111/j.1365-2486.2005.00917.x.Google Scholar
  82. Sabine C. L., Heimann M., Artaxo P. et al. 2004. Current status and past trends of the global car-bon cycle. In The Global Carbon Cycle: Integrating Humans, Climate, and the Natural World, eds. C. B. Field, M. R. Raupach, pp. 17-44. Island Press, Washington.Google Scholar
  83. Schellnhuber H. J., Cramer W., Nakicenovic N., Wigley T. M. L., Yohe G. 2006. Avoiding Dangerous Climate Change. Cambridge University Press, Cambridge, 392 pp.Google Scholar
  84. Smith L. C., Sheng Y., MacDonald G. M., Hinzman L. D. 2005. Disappearing Arctic lakes. Science 308: 1429.CrossRefGoogle Scholar
  85. Steffen W. L., Sanderson A., Tyson P. D. et al. 2004. Global Change and the Earth System: A Planet Under Pressure. Springer, Berlin, 336 pp.Google Scholar
  86. Tarnocai C. 1999. The effect of climate warming on the carbon balance of cryosols in Canada. Permafrost Periglac. 10: 251-263.CrossRefGoogle Scholar
  87. Townsend A. R., Braswell B. H., Holland E. A., Penner J. E. 1996. Spatial and temporal patterns in terrestrial carbon storage due to deposition of fossil fuel nitrogen. Ecol. Appl. 6: 806-814.CrossRefGoogle Scholar
  88. Valentini R., Matteucci G., Dolman A. J. et al. 2000. Respiration as the main determinant of car-bon balance in European forests. Nature 404: 861-865.CrossRefGoogle Scholar
  89. van der Werf G. R., Randerson J. T., Collatz G. J., Giglio L. 2003. Carbon emissions from fires in tropical and subtropical ecosystems. Global Change Biol. 9: 547-562.CrossRefGoogle Scholar
  90. van der Werf G. R., Randerson J. T., Collatz G. J. et al. 2004. Continental-scale partitioning of fire emissions during the 1997 to 2001 El Nino/La Nina period. Science 303: 73-76.CrossRefGoogle Scholar
  91. van der Werf G. R., Randerson J. T., Giglio L., Collatz G. J., Kasibhatla P. S., Arellano A. F. 2006. Interannual variability in global biomass burning emissions from 1997 to 2004. Atmos. Chem. Phys. 6: 3423-3441.Google Scholar
  92. Wang J. S., Logan J. A., McElroy M. B., Duncan B. N., Megretskaia I. A., Yantosca R. M. 2004. A 3-D model analysis of the slowdown and interannual variability in the methane growth rate from 1988 to 1997. Global Biogeochem. Cycles 18: GB3011, doi:10.1029/2003GB002180.Google Scholar
  93. Wuebbles D. J., Hayhoe K. 2002. Atmospheric methane and global change. Earth-Sci. Rev. 57: 177-210.Google Scholar
  94. Zimov S. A., Schuur E. A. G., Chapin F. S. 2006. Permafrost and the global carbon budget. Science 312: 1612-1613.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • Michael R. Raupach
    • 1
  • Joseph G. Canadell
    • 1
  1. 1.CSIRO Marine and Atmospheric ResearchCanberraAustralia

Personalised recommendations