Using Satellite Observations in Regional Scale Calculations of Carbon Exchange

  • Shaun Quegan
  • Philip Lewis
  • Tristan Quaife
  • Gareth Roberts
  • Martin Wooster
  • Mathias Disney
Part of the Ecological Studies book series (ECOLSTUD, volume 203)

Estimates of carbon exchange at regional to global scale have been achieved by essentially three means: (1) use of atmospheric concentration measurements with models of atmospheric transport to infer carbon sources and sinks (atmospheric inversion), (2) inventory and (3) process modelling. These approaches can be applied independently, with results that are rarely consistent even amongst approaches of the same type (e.g. Janssens et al. 2003), and each has particular strengths and weaknesses. The first two simply involve conservation of mass and are based on measurements (although these are normally highly undersampled in space). They have little power to explain the observed fluxes or predict their future behaviour. In contrast, the third approach has both explanatory and predictive power, but is normally poorly constrained by measurements. These complementary strengths motivate current efforts to combine the three approaches in model—data fusion schemes (Ciais et al. 2003). Satellite data can play an important part in such schemes, since satellite sensors provide the only means of making global, frequently repeated measurements of the Earth’s surface and atmosphere. However, capitalising on these measurements to make improved carbon exchange estimates requires that they be brought into the same framework as the models that actually perform the estimates. This interface depends on both the measurements and the type of model.


Normalise Difference Vegetation Index Photosynthetically Active Radiation Leaf Area Index Gross Primary Production Satellite Observation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alton, P. B., North, P. R., and Los, S. O. (in press). The impact of diffuse sunlight on canopy light-use efficiency, gross photosynthetic product and net ecosystem exchange in three forest biomes. Global Change Biol., online: 10-Jan-2007 doi: 10.1111/j.1365-2486.2007.01316.xGoogle Scholar
  2. Andreae, M. O., and Merlet, P. (2001). Emission of trace gases and aerosols from biomass burn-ing. Global Biogeochem. Cycles, 15(4), 955-966.CrossRefGoogle Scholar
  3. Arellano, A. F., Kasibhatla, P. S., Giglio, L., van der Werf, G. R., Randerson, J. T., and Collatz, G. J. (2006). Time-dependent inversion estimates of global biomass-burning CO emissions using Measurement of Pollution in the Troposphere (MOPITT) measurements. J. Geophys. Res., 111, D09303, doi:10.1029/2005JD006613.CrossRefGoogle Scholar
  4. Barkley, M. P., Monks, P. S., and Engelen, R. J. (2006a). Comparison of SCIAMACHY and AIRS CO2 measurements over North America during the summer and autumn of 2003. Geophys. Res. Letts., 33, L20805, doi:10.1029/2006GL026807.CrossRefGoogle Scholar
  5. Barkley, M. P., Monks, P. S., Friess, U., Mittermeier, R. L., Fast, H., Korner, S., and Heimann, M. (2006b). Comparisons between SCIAMACHY atmospheric CO2 retrieved using (FSI) WFM-DOAS to ground based FTIR data and the TM3 chemistry transport model. Atmos. Chem. Phys., 6, 4483-4498.Google Scholar
  6. Best, M. (2005). JULES Technical Documentation, Met Office, Joint Centre for Hydro-Meteorological Research, Wallingford, UK. (based on Hadley Centre Technical Notes 24 (TRIFFID) and 30 (MOSES 2.2) ).Google Scholar
  7. Bonan, G. B., Levis, S., Kergoat, L., and Oleson, K. W. (2002). Landscapes as patches of plant functional types: An integrated concept for climate and ecosystem models. Global Biogeochem. Cycles, 16(2), 1021-1051.CrossRefGoogle Scholar
  8. Bovensmann, H., Burrows, J. P., Buchwitz, M., Frerick, J., Noel, S., Rozanov, V. V., Chance, K. V., and Goede, A. P. H. (1999). SCIAMACHY: Mission objectives and measurement modes. J. Atmos. Sci., 56, 127-150.CrossRefGoogle Scholar
  9. Burrows, J. P., Weber, M., Buchwitz, M., Rozanov, V., Ladstatter-Weissenmayer, A., Richter, A., DeBeek, R., Hoogen, R., Bramstedt, K., Eichmann, K. U., and Eisinger, M. (1999). The global ozone monitoring experiment (GOME): Mission concept and first scientific results. J. Atmos. Sci., 56, 151-175.CrossRefGoogle Scholar
  10. Center for Global Environmental Research(2006). GOSAT: Greenhouse Gases Observing Satellite( National Institute for Environmental Studies, Japan.
  11. Chevallier, F., Breon, F.-M., and Rayner, P. J. (2007). The contribution of the Orbiting Carbon Observatory to the estimation of CO2 sources and sinks: Theoretical study in a variational data assimilation framework, J. Geophys. Res. 112, D09307, doi:10.1029/2006JD007375.CrossRefGoogle Scholar
  12. Ciais, P., Moore, B., Steffen, W., Hood, M., Quegan, S., Cihlar, J., Raupach, M., Rasool, I., Doney, S., Heinze, C., Sabine, C., Hibbard, K., Schulze, D., Heimann, M., Chédin, A., Monfray, P., Watson, A., LeQuéré, C., Tans, P., Dolman, A.J., Valentini, R., Arino, O., Townshend, J., Seufert, G., Field, C., Chu, I., Goodale, C., Nobre, A., Inoue, G., Crisp, D., Baldocchi, D., Tschirley, J., Denning, S., Cramer, W., and Francey, R. (2003). Final Report on the IGOS-P Carbon Theme. The Integrated Global Carbon Observing Strategy: A Strategy to Build a Coordinated Operational Observing System of the Carbon Cycle and Its Future Trends, FAO.Google Scholar
  13. Crisp, D., Atlas, R. M., Breon, F.-M., Brown, L. R., Burrows, J. P., Ciais, P., Connor, B. J., Doney, S. C., Fung, I., Y., Jacob, D. J., Miller, C. E., O’Brien, D., Pawson, S., Randerson, J. T., Rayner, P. J., Salawitch, R. J., Sander, S. P., Sen, B., Stephens, G. L., Tans, P. P., Toon, G. C., Wennberg, P. O., Wofsy, S. C., Yung, Y. L., Kuang, Z., Chudasama, B., Sprague, G., Weiss, B., Pollock, P., Kenyon, D., and Schroll, S. (2004). The Orbiting Carbon Observatory (OCO) mission. Adv. Space Sci., 34(4), 700-709.CrossRefGoogle Scholar
  14. Drezet, P. M. L., and Quegan, S. (2006). Environmental effects on the interferometric repeat-pass coherence of forests. IEEE Trans. Geosci. Remote Sens., 44(4), 825-837.CrossRefGoogle Scholar
  15. Drouet, J.-L., and Bonhomme, R. (2004). Effect of 3D nitrogen, dry mass per area and local irradi-ance on canopy photosynthesis within leaves of contrasted heterogeneous maize crops. Ann. Bot. 93(6), 699-710.CrossRefGoogle Scholar
  16. Fensholt, R., Sandholt, I., and Schultz Rasmussen, M. (2004). Evaluation of MODIS LAI, fAPAR and the relation between fAPAR and NDVI in a semi-arid environment using in situ measure-ments. Remote Sens. Env., 91(3-4), 490-507.Google Scholar
  17. Frankenberg, C., Meirink, J. F., van Weele, M., Platt, U., and Wagner, T. (2005). Assessing meth-ane emissions from global space-borne observations, Science, 308, 1010-1014.CrossRefGoogle Scholar
  18. Friedlingstein, P., Cox, P., Betts, R., Bopp, L., von Bloh, W., Brovkin, V., Cadule, P., Doney, S., Eby, M., Fung, I., Bala, G., John, J., Jones, C., Joos, F., Kato, T., Kawamiya, M., Knorr, W., Lindsay, K., Matthews, H. D., Raddatz, T., Rayner, P., Reick, C., Roeckner, E., Schnitzler, K.-G., Schnur, R., Strassmann, K., Weaver, A. J., Yoshikawa, C., and Zend, N. (2006). Climate-carbon cycle feedback analysis: results from the C4MIP model intercomparison. J. Clim., 19, 3337-3353.CrossRefGoogle Scholar
  19. Fritz, S., Bartholomé, E., Belward, A., Hartley, A., Stibig, H.-J., Eva, H., Mayaux, P., Bartalev, S., Latifovic, R., Kolmert, S., Roy, P., Agrawal, S., Bingfang, W., Wenting, X., Ledwith, M., Pekel, J.-F., Giri, C., Mücher, S., de Badts, E., Tateishi, R., Champeaux, J.-L., and Defourny, P. (2003). Harmonisation, mosaicing and production of the Global Land Cover 2000 database, Beta Version (2003). Publication of the European Commission EUR 20849.Google Scholar
  20. Fuller, R., Smith, G., Sanderson, J., Hill, R., Thomson, A., Cox, R., N. J., B., Clarke, R., Rothery, P., and Gerard, F. (2002). Land Cover Map 2000, Final Report 7. Centre for Ecology and Hydrology, Cambridgeshire.Google Scholar
  21. Garestier, F., Le Toan, T., and Dubois-Fernandez, P. (2007). Forest height estimation using P-band Pol-InSAR data. Proc. Polinsar 2007, ESA.Google Scholar
  22. Giglio, L., Kendall, J. D., and Mack, R. (2003). A multi-year active fire data set for the tropics derived from the TRMM VIRS. Int. J. Remote Sens., 24, 4505-4525.CrossRefGoogle Scholar
  23. Giglio, L., van der Werf, G. R., Randerson, J. T., Collatz, G. J., and Kasibhatia, P. (2006). Global estimation of burned area using MODIS active fire observations. Atmos. Chem. Phys., 6, 957-974.Google Scholar
  24. Gobron, N., Pinty, B., Verstraete, M. M., and Govaerts, Y. (1997). A semi-discrete model for the scattering of light by vegetation. J. Geophys. Res., 102, 9431-9446.CrossRefGoogle Scholar
  25. Gobron, N., Pinty, B., Verstraete, M. M., and Widlowski, J.-L. (2000). Advanced vegetation indi-ces optimized for up-coming sensors: Design, performance, and applications. IEEE Trans. Geosci. and Remote Sens., 38(6), 2489-2505.CrossRefGoogle Scholar
  26. Gobron, N., Pinty, B., Aussedat, O., Chen, J. M., Cohen, W. B., Fensholt, R., Gond, V., Huemmrich, K. F., Lavergne, T., Melin, F., Privette, J. L., Sandholt, I., Taberner, M., Turner, D. P., Verstraete, M. M., and Widlowski, J.-L. (2006). Evaluation of fraction of absorbed pho-tosynthetically active radiation products for different canopy radiation transfer regimes: Methodology and results using Joint Research Center products derived from SeaWiFS against ground-based estimations. J. Geophys. Res., 111, D13110, doi:10.1029/2005JD006511.CrossRefGoogle Scholar
  27. Gu, L., Baldocchi, D., Verma, S. B., Black, T. A., Vesala, T., Falge, E. M., and Dowty, P. R. (2002). Advantages of diffuse radiation for terrestrial ecosystem productivity. J. Geophys. Res., 107(D6), 4050, doi:10.1029/2001JD001242.CrossRefGoogle Scholar
  28. Hansen, M. C., DeFries, R. S., Townshend, J. R. G., and Sohlberg, R. (2000). Global land cover classification at 1 km spatial resolution using a classification tree approach. Int. J. Remote Sens., 21, 1331-1364.CrossRefGoogle Scholar
  29. Janssens, I. A., Freibauer, A., Ciais, P., Smith, P., Nabuurs, G.-J., Folberth, G., Schlamadinger, B., Hutjes, R. W. A., Ceulemans, R., Schulze, E. -D., Valentini, R., and Dolman., A. J. (2003). Europe’s terrestrial biosphere absorbs 7 to 12% of European anthropogenic CO2 emissions. Science, 300, 1538-1542.CrossRefGoogle Scholar
  30. Joint Research Centre(2006). Forest Fires in Europe2005, EUR 22312 EN, EuropeanCommission, 54 pp.Google Scholar
  31. Knorr, W., and Lakshmi, V. (2001). Assimilation of fAPAR and Surface Temperature into a Land Surface and Vegetation Model. In: Lakshmi, V., Albertson, J., and Schaake, J. (eds.), Land Surface Hydrology, Meteorology and Climate: Observations and Modelling, AGU: Washington, 177-200.Google Scholar
  32. Knyazikhin, Y., Martonchik, J. V., Myneni, R. B., Diner, D. J., and Running, S. W. (1998). Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MODIS and MISR data. J. Geophys. Res., 103, 32,257-32,276.Google Scholar
  33. Kugler, F., Papathanassiou, K., and Hajnsek, I. (2007). Forest parameter estimation in tropical forests by means of Pol-InSAR: Evaluation of the Indrex-II campaign. Proc. Polinsar 2007, ESA.Google Scholar
  34. Law, B. E., Thornton, P., Irvine, J., Van Tuyl, S., and Anthoni, P. (2001). Carbon storage and fluxes in ponderosa pine forests at different developmental stages. Global Change Biol., 7, 755-777.CrossRefGoogle Scholar
  35. Le Toan, T., Quegan, S., Woodward, I., Lomas, M., Delbart, N., and Picard, G. (2004). Relating radar remote sensing of biomass to modelling of forest carbon budgets, J. Clim. Change, 67(2), 379-402.CrossRefGoogle Scholar
  36. Lotsch, A., Tian, Y., Friedl, M. A., and Myneni, R. B. (2003). Land cover mapping in support of LAI and FPAR retrievals from EOS-MODIS and MISR: Classification methods and sensitivi-ties to errors. Int. J. Remote Sens., 24(10), 1997-2016.CrossRefGoogle Scholar
  37. Loveland, T. R. and Belward, A. S. (1997). The IGBP-DIS global 1 km land cover data set, DIScover: First results, Int. J. Remote Sens., 65(9), 1021-1031.Google Scholar
  38. Monteith, J. L. (1977). Climate and the efficiency of crop production in Britain. Phil. Trans. Roy. Soc. Lond., B 281, 277-294.CrossRefGoogle Scholar
  39. Monteith, J. L. (1972). Solar radiation and productivity in tropical ecosystems. J. Appl. Ecol., 9, 747-766.CrossRefGoogle Scholar
  40. Monteith, J. L., and Unsworth, M. (1990). Principles of Environmental Physics, 2nd edition, Arnold, London.Google Scholar
  41. Nouvellon, Y., Moran, M. S., Seen, D. L., Bryant, B., Rambal, S., Ni, W., Bégué, A., Emmerich, B., Heilman, P., and Qi, J. (2001). Coupling a grassland ecosystem model with landsat imagery for a 10-year simulation of carbon and water budgets. Remote Sens. Env., 78, 131-149.Google Scholar
  42. Olson, J. S., Watts, J. A., and Allison, L. J. (1983). Carbon in Live Vegetation of Major World Ecosystems. Report ORNL-5862. Oak Ridge National Laboratory, Oak Ridge, Tennessee, 164 pp.Google Scholar
  43. Prince, S. D., and Goward, S. N. (1995). Global primary production: A remote sensing approach. J. Biogeogr., 22(4/5), 815-835.CrossRefGoogle Scholar
  44. Quaife, T., Lewis, P., De Kauwe, M., Williams, M., Law, B. E., Disney, M., and Bowyer, P. (2007). Assimilating canopy reflectance data into an ecosystem model with an Ensemble Kalman Filter. Remote Sens. Env. (in press).Google Scholar
  45. Raupach, M. R., Rayner, P., Barrett, D. J., DeFries, R., Heimann, M., Ojima, D., Quegan, S., and Schmullius, C. (2005). Model-data synthesis in terrestrial carbon observation: Methods, data requirements and data uncertainty specifications. Global Change Biol., 11, 378-397.CrossRefGoogle Scholar
  46. Rayner, P. J., and O’Brien, D. M. (2001). The utility of remotely sensed CO2 concentration data in surface source inversions. Geophys. Res. Lett., 28, 175-178.CrossRefGoogle Scholar
  47. Rayner, P. J., Scholze, M., Knorr, W., Kaminski, T., Giering, R., and Widmann, H. (2005). Two decades of terrestrial carbon fluxes from a carbon cycle data assimilation system (CCDAS). Global Biogeochem. Cycles, 19, doi:10.1029/2004GB002254.Google Scholar
  48. Roberts, G., Wooster, M. J., Perry, G. L. W., Drake, N., Rebelo, L-M. and Dipotso, F. (2005). Retrieval of biomass combustion rates and totals from fire radiative power observations: appli-cation to southern Africa using geostationary SEVIRI Imagery. J. Geophys. Res., 110, D21111: doi:10.1029/2005JD006018 CrossRefGoogle Scholar
  49. Roy, D. P., Lewis, P., and Justice, C. O. (2001). Burned area mapping using multi-temporal mod-erate spatial resolution data A bi-directional reflectance model-based expectation approach. Remote Sens. Env., 83, 263-286.Google Scholar
  50. Roy, D. P., Jin, Y., Lewis, P. E., and Justice, C. O. (2005a). Prototyping a global algorithm for systematic fire-affected area mapping using MODIS time series data. Remote Sens. Env., 97, 137-162.Google Scholar
  51. Roy, D. P., Frost, P. G. H., Justice, C. O., Landmann, T., le Roux, J. L., Gumbo, K., Makungwa, S., Dunham, K., du Toit, R., Mhwandagaraii, K., Zacarias, A., Tacheba, B., Dube, O. P., Pereira, J. M. C., Mushove, P., Morisette, J. T., Santhana Vannan, S. K., and Davies, D. (2005b). The Southern Africa Fire Network (SAFNet) regional burned-area product-validation protocol. Int. J. Remote Sens., 26(19), 4265-4292.CrossRefGoogle Scholar
  52. Ruimy, A., Kergoat, L., Bondeau, A., and the participants of the Potsdam NPP model intercom-parison (1999). Comparing global models of terrestrial net primary productivity (NPP): Analysis of differences in light absorption and light use efficiency. Global Change Biol., 5 (suppl. 1), 56-64.Google Scholar
  53. Running, S., Nemani, R., Glassy, J. M., and Thornton, P. (1999). MODIS Daily Photosynthesis (PSN) and Annual Net Primary Production (NPP) Product (MOD17), Algorithm Theoretical Basis Document, version 3.0, April 29 1999.Google Scholar
  54. Running, S. W., Thornton, P. E., Nemani, R. R., and Glassy, J. M. (2000). Global Terrestrial Gross and Net Primary Productivity from the Earth Observing System. In: Sala, O., Jackson, R., and Mooney, H. (Eds.), Methods in Ecosystem Science, Springer-Verlag: New York.Google Scholar
  55. Schultz, M. (2002). On the use of ATSR fire count data to estimate the seasonal and interannual variability of vegetation fire emissions. Atmos. Chem. Phys., 2, 387-395.CrossRefGoogle Scholar
  56. Soja, A. J., Sukhinin, A. I., Cahoon Jr, D. R., Shugart, H. H., and Stackhouse Jr, P. W. (2004). AVHRR-derived fire frequency, distribution and area burned in Siberia. Int. J. Remote Sens., 25, 1939-1960.CrossRefGoogle Scholar
  57. van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Kasibhatla, P. S., and Arellano, A. F. (2006). Interannual variability in global biomass burning emissions from 1997 to 2004. Atmos. Chem. Phys., 6, 3423-3441.CrossRefGoogle Scholar
  58. Veroustraete, F., Sabbe, H., and Eerens, H. (2002). Estimation of carbon mass fluxes over Europe using the C-fix model and Euroflux data. Remote Sens. Environ., 83, 376-399.Google Scholar
  59. Vivoy, N., Francois, C., Bondeau, A., Krinner, G., Polcher, J., Kergoat, L., Dedieu, G., De Noblet, N., Ciais, P., and Friedlingstein, P. (2001). Assimilation of remote sensing measurements into the ORCHIDEE/STOMATE DGVM biosphere model. Proceedings of 8th International Symposium Physical Measurements & Signatures in Remote Sensing. Aussois, France, 713-718.Google Scholar
  60. Williams, M., Rastetter, E. B., Fernandes, D. N., Goulden, M. L., Wofsy, S. C., Shaver, G. R., Melillo, J. M., Munger, J. W., Fan, S.-M., and Nadelhoffer, K. J. (1996). Modelling the soil-plant-atmosphere continuum in a Quercus-Acer stand at Harvard Forest: The regulation of stomatal conductance by light, nitrogen and soil/plant hydraulic properties. Plant Cell Environ., 19, 911-927.CrossRefGoogle Scholar
  61. Williams, M., Schwarz, P. A., Law, B. E., Irvine, J., and Kurpius, M. (2005). An improved analysis of forest carbon dynamics using data assimilation. Global Change Biol., 11, 89-105.CrossRefGoogle Scholar
  62. Woodward, F. I., and Lomas, M. R. (2004). Vegetation dynamics—Simulating responses to cli-matic change. Biol. Rev., 79(3), 643-670.CrossRefGoogle Scholar
  63. Wooster, M. J., Roberts, G., Perry, G., and Kaufman, Y. J. (2005). Retrieval of biomass combus-tion rates and totals from fire radiative power observations: calibration relationships between biomass consumption and fire radiative energy release. J. Geophys. Res., 110, D21111: doi:10.1029/2005JD006318.CrossRefGoogle Scholar
  64. Wooster, M. J., Zhukov, B., and Oertel, D. (2003). Fire radiative energy for quantitative study of biomass burning: Derivation from the BIRD experimental satellite and comparison to MODIS fire products. Remote Sens. Env., 86, 83-107.Google Scholar
  65. World  Resources  Institute(2000)., PAGE, 2000.
  66. Yang, W., Tan, B., Huang, D., Rautiainen, M., Shabanov, N. V., Wang, Y., Privette, J. L., Huemmrich, K. F., Fensholt, R., Sandholt, I., Weiss, M., Ahl, D. E., Gower, S. T., Nemani, R. R., Knyazikhin, Y., and Myneni, R. B. (2006). MODIS leaf area index products: From validation to algorithm improvement. IEEE Trans. Geosci. Remote Sens., 44(7), 1885-1898.CrossRefGoogle Scholar
  67. Zhang, Q., Xiao, X., Braswell, B., Linder, E., Baret, F., and Moore, B. (2005). Estimating light absorption by chlorophyll, leaf and canopy in a deciduous broadleaf forest using MODIS data and a radiative transfer model. Remote Sens. Env., 99, 357-371.Google Scholar
  68. Zhukov, B., Lorenz, E., Oertel, D., Wooster, M. J., and Roberts, G. (2005). Spaceborne detection and characterization of fires during the Bi-spectral Infrared Detection (BIRD) experimental small satellite mission (2001-2004). Remote Sens. Env., 100, 29-51.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • Shaun Quegan
    • 1
  • Philip Lewis
    • 2
  • Tristan Quaife
    • 2
  • Gareth Roberts
    • 3
  • Martin Wooster
    • 3
  • Mathias Disney
    • 2
  1. 1.NERC Centre for Terrestrial Carbon Dynamics and the University of SheffieldSheffieldUK
  2. 2.NERC Centre for Terrestrial Carbon Dynamics and University College LondonLondonUK
  3. 3.Department of GeographyKings College LondonLondonUK

Personalised recommendations