Advertisement

The Lateral Carbon Pump, and the European Carbon Balance

  • Philippe Ciais
  • Alberto V. Borges
  • Gwenael Abril
  • Michel Meybeck
  • Gerd Folberth
  • Didier Hauglustaine
  • Ivan A. Janssens
Part of the Ecological Studies book series (ECOLSTUD, volume 203)

Comparing atmospheric inversion estimates of the carbon fluxes of continents with bottom-up estimates (Pacala et al. 2001; Janssens et al. 2003; Peylin et al. 2005) is no easy task because (1) inversion fluxes always contain a certain amount of a priori information from bottom-up studies, so that the two approaches are not independent, (2) the time period for which inversion models and bottom-up estimates are produced is generally not the same, in the presence of substantial interannual variability, and (3) lateral carbon displacement makes some bottom-up estimates differ from inversions. Lateral displacement processes form a “carbon pump” which moves carbon away from the area where CO2 was fixed from the atmosphere by photosynthesis with a very small additional sink from rock weathering. Lateral pumping of carbon implies that regional changes in carbon storage must differ from regional mean CO2 fluxes (Tans et al. 1995; Sarmiento and Sundquist 1992).

Keywords

Dissolve Inorganic Carbon Particulate Organic Carbon Carbon Budget Lateral Carbon Estuarine Turbidity Maximum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abril G. and Borges A.V. (2004). Carbon dioxide and methane emissions from estuaries. In Greenhouse Gas Emissions: Fluxes and Processes. Hydroelectric Reservoirs and Natural Environments. A. Tremblay, L. Varfalvy, C. Roehm and M. Garneau (Eds.), Environmental Science Series, Springer-Verlag, Berlin, Heidelberg, New York. 187-207.Google Scholar
  2. Abril G., Etcheber H., Borges A.V., and Frankignoulle M. (2000). Excess atmospheric carbon dioxide transported by rivers into the Scheldt Estuary. Comptes Rendus de l’Académie des Sciences. Série IIA 330: 761-768.Google Scholar
  3. Abril G., Nogueira M., Etcheber H., Cabeçadas G., Lemaire E., and Brogueira M.J. (2002). Behaviour of organic carbon in nine contrasting European estuaries. Estuarine, Coastal and Shelf Science. 54: 241-262.CrossRefGoogle Scholar
  4. Anthoni P., Freibauer A., Kolle O., and Schulze E.-D. (2004). Winter wheat carbon exchange in Thuringia, Germany. Agricultural and Forest Meteorology. 121: 55-67.CrossRefGoogle Scholar
  5. Aucour M.-A., Sheppard S.M.F., Guyomar O., and Wattelet J. (1999). Use of 13C to trace origin and cycling of inorganic carbon in the Rhône river system. Chemical Geology. 159: 87-105.CrossRefGoogle Scholar
  6. Aumont O., Orr J.C., Monfray P., Ludwig W., Amiotte-Suchet P., and Probst J.L. (2001). Riverine-driven interhemispheric transport of carbon. Global Biogeochemical Cycle. 15: 393-405.CrossRefGoogle Scholar
  7. Billett M.F., Palmer S.M., Hope D., Deacon C., Storeton-West R., Hargreaves K.J., Flechard C., and Fowler D. (2004). Linking land-atmosphere-stream carbon fluxes. Global Biogeochemical Cycles. 18(1): 1-12.CrossRefGoogle Scholar
  8. Borges A.V., Delille B., Schiettecatte L.S., Gazeau F., Abril A., and Frankignoulle M. (2004). Gas transfer velocities of CO2 in three European estuaries (Randers Fjord, Scheldt and Thames). Limnology and Oceanography. 49(5): 1630-1641.Google Scholar
  9. Borges A.V. (2005). Do we have enough pieces of the jigsaw to integrate CO2 fluxes in the Coastal Ocean ? Estuaries. 28(1): 3-27.CrossRefGoogle Scholar
  10. Borges A.V., Delille B., and Frankignoulle M. (2005). Budgeting sinks and sources of CO2 in the coastal ocean: Diversity of ecosystems counts. Geophysical Research Letters. 32: L14601 (doi:10.1029/2005GL023053).CrossRefGoogle Scholar
  11. Borges A.V., Schiettecatte L.S., Abril G., Delille B., and Gazeau F. (2006). Carbon dioxide in European coastal waters. Estuarine Coastal and Shelf Science. 70: 375-387.CrossRefGoogle Scholar
  12. Ciais P., Bousquet P., Freibauer A., and Naegler T. (2006). On the horizontal displacement of car-bon associated to agriculture and how it impacts atmospheric CO2 gradients. Global Biogeochemical Cycles, in revisions.Google Scholar
  13. Cole J.J. and Caraco N.F. (2001). Carbon in catchments: Connecting terrestrial carbon losses with aquatic metabolism. Marine and Freshwater Research. 52: 101-110.CrossRefGoogle Scholar
  14. Cole J.J., Caraco N.F., Kling G.W., and Kratz T.W. (1994). Carbon dioxide supersaturation in the surface waters of lakes. Science. 265: 1568-1570.CrossRefGoogle Scholar
  15. CORINE Land cover (2000). EEA online publications: http://reports.eea.eu.int/COR0- landcover/ en., edited.
  16. Enting, I. G., and Mansbridge J. V.: Latitudinal Distribution of Sources and Sinks of CO2 - Results of an Inversion Study, Tellus, 43B, 156-170, 1991.Google Scholar
  17. FAO (2004). Food and Agriculture Organization database, in http://faostat.fao.org/faostat/ collections?subset = agriculture, edited.
  18. Folberth G., Hauglustaine D., Ciais P., and Lathière J. (2005). On the role of atmospheric chemis-try in the global CO2 budget. Geophysical Research Letters. doi:10.1029.Google Scholar
  19. Frankignoulle M., Abril G., Borges A., Bourge I., Canon C., Delille B., Libert E., and Théate J.M. (1998). Carbon dioxide emission from European estuaries. Science. 282: 434-436.CrossRefGoogle Scholar
  20. Gazeau F., Gattuso J.-P., Middelburg J.J., Brion N., Schiettecatte L.-S., Frankignoulle M., and Borges A.V. (2005). Planktonic and whole system metabolism in a nutrient-rich estuary (the Scheldt Estuary). Estuaries. 28(6): 868-883.CrossRefGoogle Scholar
  21. Graneli W., Lindell M., and Tranvik L. (1996). Photo-oxidative production of dissolved inorganic carbon in lakes of different humic content. Limnology and Oceanography. 41: 698-706.CrossRefGoogle Scholar
  22. Grosbois C., Négrel P., Fouillac C., and Grimaud D. (2000). Dissolved load of the Loire River: Chemical and isotopic characterization. Chemical Geology. 170: 179-201.CrossRefGoogle Scholar
  23. Hauglustaine D.A., Hourdin F., Jourdain L., Filiberti M.A., Walters S., Lamarque J.F., and Holland E.A. (2004). Interactive chemistry in the laboratoire de météorologie dynamique gen-eral circulation model: Description and background tropospheric chemistry evaluation. Journal of Geophysical Research. 109.Google Scholar
  24. Hope D., Palmer S., Billet M., and Dawson J.J.C. (2001). Carbon dioxide and methane evasion from a temperate peatland stream. Limnology and Oceanography. 46: 847-857.Google Scholar
  25. Huthnance J.M. (2006). North-East Atlantic margins. In Carbon and Nutrient Fluxes in Global Continental Margins.Atkinson L., Liu K.K., Quinones R., and Talaue-McManus L. (Eds.), Springer, New York.Google Scholar
  26. Imhoff M.L., Bounoua L., Ricketts T., Loucks C., Harriss R., and Lawrence W.T. (2004). Global patterns in human consumption of net primary production. Nature. 429: 870-873.CrossRefGoogle Scholar
  27. Janssens I.A., et al. (2003). Europe’s terrestrial biosphere absorbs 7 to 12% of European Anthropogenic emissions. Science. 300: 1538-1542.CrossRefGoogle Scholar
  28. Janssens I.A., et al. (2005). The carbon budget of terrestrial ecosystems at country-scale A European case study. Biogeosciences. 2: 15-26.CrossRefGoogle Scholar
  29. Jones J.B. and Mulholland P.J. (1998). Carbon dioxide variation in a hardwood forest stream: An integrative measure of whole catchment soil respiration. Ecosystems. 1: 183-196.CrossRefGoogle Scholar
  30. Kempe S. (1982). Long term record of CO2 pressure fluctuations in freshwaters. Mitteilungen aus dem Geologish-Paläontologishen Institut der Universität Hamburg. 52: 91-332.Google Scholar
  31. Kempe S. (1984). Sinks of the anthropogenically enhanced carbon cycle in surface fresh waters. Journal of Geophysical Research. 89: 4657-4676.CrossRefGoogle Scholar
  32. Kesselmeier J. (2005). Volatile organic carbon compound emissions in relation to plant carbon fixation and the terrestrial carbon budget, Global Biogeochemical Cycles. 16: 11.Google Scholar
  33. Lafont S., Kergoat L., Dedieu G., Chevillard A., Karstens U., and Kolle O. (2002). Spatial and temporal variability of land CO2 fluxes estimated with remote sensing and analysis data over western Eurasia. Tellus. 54B: 820-833.Google Scholar
  34. Ludwig W., Meybeck M., and Abousamra F. (2003). Riverine transport of water, sediments and pollutants to the Mediterranean Sea. Medit. Action Technical Report Series #141, UNEP/MAP Athens, 111 pp.Google Scholar
  35. Meybeck M. (1993). Riverine transport of atmospheric carbon: Sources, global typology and budget. Water, Air Soil Pollution, 70: 443-464.CrossRefGoogle Scholar
  36. Meybeck M. (2005). Global distribution and behaviour of carbon species in world rivers. In Soil Erosion and Carbon dynamics. Roose E., Lal R., Feller C., Barthès B., Stewart B.A. (Eds.), Advances in Soil Science Series, CRC Boca Raton, FL, 209-238.Google Scholar
  37. Meybeck M. and Ragu A. (1996). River discharges to the oceans. An assessment of suspended solids, major ions, and nutrients. Environment Information and Assessment Report. UNEP, Nairobi, 250 pp.Google Scholar
  38. Meybeck M., Cauwet G., Dessery S., Somville M., Gouleau D., and Billen G. (1988). Nutrients (Organic C, P, N, Si) in the eutrophic river Loire and its estuary. East Coast Shelf Science. 27: 595-624.CrossRefGoogle Scholar
  39. Myneni R., Dong J., Tucker C., Kaufmann R.K., Kauppi P.E., Uski J., Zhou L., Alexeyev V., and Hughes M.K. (2001). A large carbon sink in the woody biomass of Northern forests. PNAS. 9: 14784-14789.CrossRefGoogle Scholar
  40. Neal C., House W.A., Jarvie H.P., and Eatherall A. (1998). The significance of dissolved carbon dioxide in major rivers entering the North Sea. The Science of the total Environment. 210/211: 187-203.Google Scholar
  41. Pacala S. W., et al. (2001). Consistent land- and atmosphere-based U.S. carbon sink estimates. Science. 292: 2316-2320.CrossRefGoogle Scholar
  42. Peylin P., Bousquet P., LeQuéré C., Sitch S., Friedlingstein P., McKinley G.A., Gruber N., Rayner P., and Ciais P. (2005). Multiple constraints on regional CO2 fluxes variations over land and oceans. Global Biogeochemical Cycles. 19: GB1011, doi:10.1029/2003GB002214.Google Scholar
  43. Ramankutty N. and Foley J. (1998). Characterizing patterns of global land use: An analysis of global croplands data. Global Biogeochemical Cycles. 12: 667-685.CrossRefGoogle Scholar
  44. Sarmiento J.L. and Sundquist E.T. (1992). Revised budget for the oceanic uptake of anthropogenic carbon dioxide. Nature. 356: 589-593.CrossRefGoogle Scholar
  45. Schiettecatte, L.-S., Thomas, H., Bozec, Y., and Borges, A.V. (2007). High temporal coverage of carbon dioxide measurements in the Southern Bight of the North Sea., Marine Chemistry, submitted.Google Scholar
  46. Sobek S., Algesten G., Bergstrom A.-K., Jansson M., Tranvik L.J. (2003). The catchment and cli-mate regulation of pCO2 in boreal lakes. Global Change Biology, 9: 630-41.CrossRefGoogle Scholar
  47. Takahashi T., Sutherland S.C., Sweeney C., Poisson A., Metzl N., Tilbrook B., Bates N.R., Wanninkhof R., Feely R.A., Sabine C., Olafsson J., and Nojiri Y. (2002). Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep-Sea Research. II 49(9-10): 1601-1622.CrossRefGoogle Scholar
  48. Tans P.P., Fung I.Y., and Enting I.G. (1995). Storage versus flux budgets: The terrestrial uptake of CO2 during the 1980s. In Biotic Feedbacks in the Global System. Woodwell G.M. and Mackensie F.T. (Eds.), Oxford University Press, New York. 351-366.Google Scholar
  49. Thomas H., Bozec Y., De Baar H.J.W., Elkalay K., Frankignoulle M., Schiettecatte L.-S., and Borges A.V. (2005). The carbon budget of the North Sea. Biogeosciences. 2(1): 87-96.CrossRefGoogle Scholar
  50. Tranvik L. (2005). Terrestrial dissolved organic matter A huge but not unlimited subsidy to aquatic ecosystems. ASLO summer meeting, Santiago de Compostella. 19-24 June 2005.Google Scholar
  51. Vörösmarty C.J., Meybeck M., Fekete B., Sharma K., Green P., and Syvitski J. (2003). Anthropogenic sediment retention: Major global-scale impact from the population of registered impoundments. Global Planetary Changes. 39: 169-190.CrossRefGoogle Scholar
  52. Wanninkhof R., Mulholland P.J., and Elwood J.W. (1990). Gas exchange rates for a first order stream determined with deliberate and natural tracers. Water Resources Research 26: 1621-1630.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • Philippe Ciais
    • 1
  • Alberto V. Borges
    • 2
  • Gwenael Abril
    • 3
  • Michel Meybeck
    • 4
  • Gerd Folberth
    • 5
  • Didier Hauglustaine
    • 1
  • Ivan A. Janssens
    • 6
  1. 1.Laboratoire des Sciences du Climat et de l’EnvironnementIPSL/LSCE CEA-CNRS-UVSQGif sur YvetteFrance
  2. 2.Interfacultary Center for Marine Research (MARE), Chemical Oceanography Unit, Institut de Physique (B5)University of LiègeLiègeBelgium
  3. 3.Environnements et Paléoenvironnements Océaniques (EPOC)Université de Bordeaux 1. CNRS-UMR 5805TalenceFrance
  4. 4.SISYPHEUniversité Paris VI JussieuParisFrance
  5. 5.School of Earth and Ocean Science (SEOS)University of VictoriaVictoriaCanada
  6. 6.Department of BiologyUniversiteit AntwerpenAntwerpenBelgium

Personalised recommendations