Advertisement

Multiple Constraint Estimates of the European Carbon Balance

  • Martin Heimann
  • Christian Rödenbeck
  • Galina Churkina
Part of the Ecological Studies book series (ECOLSTUD, volume 203)

The multiple-constraint approach has become a paradigm of carbon cycle research, in particular in assessments of regional carbon balances and its temporal evolution. In principle, trace gas budgets can be estimated by two complementary approaches: in the bottom-up method, local point-wise information (e.g., flux measurements or inventory data in representative locations) is scaled up to the region of interest using a combination of geographical information system (GIS) and remote sensing data. For the upscaling, various extrapolation procedures, diagnostic or prognostic models have to be used. In contrast, the top-down approach is based on atmospheric concentration measurements of the trace gas under consideration. In this case, the atmosphere is used as a natural integrator of the fluxes from the heterogeneous region of interest. Since the sources and sinks of the trace gas are reflected in spatial and temporal atmospheric concentration variations, observations of the latter can be used in an inverse model of atmospheric transport in order to determine the surface sources and sinks.

This chapter is focused on the European carbon balance. In principle, the multiple- constraint approach is also applicable to other regions of the globe and to other species such as CH4 (see Chap. 14). Although we believe that similar methodical limitations prevail in other areas, the relative importance may be different because of different environmental and historical conditions as well as different density and quality of the observations.

Keywords

Flux Estimate Global Biogeochemical Cycle Inversion Problem Global Change Biology Terrestrial Ecosystem Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bousquet, P., Peylin, P., Ciais, P., Le Quéré, C., Friedlingstein, P. and Tans, P.P., 2000. Regional changes in carbon dioxide fluxes of land and oceans since1980. Science,290(5495): 1342-1346.CrossRefGoogle Scholar
  2. Caspersen, J.P., Pacala, S.W., Jenkins, J.C., Hurtt, G.C., Moorcroft, P.R. and Birdsey, R.A., 2000. Contributions of land-use history to carbon accumulation in U.S. forests. Science, 290: 1148-1151.CrossRefGoogle Scholar
  3. Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogée, J., Allard, V., Aubinet, M., Buchmann, N., Bernhofer, C., Carrara, A., Chevallier, F., De Noblet, N., Friend, A.D., Friedlingstein, P., Grünwald, T., Heinesch, B., Keronen, P., Knohl, A., Krinner, G., Loustau, D., Manca, G., Matteucci, G., Miglietta, F., Ourcival, J.M., Papale, D., Pilegaard, K., Rambal, S., Seufert, G., Soussana, J.F., Sanz, M.J., Schulze, E.D., Vesala, T. and Valentini, R., 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437(7058): 529-533.CrossRefGoogle Scholar
  4. Ciais, P., Borges, A.V., Abril, G., Meybeck, M., Folberth, G., Hauglustaine, D. and Janssens, I.A., 2006. The impact of lateral carbon fluxes on the European carbon balance. Biogeosciences Discussions, 3: 1529-1559.Google Scholar
  5. Cramer, W., Bondeau, A., Woodward, F.I., Prentice, C., Betts, R.A., Brovkin, V., Cox, P.M., Fisher, V., Foley, J.A., Friend, A.D., Kucharik, C., Lomas, M.R., Ramankutty, N., Sitch, S., Smith, B., White, A. and Young-Molling, C., 2001. Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models. Global Change Biology, 7(4): 357-373.CrossRefGoogle Scholar
  6. Enting, I.G., Trudinger, C.M., and Francey, R.J., 1995. A synthesis inversion of the concentration and 13C of atmospheric CO2. Tellus, 47B: 35-52.Google Scholar
  7. Fan, S., Gloor, M., Mahlman, J., Pacala, S., Sarmiento, J., Takahashi, T. and Tans, P., 1998. A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models. Science, 282(5388): 442-446.CrossRefGoogle Scholar
  8. Feser, F., Weisse, R. and von Storch, H., 2001. Multi-decadal atmospheric modeling for Europe yields multi-purpose data. EOS Transactions, 82: 305-310.CrossRefGoogle Scholar
  9. Gurney, K.R., Law, R.M., Denning, A.S., Rayner, P.J., Baker, D., Bousquet, P., Bruhwiler, L., Chen, Y.-H., Ciais, P., Fan, S., Fung, I.Y., Gloor, M., Heimann, M., Higuchi, K., John, J., Maki, T., Maksyutov, S., Masarie, K., Peylin, P., Prather, M., Pak, B.C., Randerson, J., Sarmiento, J., Taguchi, S., Takahashi, T. and Yuen, C.-W., 2002. Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature, 415(6872): 626-630.CrossRefGoogle Scholar
  10. Janssens, I.A., Freibauer, A., Ciais, P., Smith, P., Nabuurs, G.-J., Folberth, G., Schlamadinger, B., Hutjes, R.W.A., Ceulemans, R., Schulze, E.-D., Valentini, R. and Dolman, A.J., 2003. Europe’s terrestrial biosphere absorbs 7 to 12% of European anthropogenic CO2 emissions. Science, 300: 1538-1542.CrossRefGoogle Scholar
  11. Jung, M., Vetter, M., Herold, M., Churkina, G., Reichstein, M., Zaehle, S., Ciais, P., Viovy, N., Bondeau, A., Chen, Y., Trusilova, K., Feser, F. and Heimann, M., 2007. Uncertainties of modelling GPP over Europe: A systematic study on the effects of using different drivers and terrestrial  biosphere  models.  Global  Biogeochemical  Cycles, 21:  GB4021, doi:10.1029/2006GB002915.Google Scholar
  12. Jung, M., Henkel, K., Herold, M. and Churkina, G., 2006. Exploiting synergies of global land cover products for carbon cycle modeling. Remote Sensing of Environment, 101: 534-553.CrossRefGoogle Scholar
  13. Kaminski, T. and Heimann, M., 2001. Inverse modeling of atmospheric carbon dioxide fluxes. Science, 294(5541): 259a-259a.CrossRefGoogle Scholar
  14. Kaminski, T., Heimann, M., and Giering, R., 1999. A coarse grid three-dimensional global inverse model of the atmospheric transport. 2. Inversion of the transport of CO2 in the 1980s. Journal of Geophysical Research-Atmospheres, 104(D15): 18555-18581.CrossRefGoogle Scholar
  15. Kaminski, T., Knorr, W., Rayner, P.J. and Heimann, M., 2002. Assimilating atmospheric data into a terrestrial biosphere model: A case study of the seasonal cycle. Global Biogeochemical Cycles, 16(4): 1066, doi:10.1029/2001GB001463.CrossRefGoogle Scholar
  16. Knorr, W. and Kattge, J., 2005. Inversion of terrestrial ecosystem model parameter values against eddy covariance measurements by Monte Carlo sampling. Global Change Biology, 11: 1333-1351.CrossRefGoogle Scholar
  17. McGuire, A.D., Sitch, S., Clein, J.S., Dargaville, R., Esser, G., Foley, J., Heimann, M., Joos, F., Kaplan, J., Kicklighter, D.W., Meier, R.A., Melillo, J.M., Moore, III B., Prentice, I.C., Ramankutty, N., Reichenau, T., Schloss, A., Tian, H., Williams, L.J., and Wittenberg, U., 2001. Carbon balance of the terrestrial biosphere in the twentieth century: Analyses of CO2, climate and land use effects with four process-based ecosystem models. Global Biogeochemical Cycles, 15(1): 183-206.CrossRefGoogle Scholar
  18. Pacala, S.W., Hurtt, G.C., Baker, D., Peylin, P., Houghton, R.A., Birdsey, R.A., Heath, L., Sundquist, E.T., Stallard, R.F., Ciais, P., Moorcroft, P., Caspersen, J.P., Shevliakova, E., Moore, B., Kohlmaier, G., Holland, E., Gloor, M., Harmon, M.E., Fan, S.-M., Sarmiento, J.L., Goodale, C.L., Schimel, D. and Field, C.B., 2001. Consistent land- and atmosphere-based U.S. carbon sink estimates. Science, 292(5525): 2316-2320.CrossRefGoogle Scholar
  19. Papale, D. and Valentini, A., 2003. A new assessment of European forests carbon exchanges by eddy fluxes and artificial neural network spatialization. Global Change Biology,9(4): 525-535.CrossRefGoogle Scholar
  20. Ramankutti, N. et al., 2007. Global land-cover change: Recent progress, remaining challenges, In Land Use and Land Cover Change: Local Processes, Global Impacts, E. Lambin and H. Geist (eds.), Springer Verlag, New York.Google Scholar
  21. Rayner, P.J., Enting, I.G., Francey, R.J., and Langenfelds, R., 1999. Reconstructing the recent carbon cycle from atmospheric CO2, delta C-13 and O2 /N2 observations. Tellus, 51B: 213-232.Google Scholar
  22. Rayner, P.J., Scholze, M., Knorr, W., Kaminski, T., Giering, R. and Widmann, H., 2005. Two decades of terrestrial carbon fluxes from a carbon cycle data assimilation system (CCDAS). Global Biogeochemical Cycles, 19(2): GB2026, doi:10.1029/2004GB002254.Google Scholar
  23. Reichstein, M., Rey, A., Freibauer, A., Tenhunen, J., Valentini, R., Banza, J., Casals, P., Cheng, Y.F., Grünzweig, J.M., Irvine, J., Joffre, R., Law, B.E., Loustau, D., Miglietta, F., Oechel, W., Ourcival, J.-M., Pereira, J.S., Peressotti, A., Ponti, F., Qi, Y., Rambal, S., Rayment, M., Romanya, J., Rossi, F., Tedeschi, V., Tirone, G., Xu, M. and Yakir, D., 2003. Modeling tem-poral and large-scale spatial variability of soil respiration from soil water availability, tempera-ture and vegetation productivity indices. Global Biogeochemical Cycles, 17 (4): 1104, doi:10.1029/2003GB002035.CrossRefGoogle Scholar
  24. Rödenbeck, C., Houweling, S., Gloor, M. and Heimann, M., 2003. CO2 flux history 1982-2001 inferred from atmospheric data using a global inversion of atmospheric transport. Atmospheric Chemistry and Physics, 3: 1919-1964.CrossRefGoogle Scholar
  25. Rödenbeck, C. 2005. Estimating CO2 sources and sinks from atmospheric mixing ratio measure-ments using a global inversion of atmospheric transport. Tech. Rep. #6, Max-Planck-Institute for Biogeochemistry, Jena, 61 pp.Google Scholar
  26. Sitch, S., Smith, B., Prentice, I.C., Arneth, A., Bondeau, A., Cramer, W., Kaplan, J.O., Levis, S., Lucht, W., Sykes, M.T., Thonicke, K. and Venevsky, S., 2003. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology, 9(2): 161-185.CrossRefGoogle Scholar
  27. Vetter, M., Churkina, G., Jung, M., Reichstein, M., Zaehle, S., Bondeau, A., Chen, Y., Ciais, P., Feser, F., Freibauer, A., Geyer, R., Jones, C., Papale, D., Tenhunen, J., Tomelleri, E., Trusilova, K., Viovy, N. and Heimann, M., 2007. Analyzing the causes and spatial pattern of the European 2003 carbon flux anomaly in Europe using seven models. Biogeosciences Discussions, 4: 1-40.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • Martin Heimann
    • 1
    • 2
  • Christian Rödenbeck
    • 1
    • 2
  • Galina Churkina
    • 1
    • 2
  1. 1.Max-Planck-Institute for BiogeochemistryJena
  2. 2.JenaGermany

Personalised recommendations